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Abstract

We slightly improve on characterization results already in the literature for
base revision. We show that in order to axiomatically characterize revision oper-
ators in a logic the only conditions this logic is required to satisfy are: finitarity
and monotonicity. A characterization of limiting cases of revision operators, full
meet and maxichoice, is also offered. We also distinguish two types of bases,
naturally arising in the context of fuzzy logics.

1 Preliminaries

We introduce in this section the concepts and results needed for results. This section
contains a brief exposition of partial meet belief change, and abstract and t-norm
based fuzzy logics1.

1.1 Partial meet Base Belief Change

Belief change is the study of how some theory T (non-necessarily closed, as we use
the term) in a given language L can adapt to new incoming information ϕ ∈ L
(inconsistent with T , in the interesting case). The main operations are: revision,
where the new input must follow from the revised theory, which is to be consistent,
and contraction where the input must not follow from the contracted theory. In
the classical paper [1], by Alchourrón, Gärdenfors and Makinson, partial meet revi-
sion and contraction operations were characterized for closed theories in, essentially,
monotonic compact logics with the deduction property. Their work put in solid
grounds this newly established area of research, opening the way for other formal
studies involving new objects of change, operations (see [10] for a comprehensive list)
or logics. Change operators can be defined by the following method, adapted from
[1]. Partial meet consists in (i) generating all logically maximal ways to adapt T to
the new sentence (those subtheories of T making further information loss logically
unnecessary), (ii) selecting some of these possibilities, (iii) forming their meet, and,
optionally, (iv) performing additional steps (if required by the operation). Then a set

∗The author wishes to thank Zzzzzzzzz zzzzzzzzzzz zzzzzzzzzzzz zzzzzzzzzzzzzz for financial sup-
port.

1We will use throughout the paper relational `S and functional CnS notation indistinctively,
where `S is a consequence relation and CnS its associated closure operator.
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of axioms is provided to capture these partial meet operators, by showing equivalence
between satisfaction of these axioms and being a partial meet operator2. In addition,
new axioms may be introduced to characterize the limiting cases of selection in step
(ii), full meet and maxichoice selection types. Finally, results showing the different
operation types can be defined each other are usually provided too. A base is an
arbitrary set of formulas, the original requirement of logical closure being dropped.
Base belief change for the same logical framework than AGM was characterized by
Hansson (see [5], [6]). The results for contraction and revision were improved in [7]
(by Hansson and Wassermann): for contraction (Theorem 3.8) it is shown that fini-
tarity and monotony suffice, while for revision (Theorem 3.17) their proof depends
on a further condition, Non-contravention: for all sentences ϕ, if ¬ϕ ∈ CnS(T ∪{ϕ}),
then ¬ϕ ∈ CnS(T ). Observe this condition holds in logics having (i) the deduction
property and (ii) the structural axiom of Contraction3. We show Non-contravention
can be dropped in the characterization of revision if we replace unprovability (re-
mainders) by consistency in the definition of partial meet.

1.1.1 Abstract fuzzy logics and t-norm based fuzzy logics.

Given a logic S with language Fm, one can consider a fuzzy extension of it from some
lattice of degrees W by considering the next elements: (i) a fuzzy base u as a function
u : Fm →W mapping each Fm-formula ϕ some degree u(ϕ) ∈W , obtaining a signed
language FFm(W ); (ii) some fuzzy deduction operator DS : FFm(W ) → FFm(W )
mapping bases to deductively closed bases; (iii) additionally, a fuzzy semantics for
the fuzzy deduction operator may be supplied. In [2], the authors consider fuzzy
bases to be generated by associating values from some complete distributive lattice
W , i.e. such that for any U ⊆ W , sup(U), inf(U) ∈ W exist. The resulting revision
operation is quite elegant, but in this setting one cannot define contraction to be
sound w.r.t. the axiom of (Success), (ϕ/r) /∈ T 	 (ϕ/r), due to base functionality.

