
A Multi Agent Approach for the Representation and
Execution of Medical Protocols

Armando Robles 1 and Pablo Noriega 2 and Michael Luck3 and Francisco Cantú 4 and Francisco Rodrı́guez 5

Abstract. This paper reports on our progress towards a frame-
work for enabling intelligent organizations using MAS technology.
Namely, the first stages of a bottom-up approach to the implementa-
tion of the framework. This time we discuss how it can be used for
defining and executing medical protocols and show how we are ap-
plying the framework to implement an outpatient care medical proto-
col. We show how an outpatient care protocol, currently operational,
has been agentified and is controlled by an organization middleware
that is a preliminary version of the organization engine we proposed
as part of our framework. The organization middleware reads work-
flow scripts at run-time and interprets them delegating tasks to spe-
cialized server agents that manage the access to medical records and
business rules. These server agents in turn, communicate with spe-
cialized user agents that facilitate human interactions through tradi-
tional plain and grid forms.

1 Introduction
In the medical domain, the main focus of business process modelling
is the modelling of medical protocols (MP). There are several lan-
guages developed for this type of modelling, with Glif (rule–based),
Proforma (logic–based), Asbru (task–based) and Guide (Petri nets–
based)[8] being good representatives of the state of the art in the
field.6

While all such protocol modelling languages have their own ad-
vantages, we are concerned with capturing the functionality of MP
modelling as well as the integration of the modeled MP as atomic
procedures into a coherent medical information system. The key
problem to be solved is the abstract representation of a business pro-
cess in the medical domain and its on-line execution in a hospital.
Hence, in addition to the modelled MP, we need an interpreter that
reads the representation of the MP and executes and monitors the
represented processes, which are, in fact, part of the system that op-
erates in a distributed environment. We propose to address this prob-
lem within a general framework that unifies a high level description
of how an organization should operate with its actual operation [9].
The framework is based on an institutional view of organizations and
is built around an organization engine that generalizes the notion of
electronic institution (EI) and the corresponding tools developed at
IIIA [1].
1 IIIA - Artificial Intelligence Research Institute, CSIC - Spanish Scientific

Research Council, Barcelona, Spain, email:arobles@iiia.csic.es
2 IIIA - Artificial Intelligence Research Institute, CSIC - Spanish Scientific

Research Council, Barcelona, Spain, email:pablo@iiia.csic.es
3 Electronics and Computer Science, University of Southampton, UK,

email:mml@ecs.soton.ac.uk
4 Tecnológico de Monterrey, México, email:fcantu@itesm.mx
5 TCA Research Group, Monterrey México, email:frodriguez@grupotca.com
6 www.openclinical.org

In the work reported in this paper we take a bottom-up approach
to the design and implementation of the framework and focus our
efforts on the agentification of application domain components (data
bases, business rule repositories, workflow scripts, user interaction
devices) and on the implementation of business process protocols in
the context of an outpatient care system. This outpatient care system
is a subsystem of a large hospital information system currently in
operation. The system was developed by the TCA group, a medium-
sized IT company whose business is the design, development and
implementation of integral information systems. The outpatient care
subsystem we report is currently in operation and is an agentified
version of the original subsystem. TCA aims to continue with the
agentification of the hospital information system and its other prod-
ucts along the lines described in this paper.

The implementation of the outpatient care protocol discussed here
is built around organization middleware that is a preliminary im-
plementation of the organization engine we are developing for the
framework. This middleware sequences the invocation of business
rules according to a run-time interpretation of workflow scripts and
controls two types of agents that intervene in any given process:
server agents are specialized in system components like business
rules and medical records repositories, and user agents handle inter-
action devices to communicate with human users and external pro-
cesses.

The contributions of this paper are: (i) a proof of concept for an
agent-based implementation –in operation– for the outpatient care
protocols of the hospital information system, (ii) organization mid-
dleware that includes a workflow engine and a grounding language,
and (iii) a collection of user and server agents that interface the orga-
nization middleware with the components of a hospital information
system.

The paper is organized as follows. Section 2, provides a quick ac-
count of organizations and electronic institutions, and an overview
and the protocol for the outpatient care system. In Section 3 we out-
line the implemented architecture and report results of the implemen-
tation. In the last two sections, we discuss related work and future
work.

2 Background
2.1 Organizations and Electronic Institutions
An organization (or a firm) is in essence a group of individuals that
pursue their collective or shared goals by interacting in accordance
with some shared conventions, and using their available resources as
best they can [5, 7, 2].

