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Abstract. Many studies focus on the generation of hard SAT instances. The hard-
ness is usually measured by the time it takes SAT solvers to solve the instances. In
this preliminary study, we focus on the generation of instances that have compu-
tational properties that are more similar to real-world instances. In particular, in-
stances with the same degree of difficulty, measured in terms of the tree-like res-
olution space complexity. It is known that industrial instances, even with a great
number of variables, can be solved by a clever solver in a reasonable amount of
time. One of the reasons may be their relatively small space complexity, compared
with randomly generated instances.

We provide two generation methods of k-SAT instances, called geometrical and
the geo-regular, as generalizations of the uniform and regular k-CNF generators.
Both are based on the use of a geometric probability distribution to select vari-
ables. We study the phase transition phenomena and the hardness of the generated
instances as a function of the number of variables and the base of the geometric
distribution. We prove that, with these two parameters we can adjust the difficulty
of the problems in the phase transition point. We conjecture that this will allow us
to generate random instances more similar to industrial instances, of interest for
testing purposes.
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Introduction

SAT is a central problem in computer science. Many other problems in a wide range of
areas can be solve by encoding them into boolean formulas, and then using state-of-the-
art SAT solvers. The general problem is NP-complete in the worst case, and in fact a big
percentage of formulas (randomly generated instances) need exponential size resolution
proofs to be shown unsatisfiable [CS88,BSW01,BKPS02]. Therefore, solvers based on
resolution need exponential time to decide their unsatisfiability. Nevertheless, state-of-
the-art solver have been shown of practical use working with real-world instances. As a
consequence the development of these tools has generated a lot of interest.

The celebration of SAT competitions has become an essential method to validate
techniques and lead the development of new solvers. In these competitions there are
three categories of benchmarks, randomly generated, crafted, and industrial instances. It
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is difficult for solvers to perform well on all of them. This has lead researchers to say that
randomly generated and industrial instances are of distinct nature. It has been postulated
that real-world or industrial instances have a hidden structure. In [WGS03] it is proved
that real-world formulas contain a small number of variables that, when instantiated,
make the formula easy to solve. In [ABLM08] it is shown that real-world instances have
a smaller tree-like resolution space complexity than randomly generated instances with
the same number of variables.

The practical applicability of SAT solvers forces them to try to be good in the indus-
trial category. However the number of benchmarks in this category is limited. Also, the
instances are isolated ones, not a family of instances, one for every number of variables.
And finally, they do not have a parameterized degree of difficulty. On the other hand,
random formulas can be easily generated with any size, hence with the desired degree of
difficulty. Moreover, they can be generated automatically on demand, what makes their
use in competitions more fair, because they are not known in advance by participants.
It would be interesting to be able to generate instances with the good properties of both
categories.

This project was stated in “Ten Challenges in Propositional Reasoning and Search”
[SKM97] and in “Ten Challenges Redux : Recent Progress in Propositional Reasoning
and Search” [KS03] as the tenth challenge:

Develop a generator for problem instances that have computational proper-
ties that are more similar to real-world instances[...] Many SAT bench-
marks today are encodings of bounded-model checking verification
problems. While hundreds of specific problems are available, it would
be useful to be able to randomly generate similar problems by the thou-
sands for testing purposes.

Also Rina Dechter in [Dec03] proposes the same objective.
In this paper we want to make a contribution in this direction. Since we want to

generate as many instances as needed, we define generators of random formulas. There
are two models of generators of random formulas, the uniform and the regular random
k-CNF generators. The first one has been studied for a long time and consists in selecting
uniformly and independentlym clauses from the set of all clauses of size k on a given set
of n variables. The second one is studied in [BDIS05] and consists in selecting uniformly
one formula from the set of formulas with m clauses of size k, and n variables, where all
literals have nearly the same number of occurrences, i.e. either bk·m2n c or bk·m2n c+ 1. We
generalize these two models by selecting variables following a geometric distribution, in
the first case, and by allowing a power decreasing number of occurrences of the variables
in the second case. We also compare these frequency distribution on the variables with
what it is observed in some real-world instances.