In contrast, the original framework of fuzzy logics presenting them as axiomatic
extensions of Hájek’s Basic Logic BL (the latter capturing logical tautologies common
to each t-norm based logic) constitute the most well-known fuzzy logics (see [4] for
a reference); an additional advantage of this approach is direct definability of the
corresponding graded logics; these are obtained by adding truth-constants r to the
language, restricting their evaluation to e(r) = r and adding the so-called book-
keeping axioms r&s ≡ r ∗ s, r → s ≡ r ⇒ s, where ∗ is some t-norm and ⇒ its
residuum. Even if the real interval [0, 1], taken as the set of truth-degrees, does not
capture all complete distributive lattices W it is considered to be sufficiently general
for most purposes.

We prove a characterization theorem for base revision in any finitary monotonic
logic, so instead of having to prove compactness for fuzzy logics in a case-by-case
fashion within Gerla’s framework, as it is done in examples from [2], we can take any
(finitary) logical calculus abounding in the literature and directly obtain a charac-

2Other known formal mechanisms defining change operators can be classified into two broad
classes: selection-based mechanisms include selection functions on remainder sets and incision func-
tions on kernels; ranking-based mechanisms include entrenchments and systems of spheres.

3If T ∪ {ϕ} `S ϕ → 0, then by the deduction property T `S ϕ → (ϕ → 0); i.e. T `S (ϕ&ϕ) → 0.
Finally, by modus ponens from the axiom of contraction, we obtain T `S ϕ → 0.
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terization of the revision operation therein. This is the case, for instance, of logical
calculi associated to fuzzy logics of some fundamental t-norm, as studied in Hájek’s
[4]. Also, we can directly deal with graded logics, since the fuzzy version (in the
sense of [2]) of some propositional language FmProp gives us only signed languages
(where truth-constants cannot appear within ϕ). Another advantage is the possibil-
ity of directly considering graded logics with added truth-constants from a countable
(hence possibly non-complete) lattice C, as e.g. C = [0, 1]∩Q in the case of Rational
Pavelka Logic  L([0, 1]Q).

2 Multiple base revision for finitary monotonic logics.

Without loss of generality, we assume the language to contain a constant 0 for falsity.

Definition 1. ([11], [2]) Given some monotonic logic S, let T0, T1 be theories. We
say T0 is consistent if T0 0S 0, and define the set of subsets of T0 maximally consistent
with T1 as follows: X ∈ Con(T0, T1) iff:

(i) X ⊆ T0,
(ii) X ∪ T1 is consistent, and
(iii) For any X ′ such that X  X ′ ⊆ T0, we have X ′ ∪ T1 is inconsistent

Now we prove some properties of Con which will be helpful for the characteriza-
tion theorems of base belief change operators for arbitrary finitary monotonic logics.

Lemma 2. Let S be some finitary logic and T0 a theory. For any X ⊆ T0, if X ∪T1

is consistent, then X can be extended to some Y with Y ∈ Con(T0, T1).

Proof. Let X ⊆ T0 with X ∪ T1 0S 0. Consider the poset (T ∗,⊆), where T ∗ = {Y ⊆
T0 : X ⊆ Y and Y ∪ T1 0S 0}. Let {Yi}i∈I be a chain in (T ∗,⊆); that is, each Yi is a
subset of T0 and consistent with T1. Hence,

⋃
i∈I Yi ⊆ T0; since S is finitary,

⋃
i∈I Yi

is also consistent with T1 and hence is an upper bound for the chain. Applying Zorn’s
Lemma, we obtain an element Z in the poset with the next properties: X ⊆ Z ⊆ T
and Z maximal w.r.t. Z ∪ {ϕ} 0S 0. Thus X ⊆ Z ∈ Con(T, ϕ).

Remark 3. Considering X = ∅ in the preceding lemma, we infer: if T1 is consistent,
then Con(T0, T1) 6= ∅.

For simplicity, we assume that input base T1 (to revise T0 by) is consistent4.

Definition 4. Let T0 be a theory. A selection function for T0 is a function

γ : P(P(Fm))− {∅} −→ P(P(Fm))− {∅}

such that for all T1 ⊆ Fm, γ(Con(T0, T1)) ⊆ Con(T0, T1) and γ(Con(T0, T1)) is
non-empty.