Hospitals and other types of organizations have conventions that
organize their activity in consistent ways so that employees and

clients have some certainty about what is expected of them and what
to expect from interacting with members of the organization.

A traditional institution is a means to organize, articulate, or in
some other way structure human interactions. An EI is the computa-
tional counterpart of a traditional institution. Thus, while a traditional
institution is a set of conventions that a group of humans follow in
order to accomplish some socially agreed objectives, an EI is an im-
plementation of conventions that apply to the interactions of agents
that may be human or software agents.

An EI —as defined in the IIIA [6, 11, 4]— is specified through
a dialogical framework that defines ontology and language conven-
tions, and through a deontological component that establishes the
pragmatics of admissible illocutory actions. This deontic component
is currently operationalized by two constructs: (i) a performative
structure that constitutes a network of scenes linked by transitions
between scenes, where scenes are role-based interaction protocols
and transitions describe the role–flow policies between scenes; and
(ii) rules of behavior that establish role-based conventions for com-
mitment making and satisfaction, and are currently expressed as pre
and post-conditions of the illocutions admissible by the performative
structure of the EI. The IIIA group has also developed a suite of tools
(EIDE) to specify and implement electronic institutions [1].

Although it is not unusual to identify an institution with the or-
ganization that puts the conventions into practice, we want to make
a clear separation of both concepts. We refer to the institutional as-
pects of an organization as being those conventions that prescribe
the way in which the organization is supposed to function. These
conventions may take the form of protocols and business processes,
but also directives and other decision-making criteria and knowledge
repositories that intervene in the day-to-day operation of the organi-
zation. We have proposed a framework to enable those institutional
aspects in the enterprise information system of an organization [9].
This framework’s architecture consists of three layers (as depicted in
Figure 3). The top one is the specification of the institutional aspects
that control agent (and human) interactions in the organization. The
middle layer is what we call an organization engine that consists of
an electronic institution that enacts the specification and middleware
that — through what we call a grounding language— interprets the
institutional actions as processes and transactions that take place in
the bottom layer. The bottom layer contains the typical components
of a traditional information system plus two types of agents that act
as front-ends of the components (server agents) and of the users of
the system (user agents). It is beyond the scope of this paper to dis-
cuss the framework further, except to say that here we are concerned
mainly with the connection between the bottom and middle layers
For this purpose we instantiate performative structures as workflows
of the medical protocols, interpret patients and hospital staff as user
agents, and control illocutionary actions involved in the workflows
as actions in the operational hospital information system where user
and server agents intervene.

2.2 Outpatient Care System

The outpatient care system is part of a larger system for the man-
agement and operation of hospitals, and involves a patient making
appointments through the internet or through a call center, with the
system giving an appointment according to availability. Once an ap-
pointment is made, the system embodies two main functionalities
and a few subordinate ones. In the patient consultation function, the
physician checks the electronic medical records (EMR), updates rel-
evant information such as clinical history or diagnosis, and writes

Register
SOAP

sel.
diag.

Fill
analysis

Pres-
cription

Lab
study

Image
study

Select
medicine

Cons-
traints

Indica-
tions.

Take
actions

Outpatient
care

general
data

EMR
data

Init
work

prepare
patient

...

...

Parallel
tasks

Sequential
tasks

Figure 1. Part of an outpatient care medical protocol

prescriptions or takes referral actions, such as making lab appoint-
ments, hospitalization orders, etc. In the patient services function,
the system directs the patient to obtain the medication and services
prescribed.

To update the patient’s file, the doctor has access to the patient’s
EMR with the individual’s historical information. This information is
indexed by features like date, incident or topic and includes, among
others, treatment histories, diagnoses, laboratory results, image inter-
pretations, nurses’ notes, food-intake and diets, prescription history,
blood transfusion requests, anesthetics records, etc.

The system also includes also the following functionalities: (i) it
requests doctors to fill the proper medical forms and express appli-
cable criteria after a visit; (ii) it allows doctors to register prescrip-
tions, indications and diagnoses; (iii) based on those inputs the sys-
tem matches the coding of diagnoses and therapeutic procedures in
order to assign procedure codes; and (iv) since all these functions are
cost-based, the systems uses the data for invoicing and reimburse-
ment of medical fees.