Another interesting feature of the formulas we generate with either of our models,
is that they are around the phase transition point. This means that, for the set of instances
with the ratio clauses/variables around the phase transition point, the number of satisfi-
able formulas that we generate is approximately the same as the number of unsatisfiable
ones. We are interested in generating formulas with this precise ratio, because otherwise
we could easily produce trivially satisfiable or unsatisfiable instances. Instead we want
to obtain reasonably easy formulas, as close to industrial ones as possible, but not trivial
as for instances that would have in them a small unsatisfiable core, for instance.
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Finally, we would like to mention another property that our instances have. They can
be easily parameterized in terms of their hardness. As a notion of hardness we use the
space of tree-like resolution, a very close notion to the logarithm of the size of tree-like
resolution. The idea is that we can fix in advance the hardness, and then we can obtain as
many formulas as we want of that hardness by playing with the number of variables and
other parameters of our models of random formula generation.

1. Description of the Models

1.1. Geometric k-CNF

The classical uniform k-CNF random model uses a uniform probability distribution to
select the variables used in the clauses. In this subsection we propose a generalization
of this model by using other probability distributions. These distributions must have a
discrete and finite domain of size n, where n is the number of variables. Therefore, n is
a parameter of the distribution, and we need in fact a family of probability distribution
functions, one for each value of n. In the particular case of the uniform distribution, for
every n, we have Pr(X = i;n) = 1/n.

Given a continuous probability distribution φ with domain
[
0, 1
]
, we can easily

generate a family of probability distributions Pr(X = i;n), with discrete domain
i = 0, . . . , n − 1, as follows. We break the interval

[
0, 1
]

into n pieces, obtaining the
points 0/n, 1/n, . . . , (n − 1)/n. Then P (X = i;n) is defined to be φ(i/n) with the
appropriated normalization. This results into:

P (X = i, n) =
φ(i/n)∑n−1

j=0 φ(j/n)

Since limn→∞
∑n−1

j=0 φ(j/n)
1
n =

∫ 1

0
φ(x) dx, for big values of n we have:

P (X = i, n) =
φ(i/n)∑n−1

j=0 φ(j/n)
≈n→∞

φ(i/n)

n
∫ 1

0
φ(x) dx

=
φ(i/n)

n

Therefore, the family of distributions that we obtain by this method is scalable.
We know that for uniform k-CNF, and for n → ∞, the phase transition point is at
m/n ≈ 4.25, a constant independent of n. Experimentally, we have seen that, to obtain
the same result using a different distribution, it must satisfy this scalability condition.

The geometric k-CNF model is a generalization of the uniform k-CNF model where
we use the following exponential function to generate the family of probability distribu-
tions

φ(x) =
ln b

b− 1
bx

This results into the following family of discrete distributions
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Pr(X = i; b, n) =
1− b1/n

1− b
bi/n

The geometric k-CNF model is a generalization of the uniform k-CNF model where we
use an exponential probability distribution with base b. Geometric k-CNF formulas may
be generated with the algorithm 1.

Input: n,m, k, b
Output: a k-SAT instance with n variables and m clauses
F = ∅;
for i = 1 to m do

repeat
Ci = ;
for j = 1 to k do

c = rand( );
v = 0;
while c > Pr(v; b, n)do

v = v + 1;
c = c− Pr(v; b, n);

endwhile
Ci = Ci ∨ (−1)rand(2) · v;

endfor
until Ci is not a tautology or simplifiable
F = F ∪ {Ci}

endfor
Algorithm 1. Geometric k-CNF generator. Function rand() return a real random number uni-
formly distributed in [0,1), and rand(2) returns either 0 or 1 with probability 0.5.