4Observe one could define for T1 inconsistent: Con(T0, T1) = Con(T0, {1}), so in case T0 was
consistent this definition would make Con(T0, T1) = {T0}, and otherwise it would select consistent
subtheories of T0.
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2.1 Base belief revision.

The axioms to characterize (multiple) base revision operators for finitary monotonic
logics S are the following:

(F1) T1 ⊆ T0 ~ T1 (Success)
(F2) If T1 is consistent, then T0 ~ T1 is also consistent. (Consistency)
(F3) T0 ~ T1 ⊆ T0 ∪ T1 (Inclusion)
(F4) For all ψ ∈ Fm, if ψ ∈ T0 − T0 ~ T1 then,

there exists T ′ with T0 ~ T1 ⊆ T ′ ⊆ T0 ∪ T1

and such that T ′ 0S 0 but T ′ ∪ {ψ} `S 0) (Relevance)
(F5) If for all T ′ ⊆ T0(T ′ ∪ T1 0S 0 ⇔ T ′ ∪ T2 0S 0)

then T0 ∩ (T0 ~ T1) = T0 ∩ (T0 ~ T2) (Uniformity)

Given some theory T0 ⊆ Fm and selection function γ for T , we define partial
meet revision operator ~γ for T0 as follows:

T0 ~γ T1 =
⋂
γ(Con(T0, T1)) ∪ T1

Definition 5. Let S be some finitary logic, and T0 a theory. Then ~ : P(Fm) →
P(Fm) is a revision operator for T0 iff ~ = ~γ for some selection function γ for
T0.

Lemma 6. Condition Con(T0, T1) = Con(T0, T2) is equivalent to the antecedent of
Axiom (F5)

∀T ′ ⊆ T0 (T ′ ∪ T1 0S 0 ⇔ T ′ ∪ T2 0S 0)

Proof. (If-then) Assume Con(T0, T1) = Con(T0, T2) and let T ′ ⊆ T0 with T ′∪T1 0S 0.
By Lemma 2, T ′ can be extended to X ∈ Con(T0, T1). Hence, by assumption we get
T ′ ⊆ X ∈ Con(T0, T2) so that T ′ ∪ T2 0S 0 follows. The other direction is similar.
(Only if) This direction follows from the definition of Con(T0, ·).

Theorem 7. Let S be a finitary monotonic logic. For any T0 ⊆ Fm, T1 ⊆ Fm and
function ~ : P(Fm) → P(Fm):

~ satisfies (F1)− (F5) iff T0 ~ T1 = T0 ~γ T1, for some γ

Proof. (Soundness) Given some partial meet revision operator ~γ for T0, we prove ~γ

satisfies (F1)− (F5). (F1)− (F3) hold by definition of ~γ . (F4) Let ψ ∈ T0−T0~γT1.
Hence, ψ /∈ T1 and for some X ∈ γ(Con(T0, T1)), ψ /∈ X. Simply put T ′ = X ∪ T1:
by definitions of ~γ and Con we have (i) T0 ~γ T1 ⊆ T ′ ⊆ T0 ∪ T1 and (ii) T ′

is consistent (since T1 is). We also have (iii) T ′ ∪ {ψ} is inconsistent (otherwise
ψ ∈ X would follow from maximality of X and ψ ∈ T0, hence contradicting our
previous step ψ /∈ X). (F5) We have to show, assuming the antecedent of(F5), that
T0 ∩ (T0 ~γ T1) = T0 ∩ (T0 ~γ T2). We prove the ⊆ direction only since the other is
similar. Assume, then, for all T ′ ⊆ T0,

T ′ ∪ T1 0S 0 ⇔ T ′ ∪ T2 0S 0
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and let ψ ∈ T0∩(T0 ~γ T1). This set is just T0∩(
⋂
γ(Con(T0, T1))∪T1) which can be

transformed into (T0∩
⋂
γ(Con(T0, T1))∪ (T0∪T1), i.e.