2.3 Outpatient Care Medical Protocol
Figure 1 shows part of the medical protocol for outpatient care. After
selecting the current patient from a list, the physician interviews him.
Meanwhile, the system uploads all of its data (previous visits, aller-
gies, patient identification, etc.). Upon completion of the interview,
the physician registers the current patient information in a form, fol-
lowing the SOAP method (Subjective, Objective, Analysis and Plan).

Note that the standardized reporting forms, in addition to support-
ing recording of care data, enforce its correct retrieval through a sys-
tematic process that involves the following steps.

1. After registering the subjective (patient referred data) and the ob-
jective (such as data found in auscultation) contents of the visit, a
preliminary diagnosis is made and matched against a list of codes.
Interview analysis must be done in accordance with the diagnosis
code.

2. Given this preliminary diagnosis, a prescription can be issued, al-
though it is restricted by several factors:

(a) Physician’s specialty (i.e. a gynecologist can’t prescribe psy-
chiatric drugs).

12

(b) Patient’s allergies and current conditions, such as pregnancy,
ulcers, etc.

3. The physician proceeds to give the proper indications to the pa-
tient.

4. The preliminary diagnosis serves as a guide for requesting labo-
ratory, imaging and other studies obtaining a final diagnosis. (i.e.
every time that a bone fracture is reported, an X-Ray study is re-
quired).

5. Depending on the diagnosis, the patient is assigned a destination,
namely actual in-hospital treatment, further ambulatory care or
discharged.

After the prescriptions have been made and studies requested, the
correspondent departments are notified. For example, if a Hematic
Biometry is required, the Lab receives a test request for the patient
(via HL7 7) and sets an appointment for performing the test, i.e. tak-
ing samples, etc.

When all the data and involved actions have been registered, the
physician must fill the Treatment Plan forms (this may be done auto-
matically by pressing its corresponding button).

Once all these steps are through, there are still a few more actions
to perform (not shown in the figure):

1. Issue a sick-leave certificate which in turn triggers a new workflow
script for filling this form.

2. Register the subsequent destination of the patient, and follow the
corresponding MP.

(a) E.R., which means immediate action must be taken and triggers
a new MP.

(b) Hospitalization. This triggers yet another MP for bed reserva-
tion, frontal page creation, data collecting, etc.

(c) Inter-consultantships, which restarts this MP with a new physi-
cian / specialty combination.

(d) Clinical history update

Finally, the physician can schedule a subsequent visit (Next ap-
pointment), triggering the scheduling agent and / or mark this visit
as finalized (End Visit Button). This option, verifies that every bit of
required data is completed and executes a final consistency check,
then proceeds to store everything in the patient’s permanent EMR.

3 An Integrated Environment for the Execution of
Medical Protocols

Our aim is to integrate a typical information system for the man-
agement and operation of a hospital with a prescriptive counterpart,
that should be capable of interpreting and executing medical proto-
cols, and whose execution and monitoring involves the scheduling of
tasks and resource allocations required by the intervening processes.

Thus, the outpatient care system described above is implemented
in a multi agent framework, as shown in Figure 2. The middleware
supervises actual domain components, such as business rules and
data base components, represented by (Bag) and (Dag) Server Agents
respectively. They handle all specialized tasks to serve the require-
ments of human users represented by User Agents (Uag). The mid-
dleware also reads workflow scripts from a respository, and these

7 Health Level Seven (HL7) is one of several ANSI-accredited standards op-
erating in the health-care arena. The domain is clinical and administrative
data. One of its goals is to provide standards for the exchange, management
and integration of data that support clinical patient care and the manage-
ment for inter-operability between health-care information systems [3].

patients

Bag

Business
Rules

oupatient
care

Bag

Business
Rules
Clinic

History

User

Uag

Form

. . . Medical
Records

. . .

Dag

Middleware and
workflow engine

workflow scripts
repository

Figure 2. Integrated environment for the execution of workflows

scripts are interpreted by a workflow engine that guides the actual
execution of the system. Thus, the organization middleware, directed
by the specified workflow script, integrates users and domain com-
ponents.

3.1 The Middleware and Workflow Engine Layer

The organization middleware runs the system by placing business
domain elements and users in contact according to workflow scripts.
The basic functions of the middleware are:

• to log users into the organization, controlling user roles, agent re-
sources and security issues;

• to monitor user interaction; and
• to load and interpret workflow scripts.

The workflow engine (WFE) has two components: the workflow
specification language and the workflow interpreter.