1.2. Geo-regular k-CNF

In regular k-CNF formulas all literals occur nearly the same number of time, i.e. bk·m2n c
or bk·m2n c + 1 times. In geo-regular k-CNF we want them to occur a deterministic
number of times, but with a frequency given by P (X = i;n, b). Geo-regular k-CNF
formulas are generated as follows. We construct a multiset bag with approximately
Pr(X = v;B,n)km

2 copies of the literals v and ¬v, for each variable v = 0, . . . , n− 1.
Then, we make a random partition of bag into m subsets (clauses) of size k, such that
none of these clauses is a tautology or is simplifiable. Algorithm 2 describes this pro-
cedure. Notice that, when a tautology or simplifiable clause is generated, we discard all
generated clauses, not just the last one.

2. Experimental Results

In this section we present a series of experimental results on the location of the phase
transition point and the hardness of unsatisfiable instances.

The phase transition point divides the space of CNF formulas into two regions: the
under-constrained region below the phase transition point, and the over-constrained re-
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Input: n,m, k, b
Output: a k-SAT instance with n variables and m clauses
bag = ∅;
for v = 1 to n do

bag = bag ∪ {bPr(v;B,n)km
2 c copies of v};

bag = bag ∪ {bPr(v;B,n)km
2 c copies of ¬v};

endfor
S = subset of km− |bag| literals from {1, . . . , n,¬1, . . . ,¬n}

maximizing Pr(v; b, n)km
2 − bPr(v; b, n)

km
2 c

bag = bag ∪ S;
repeat

F = ∅;
for i = 1 to m do

Ci = random sub-multiset of k literals from bag
bag = bag \ Ci

F = F ∪ {Ci};
endfor

until F does not contain tautologies or simplifiable clauses
Algorithm 2. Geo-regular k-CNF generator

gion above it. We recall two interesting properties about the phase transition point. First,
around half of the random generated instances at the phase transition point are unsatisfi-
able, this percentage decreases across the under-constrained region and increases across
the over-constrained region. The variation in the percentage of unsatisfiable instances
around the phase transition point gets sharper as the number of variables increases. So,
for a big number of variables, if known, the phase transition point can be used as a pre-
cise predictor of satisfiability. Second, the hardest problems empirically seem to be found
near the phase transition point. Therefore, it makes sense to test candidate algorithms on
these problems. However, there is not yet a method for predicting the phase transition
point. It is known that for 3-SAT, for the uniform generation method, the phase transition
point is located around the clause/variable ratio 4.25 and, for the regular model the ratio
is around 3.55.

We measure the hardness of unsatisfiable instance as the tree-like resolution space
complexity, as proposed in [ABLM08]. Contrarily to the cpu time, or number of nodes,
etc. this measure is independent of the solver/machinery used in the experiments. This
measure is the minimum Strahler of a tree-like resolution tree. The Strahler is defined for
binary trees as follows

hs(•) = 0

hs(f(T1, T2)) =

{
hs(T1) + 1 if hs(T1) = hs(T2)

max{hs(T1), hs(T2)} otherwise

where • is a node and T1 and T2 are trees.
The space complexity is hard to compute, therefore we approximate it as the upper-

bound given by the Strahler of the search tree of an execution of an extended version
of the SAT solver satz [LA97]. Due to the kind of lookahead performed by satz, we
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consider the leaves to have an Strahler number of 2. In [ABLM08], it is said that, for
small formulas, this upper bound coincides with the real space complexity.

Each data point presented at the following figures represents the results on the com-
putation of 200 instances, generated either by the geometric or geo-regular methods. The
length of the clauses, k, was set to 3. As we have said, for solving the instances we have
used an extended version of the SAT solver satz [LA97]. We have run the experiments
on a 1Ghz machine with 1Gbyte of RAM. All the instances took at most 3000 seconds
to be solved.