⋂
γ(Con(T0, T1))∪ (T0∪T1)

(since
⋂
γ(Con(T0, T1)) ⊆ T0). Case ψ ∈

⋂
γ(Con(T0, T1)). Then we use Lemma

6 upon the assumption to obtain
⋂
γ(Con(T0, T1)) =

⋂
γ(Con(T0, T2)), since γ is a

function. Case ψ ∈ T0∩T1. Then ψ ∈ X for all X ∈ γ(Con(T0, T1)), by maximality of
X. Hence, ψ ∈

⋂
γ(Con(T0, T1)). Using the same argument than in the former case,

ψ ∈
⋂
γ(Con(T0, T2)). Since we also assumed ψ ∈ T0, we obtain ψ ∈ T0∩ (T0 ~γ T2).

(Completeness) Let ~ satisfy (F1)− (F5). We have to show that for some selection
function γ and any T1, T0 ~ T1 = T ~γ T1. We define first

γ(Con(T0, T1)) = {X ∈ Con(T0, T1) : X ⊇ T0 ∩ T0 ~ T1}

We prove that (1) γ is well-defined, (2) γ is a selection function and (3) T0 ~ T1 =
T ~γ T1.

(1) Assume (i) Con(T0, T1) = Con(T0, T2); we have to prove that γ(Con(T0, T1)) =
γ(Con(T0, T2)). Applying Lemma 6 to (i) we obtain the antecedent of (F5). Since ~
satisfies this axiom, we have (ii) T0 ∩ T0 ~ T1 = T0 ∩ T ~ T2. By the above definition
of γ, γ(Con(T0, T1)) = γ(Con(T0, T2)) follows from (i) and (ii).

(2) Since T1 is consistent, by Remark 3 we obtain Con(T0, T1) is not empty;
we have to show that γ(Con(T0, T1)) is not empty either (since the other condition
γ(Con(T0, T1)) ⊆ Con(T0, T1) is met by the above definition of γ). We have T0 ∩
T0 ~ T1 ⊆ T0 ~ T1; the latter is consistent and contains T1, by (F2) and (F1),
respectively; thus, (T0 ∩ T0 ~ T1)∪ T1 is consistent; from this and T0 ∩ T0 ~ T1 ⊆ T0,
we deduce by Lemma 2 that T0 ∩ T0 ~ T1 is extensible to some X ∈ Con(T0, T1).
Thus, exists some X ∈ Con(T0, T1) such that X ⊇ T0 ∩ T0 ~ T1. In consequence,
X ∈ γ(Con(T0, T1)) 6= ∅.

For (3), we prove first T0 ~T1 ⊆ T0 ~γ T1. Let ψ ∈ T0 ~T1. By (F3), ψ ∈ T0∪T1.
Case ψ ∈ T1: then trivially ψ ∈ T0 ~γ T1 Case ψ ∈ T0. Then ψ ∈ T0 ∩ T0 ~ T1. In
consequence, for any X ∈ Con(T0, T1), if X ⊇ T0∩T0 ~T1 then ψ ∈ X. This implies,
by definition of γ above, that for all X ∈ γ(Con(T0, T1)) we have ψ ∈ X, so that
ψ ∈

⋂
γ(Con(T0, T1)) ⊆ T0 ~γ T1. In both cases, we obtain ψ ∈ T0 ~γ T1.

Now, we prove the other direction: T0~γT1 ⊆ T0~T1. Let ψ ∈
⋂
γ(Con(T0, T1))∪

T1. By (F1), we have T1 ∈ T0 ~ T1; then, in case ψ ∈ T1 we are done. So we may
assume ψ ∈