3.1.1 Workflow Specification Language

The MP is defined as the proper interaction sequence of the domain
components. Each workflow specification is stored in a repository as
a workflow script. Since each domain component is represented in
the environment by a specialized server agent, we have implemented
commands for sending requests to the corresponding server agents
for the execution of business rules, data base access, reports defini-
tion, and end user interaction.

Each task specified in the protocol (see Figure 1) is implemented
as one of the following domain components:

• a business rule that could be from a single simple computation to
a complete computer program;

• a data base access to add, delete, modify or retrieve information
from a data base;

• a user interaction through a specialized form; or
• a reference to another workflow script.

13

3.1.2 Workflow Interpreter

We have built an interpreter that takes a workflow script and produces
a set of actions that implement the specified MP. This implementation
involves activation of server and user agents of different types, the
sequencing of their actions and the parameter loading and passing
during those actions. The interpreter uses the following commmands:

• read workflow specification script,
• initialize variables,
• load defaults for variables and data, and
• execute workflow commands.

Initially, the workflow interpreter reads the main workflow script
and starts executing the specified commands, controlling and se-
quencing the interaction between the intervening agents as well as
loading and executing other possible workflow scripts specified in
the main workflow.

Below we show two workflow script segments required to perform
the outpatient care MP. In the first segment we can observe how the
outpatient care MP is initiated by the WFE: once the doctor selects a
patient, the workflow starts the interaction of the User agent with the
Business Rule server agent for uploading the patient data into the
user form (screen). Then the WFE calls for the interaction between
the User agent and the Business Rule server agent for uploading
relevant patient’s EMR data, and the WFE initializes variables.

Procedure PreparePatient
begin

Interact(BRServerAgent(UploadPatientData));
Interact(BRServerAgent(StartEMR));
InitializeVariables();

end

In a similar way, in the next segment, the WFE implements the
emit prescription task (see figure 1) coordinating the interaction
between specialized data base server agents, business rules server
agents and user agents using specialized forms.

Procedure EmitPrescription
begin

Interact(BRServerAgent(DiagnosysCheck));
DeactivateFields(StartField,EndField);
Interact(BRServerAgent(SelectMedication));
Interact(BRServerAgent(VerifyConstraints));
Interact(BRServerAgent(GiveIndications));
InputFields(AlergiesField,NextAppointmentField);

end

3.2 The Outpatient Care Domain Layer
The outpatient care domain layer contains the following components:

Server Agents. These are software agents, owned by the organi-
zation, that are specialized in handling elements or components
of the Hospital Information System. Currently, there are server
agents for data bases, business rule repositories and workflow
script repositories, but there may be other server agents when re-
quired by other applications or application domains. These agents
act as front ends for all the repositories and devices of the hospital
domain and thus handle the interactions with other domain agents.

User Agents These are software agents, also owned by the organi-
zation, that act as a front end for human users of the system such as
patients, suppliers, hospital staff and eventually also for external
processes.

Interaction Devices These are a type of device that we use to im-
plement interfacing capabilities between user agents and their hu-
man counterparts (currently through forms, but eventually through
other means) and in general between user agents and other server
agents to perform activities like form handling, database calls and
business rule triggering.

Workflow Scripts are a workflow engine-interpretable specification
that define procedural behaviours of the organization.

Repositories include business rule repositories, workflow script
repositories and other databases accessible to agents.

3.3 Executing the Outpatient Care Medical
Protocol

As indicated in section 3.1.2, the protocol we have implemented is
run by the middleware and workflow engine that interacts with the
hospital domain components and human users. Figure 2 illustrates
how the middleware and workflow engine reads workflow scripts
from a repository and supervises the agents that handle the special-
ized domain components, such as databases or business rule defini-
tions — a specialized business rule server agent (Bag) fetches, from
a central repository, business rules that use data provided by another
specialized database server agent (Dag), to provide input to a user
agent (Uag) that displays it in a user form.

Once the interaction between the user agent and the server agent
is established, the infrastructure makes sure that the communication
between both agents is persistent until one of the agents decides to
terminate it. The system is responsible for maintaining the context
of all agent interactions because, as agent interactions evolve, they
modify the context of the world, updating data and status variables
as required.

4 Related Work
To define a system for monitoring MP, in the work described in [12],
the researchers have made an abstraction of a hospital environment,
in terms of a MAS. The main idea is to model medical services
in hospitals as Specialized Domain Agents (SDA) and interactions
between different services as electronic communication processes.
From this point of view, a MP describes a negotiation process be-
tween multiple SDA for treating a particular pathology and specifies
behaviour rules depending on specific symptoms.