2.1. The Location of the Phase Transition Point
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Figure 1. Clause/variable ratio at the phase transition point as a function of b.

We have also identified the existence of a phase transition point for the two pro-
posed generation methods, geometric and geo-regular, for different values of the base
b ∈ {1, 2, 4, 6, 16}. Figure 1, shows the clause/variable ratio at the phase transition
points. Notice that for b = 1, the geometric and geo-regular are the uniform and regular
random k-CNF generators, respectively.

For the geometric (geo-regular) method we computed the phase transition points
varying the variables from 40 to 300 (140 to 420), incrementing by 20. According to the
number of variables the mean execution time varies from less than one second to 3000
seconds. The phase transition point, for each number of variables, was determined by
selecting the clause/variable ratio that produced a number of unsatisfiable clauses closest
to 50%. That numbers varied from 48.5% to 51.5%. We think that for a larger number
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Figure 2. Percentage of unsatisfiable formulas as a function of the clause/variable ratio, with fixed number of
variables.

of instances we would get number closer to 50%. Finally, in order to provide the ratio at
the phase transition point, for each value of b, we computed the mean for each number of
variables. As we can see in Figure 1, for both models as we increase b the clause/variable
ratio decreases.

The second experiment we have conducted, shows the percentage of unsatisfiable
instances as a function of the clause/variable ratio, for different values of b, and for the
two models. In one case the number of variables was fixed to 420, and we varied the
number of clauses by 4. In the other case we did the same with the number of variables
fixed to 300. It is known that the satisfiability/unsatisfiability transition becomes sharper
as we increase the number of variables. However, as we can see in Figure 2, the sharpness
does not seem to depend on the value of b.

2.2. Problem Hardness at the Phase Transition Point

As reported in previous studies, the hardest instances are usually located at the phase
transition region. We decided to study the hardness of the unsatisfiable instances as a
function of b and the number of variables for the geometric and geo-regular methods.

There are two reasons for studying the hardness at this point. First, we plan to use our
problem generators in this region, because it is where we expect to get random problems
more similar to the industrial instances. These instances are (almost) minimally unsatis-
fiable or have very few models, and the problems generated in this region are expected
to have also these properties. Second, notice that the hardness is only computed for un-
satisfiable instances. As discussed in [ABLM08], there are several possible definitions
for the hardness of satisfiable formulas. However, in the phase transition point, the hard-
ness mean computed over satisfiable formulas (for a reasonable definition of hardness of
satisfiable formula) and the mean computed over unsatisfiable formulas coincide.

Figure 3 shows the results. Each data point was generated as described in the previ-
ous subsection. At the first row of figure 3, we can see that for both models the hardest
setting is for b = 1, as expected, and the strahler number grows linearly with the number
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Figure 3. Strahler and strahler/variable ratio as a function of the number of variables.

of variables. For larger b’s, the growth becomes smoother. Same behavior is observed
for the geometric and geo-regular methods, although geo-regular clearly dominates in
terms of hardness the geometric method for smaller values of b’s. The second row at the
figure 3 shows the strahler/variable ratio as a function of the number of variables. It is
interesting to see that it seems that this ratio tends to a fixed point as we increase the
number of variables. Finally, figure 4 shows this potential fixed point as a function of b.

3. Conclusions

We have proposed a generalization of the uniform and the regular k-CNF random mod-
els, by generalizing the probability distribution used on the selection of variables to a
geometric distribution with base b. We have experimentally located the phase transition
point, for several values of the base b. We have also studied the problem hardness as a
function of the number of variables and the base.
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Figure 4. Strahler/variable ratio as a function of b, for big numbers of variables.

This will allow us to generate instances, at the phase transition point, of any given
number of variables and hardness by adjusting the value of the parameter b. This is an
important result since in order to do the same with the standard generators (uniform and
regular random) we have to move to the under-constrained or over-constrained regions,
where we find less interesting problems.
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