⋂
γ(Con(T0, T1)). Now, in order to apply (F4), let X be arbitrary with

T ~ T1 ⊆ X ⊆ T0∪ T1 and X consistent. Consider X ∩ T0: since T1 ⊆ T0 ~ T1 ⊆ X
implies X = X ∪T1 is consistent, so is (X ∩T0)∪T1. Together with X ∩T0 ⊆ T0, by
Lemma 2 there is Y ∈ Con(T0, T1) with X ∩ T0 ⊆ Y . In addition, since T0 ~ T1 ⊆ X
implies T0 ~ T1 ∩ T0 ⊆ X ∩ T0 ⊆ Y we obtain Y ∈ γ(Con(T0, T1)), by the definition
of γ above. Condition X ∩T0 ⊆ Y also implies (X ∩T0)∪T1 ⊆ Y ∪T1. Observe that
from X ⊆ X ∪T1 and X ⊆ T0 ∪T1 we infer that X ⊆ (X ∪T1)∩ (T0 ∪T1). From the
latter being identical to (X ∩ T0) ∪ T1 and the fact that (X ∩ T0)∪ T1 ⊆ Y ∪ T1, we
obtain that X ⊆ Y ∪ T1. Since ψ ∈ Y ∈ Con(T0, T1), we have Y ∪ T1 is consistent
with ψ, so its subset X is also consistent with ψ. Finally, we may apply modus tollens
on Axiom (F4) to obtain that ψ /∈ T0 − T0 ~ T1, i.e. ψ /∈ T0 or ψ ∈ T0 ~ T1. But
since the former is false, the latter must be the case.
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2.1.1 Full meet and maxichoice base revision operators.

The previous result can be extended to limiting cases of selection functions formally
defined as follows:

Definition 8. A revision operator for T is full meet if it is generated by the selection
function γfm = Id: γ(Con(T0, T1)) = Con(T0, T1); that is,

T0 ~fm T1 = (
⋂

Con(T0, T1)) ∪ T1

A revision operator for T0 is maxichoice if it is generated by a selection function of
type γmc(Con(T0, T1)) = {X}, for some X ∈ Con(T0, T1), in which case T0 ~γmc T1 =
X ∪ T1.

To characterize full meet and maxichoice revision operators for some theory T0

in any finitary logic, we define the next additional axioms:

(FM) For any X ⊆ Fm with T1 ⊆ X ⊆ T0 ∪ T1

X 0S 0 implies X ∪ (T0 ~ T1) 0S 0
(MC) For all ψ ∈ Fm with ψ ∈ T0 − T0 ~ T1 we have

T0 ~ T1 ∪ {ψ} `S 0

Theorem 9. Let T0 ⊆ Fm and ~ be a function ~ : P(Fm) → P(Fm). Then the
following hold:

(fm) ~ satisfies (F1)− (F5) and (FM) iff ~ = ~γfm

(mc) ~ satisfies (F1)− (F5) and (MC) iff ~ = ~γmc

Proof. We prove (fm) first. (Soundness): We know ~γfm
satisfies (F1)− (F5) so it

remains to be proved that (FM) holds. Let X be such that T1 ⊆ X ⊆ T0 ∪ T1 and
X 0S 0. From the latter and X − T1 ⊆ (T0 ∪ T1) − T1 ⊆ T0 we infer by Lemma 2
that X − T1 ⊆ Y ∈ Con(T0, T1), for some Y . Notice X = X ′ ∪ T1 and that for any
X ′′ ∈ Con(T0, T1)X ′′ ∪ T1 is consistent and

T0 ~γfm
T1 = (

⋂
Con(T0, T1)) ∪ T1 ⊆ X ′ ⊆ X ′′

Hence X ⊆ X ′′, so that T0 ~γfm
T1 ∪X ⊆ X ′′. Since the latter is consistent, T0 ~fm

T1∪X 0S 0. (Completeness) Let ~ satisfy (F1)− (F5) and (FM). It suffices to prove
that X ∈ γ(Con(T0, T1)) ⇔ X ∈ Con(T0, T1); but we already know that ~ = ~γ , for
selection function γ (for T0) defined by: X ∈ γ(Con(T0, T1)) ⇔ T0 ∩ T0 ~ T1 ⊆ X.
It is enough to prove, then, that X ∈ Con(T0, T1) implies X ⊇ T0∩ T0 ~ T1. Let
X ∈ Con(T0, T1) and let ψ ∈ T0 ∩ T0 ~ T1. Since ψ ∈ T0 and X ∈ Con(T0, T1), we
have by maximality of X that either X ∪ {ψ} `S 0 or ψ ∈ X. We prove the former
case to be impossible: assuming it we would have T1 ⊆ X ∪ T1 ⊆ T0 ∪ T1. By (FM),
X ∪ T1 ∪(T0 ~ T1) 0S 0. Since ψ ∈ T0 ~ T1, we would obtain X ∪ {ψ} 0S 0, hence
contradicting the case assumption; since the former case is not possible, we have
ψ ∈ X. Since X was arbitrary, X ∈ Con(T0, T1) implies X ⊆ T0 ∩ T0 ~ T1 and we
are done.
For (mc): (Soundness) We prove (MC), since (F1)− (F5) follow from ~γmc being a
partial meet revision operator. Let X ∈ Con(T0, T1) be such that T0 ~γmc ϕ = X∪T1
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and let ψ ∈ T0 − T0 ~γmc T1. We have ψ /∈ X ∪ T1 = T0 ~ T1. Since ψ ∈ T0 and
X ∈ Con(T0, T1), X ∪ {ψ} `S 0. Finally T0 ~ T1 ∪{ψ} `S 0. (Completeness) Let
~ satisfy (F1)− (F5) and (MC). We must prove ~ = ~γmc , for some maxichoice
selection function γmc. Let X,Y ∈ Con(T0, T1); we have to prove X = Y . In search of
a contradiction, assume the contrary, i.e. ψ ∈ X−Y . We have ψ /∈