The negotiation process is made possible by means of a formal
specification language for modelling dialogical institutions, using a
very similar concept to that described for electronic institutions in
section 2.1. Due to the fact that all agent interactions are specified
using a similar concept as EIs, the resulting definition of MP is cum-
bersome and limited for real world use. Our approach deals with this
limitation using an organization engine and a grounding language
that allows the system designer to handle different levels of abstrac-
tion in the specification of business rules, having a better trade-of
between the complexity of business rules and the complexity of the
workflow needed for agent interactions as explained in section 5.
This issue is the main contribution of this paper, because we tested in
a real application that it is possible – giving an adequate level of ab-
straction – to deploy an agent based application for representing and
executing medical protocols. We can say similar things about the re-
sults we obtained in our previous work on hotel information systems
as reported in [10].

5 Closing Remarks
In this paper, we have described the agentification of an outpatient
care system. In the process, we have outlined the construction of
the required server and user agents, developed the required busi-
ness rules, and specified the workflow needed for the appropriate

14

sequence of execution and a workflow engine that executes the work-
flow specification.

In our MAS-ified outpatient care protocol implementation, we
have been able to separate the programming of business rules, user
form definition and design, and the protocol definition via proper
workflow specifications. We have found that with a system that al-
lows this type of separtion it is easier to adapt its functional charac-
teristics and implement the protocols involved.

In relation to the WF specification language explained in section
3.1.1, we have found that the specification and execution of med-
ical protocols entails some balance between the complexity of the
specified workflow and the complexity of the business rules (BRs)
invoked in that workflow. Our experience with the outpatient care
system tells us that if a protocol is specified using elaborate BRs
that capture much of the discretional aspects of a a given process,
the way that these BRs are put together is no more than simple se-
quencing. However, as BRs become simpler, the need for agent dis-
cretional behaviour is increased, the need for handling agent commit-
ments emerges and interaction protocols become more involved. This
suggests a trade-off between the complexity of the procedures imple-
mented in the BRs and the complexity of the workflow specification
needed to provide the proper sequence of execution between BRs,
database repositories and user forms. If we implement elaborate pro-
cedures as BRs, then we need a very simple workflow definition, but,
if we implement short and one-function procedures as BRs, we need
a more sophisticated workflow definition. This is intuitively clear,
because the more atomic the BRs, the more information is needed to
control their interactions with other domain components.

We have also found that, if we do not have a mechanism to con-
trol the “rules of the game” and commitments generated by agent
interactions, we need to hard-wire the required program logic inside
each agent, and perhaps inside some BRs. This is because if agent
a performs an action x at time t, it may be necessary that the same
(or another) agent performs action y at time, say t + 3. If action x is
implemented as a business rule, then we must have a mechanism to
send a return value to the BRagent, or some way to set a variable in
some kind of working memory.

Our current work is concerned with developing a framework that
generalizes this example and profits from the lessons learned. More
specifically, in order to deal with complex interactions, we aim at im-
plementing prescriptive specifications that may be properly enacted.
The driving intuition is the need for a high level specification of the
intended operation of an organization that produces a machine exe-
cutable counterpart that operates in an agentified business domain.
Both the specification and the executable counterpart should be easy
to deploy and update, hence the need for standard IT components in
the business domain and a pervasive use of agents, and, likewise, the
need for a rich and expressive environment for the specification of
the prescriptive description and its run-time counterpart.

To achieve this, we are working with the notion of Electronic In-
stitutions, and extending the current EIDE [1] environment to allow
normative specification of agent interactions.

Figure 3 outlines our proposed extended framework. The diagram
shows how our current middleware layer is to become an organiza-
tion engine that implements the institutional conventions that will
govern the business domain interactions.

We believe that the trade-offs in complexity that have become ev-
ident during the reported efforts, should be assessed against the flex-
ibility we want our agentified systems to have. If hospitals or other
organizations like them want to get a return on their investment in in-
formation systems, these systems need to be flexible enough to adapt
to the dynamic conditions of their business environment with undue
adaptation costs. This means that protocols and other knowledge rich
system components need to be updated whenever the business envi-
ronment changes. Hence the need for a methodology and tools that
incorporate reusability of components and proper allocation of dis-
cretionality and organizational intelligence in different levels of the
IT infrastructure. The framework we are working on moves in that

Automated
Reasoning

Institutional Conventions

Organization Middleware

Business Domain
Dialog Name

Separator Name:

Text: Choice
Text
Text

Separator Name:

Text
Text

Text
Text

Value

OK

Cancel

Text:

Text

Text

Text

Value

g7 gvg6g5

SM2 SMmSM1IM TM2 TMkTM1... ...

g3 g4g2g1

staff agents

governors
AMELI

...