⋂
γ(Con(T0, T1))

and ψ ∈ X ⊆ T0. By MC, T0 ~T1∪{ψ} `S 0. Since T0 ~T1 ⊆ X, we obtain X ∪{ψ}
is also inconsistent, contradicting previous ψ ∈ X 0S 0. Thus X = Y which makes
~ = ~γmc , for some maxichoice selection function γmc.

2.2 Two types of bases.

The original definition of base is simply a set of formulas. In the context of graded (or
signed) logics, although, an alternative notion of basehood naturally arises: C-closed
bases. We adapt the following definition from [5].

Definition 10. Given some monotonic logic S with language Fm, let A and B be
two subsets of Fm. Then A is B-closed iff CnS(A) ∩ B ⊆ A. We define CnC(T ) =
{(ϕ, r′) : (ϕ, r) ∈ A, for r, r′ ∈ C with r ≥ r′}, where C is some set of truth-constants.
If C ⊆ [0, 1] then a base T ⊆ L(C) is C-closed if T is CnC(T ) closed.

Observe [2]’s proposal forces us to work with CnW -closed bases, whenever FmProp

is taken as the language to define some fuzzy deduction system (FmProp,W,D) in the
sense of Gerla. The following results prove ~γ operators preserve C-closure, hence
Theorem 7 also applies to C-closed bases.

Proposition 11. If T0, T1 are C-closed graded (or signed) bases, for any partial meet
revision operator ~γ, T0 ~γ T1 is also a C-closed graded (or signed) base.

Proof. We prove the claim for graded bases, since the proof for signed bases is similar.
Since T0 is C-closed, by maximality of X ∈ γ(Con(T0, T1)) we have X is also C-
closed, for any such X. Let (ψ, s) ∈

⋂
γ(Con(T0, T1)) and s′ <C s for some s′ ∈ C.

Then (ψ, s) ∈ X for any X ∈ γ(Con(T0, T1)) implies (ψ, s′) ∈ X for any such
X. Hence

⋂
γ(Con(T0, T1)) is C-closed. Finally, since T1 is C-closed, we deduce⋂

γ(Con(T0, T1))∪ T1 is also C-closed.

Corollary 12. Assume S and C are as before and let ~ be an operator ~ : P(Fm) →
P(Fm) for some C-closed graded bases T0, T1. Then,

~ satisfies (F1)− (F5) iff there is some selection function γ s.t. T0~T1 = T0~γT1

At least for some logics related to  Lukasiewicz t-norm, both approaches differ in
the revision output. Hence, this distinction in basehood has important consequences.

Example 13. (In RPL) Let C = Q ∩ [0, 1] and define T0 = {(ϕ, 0.5), (ϕ, 0.7)} and
T1 = CnC(T0). The only possible selection functions γ0 and γ1 result in:

T0 ~γ0 (¬ϕ, 0.4) = {(ϕ, 0.5), (¬ϕ, 0.4)}, while
T1 ~γ1 CnC({(¬ϕ, 0.4)}) = CnC({(ϕ, 0.6), (¬ϕ, 0.4)})
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