JADE

Electronic
Institution

BRag

Uag

BRag BRag

Uag

BRag

Problem
Solving
Method

Electronic Institution

EI
specification

and
grounding

Run-time
Institution

Grounding
Language
Interpreter

Organization Engine

Figure 3. General Architecture using the concept of Electronic Institutions
as part of the organization engine

direction and the outpatient care system described in this paper is a
step forward.

ACKNOWLEDGEMENTS

This research is partially funded by the Spanish Ministry of Edu-
cation and Science (MEC) through the Web-i-2 project (TIC-2003-
08763-C02-00) and by private funds of the TCA Research Group.

REFERENCES

[1] Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez-Aguilar, and
Carles Sierra, ‘Engineering open environments with electronic institu-
tions’, Engineering Applications of Artificial Intelligence, (18), 191–
204, (2005).

[2] Richard M. Cyert and James G. March, A behavioral theory of the firm,
Prentice-Hall, Englewood Cliffs, N.J. USA, 1963.

[3] Ada Valls David Snchez Ruenes, Antonio Moreno, AgentCities.NET
Deployment Grant #1, Midterm report, Universitat Rovira i Virgili,
Computer Science and Mathematics Department. Tarragona, Spain.,
September 27, 2002. http : //www.agentcities.org..

[4] Marc Esteva, Electronic Institutions: from specification to devel-
opment, Ph.D. dissertation, Universitat Politècnica de Catalunya
(UPC), Barcelona, Catalonia, Spain, 2003. Published by the Institut
d’Investigació en Intelligència Artificial. Monografies de l’IIIA Vol. 19,
2003.

[5] James G. March and Herbert A. Simon, Organizations, John Wiley and
sons, New York, USA., 1958.

[6] Pablo Noriega, Agent Mediated Auctions: the Fishmarket Metaphor,
Ph.D. dissertation, Universitat Autònoma de Barcelona (UAB), Bel-
laterra, Catalonia, Spain, 1997. Published by the Institut d’Investigaci
en Intelligncia Artificial. Monografies de l’IIIA Vol. 8, 1999.

[7] Douglass C. North, Institutions, Institutional change and economic per-
formance, Cambridge Universisy press, 40 west 20th Street, New York,
NY 10011-4211, USA, 1990.

15

[8] Lorenzo Boicocchi Silvana Quaglini Mario Stefanelli. Paolo Cicarese,
Ezio Caffi, A Guideline Management System, Dipartimento di Informat-
ica e Sistemestica, Universit di Pavia, Italy; Consorzio di Bioingegneria
e Informatica Medica, Pavia ,Italy., 2004.

[9] A Robles and Pablo Noriega, ‘ A Framework for building EI–enabled
Intelligent Organizations using MAS technology’, in Proceedings of the
Third European Conference in Multi Agent Systems (EUMAS05), eds.,
M.P. Gleizes, G. Kaminka, A. Nowé, S. Ossowski, K. Tuyls, and K. Ver-
beeck, pp. 344–354., Brussel, Belgium, (December 2005). Koninklijke
Vlaamse Academie Van Belgie Voor Wetenschappen en Kunsten.

[10] A Robles, Pablo Noriega, Marco Robles, Hector Hernandez, Victor
Soto, and Edgar Gutierrez, ‘ A Hotel Information System implemen-
tation using MAS technology’, in Industry Track – Proceedings Fifth
International Joint Conference on AUTONOMOUS AGENTS AND
MULTIAGENT SYSTEMS (AAMAS 2006), pp. 1542–1548, Hakodate,
Hokkaido, Japan, (May 2006).

[11] Juan A. Rodrı́guez-Aguilar, On the Design and Construction of
Agent-mediated Electronic Institutions, Ph.D. dissertation, Universitat
Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain, 2000.
Published by the Institut d’Investigació en Intelligéncia Artificial.
Monografies de l’IIIA Vol. 14, 2003.

[12] R. Bejar C. Fernandez F. Manya. T. Alsinet, C. Ansotegui, A Multi-
Agent System Architecture for Monitoring Medical Protocols, Depart-
ment of Computer Science, University de Lleida, Jaume II 69, E-25001
Lleida, Spain., 1999.

16

