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is a promising approach and provide evidence that the minimizing encoding outperforms the
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is also well-suited for modeling other more complex team formation problems.
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1. Introduction

Given a classroom containing a fixed number of students and a fixed number of tables that can be of
different sizes, as well as a list of preferred classmates to sit with for each student, the team composi-
tion problem in a classroom (TCPC) is the problem of finding an assignment of students to tables in
such a way that the preferences of students are maximally-satisfied. Our motivation behind this work
is to solve a problem posed by the director of studies of a secondary school in the area of Barcelona,
though this problem may be found in a wide range of situations and institutions.

In this paper, we first formally define the TCPC, prove that it is NP-hard and define two different
MaxSAT models of the problem, called maximizing and minimizing encoding. Next, we report on
the results of an empirical investigation that show that solving the TCPC with MaxSAT solvers is a
promising approach and provide evidence that the minimizing encoding outperforms the maximizing
encoding. We then illustrate how the proposed MaxSAT-based modeling approach is also well-suited
for modeling other more complex team formation problems. Finally, we discuss some related work.

To tackle the TCPC we use a MaxSAT-based problem solving approach, which is an active area of
research in Artificial Intelligence, (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references
therein for previous and related work). MaxSAT-based problem solving is a generic problem solving
approach for optimization problems which consists on first defining a MaxSAT model for instances
of the problem to be solved, and then derive solutions to the encoded instances of the problem using
an off-the-shelf MaxSAT solver. By a MaxSAT model we mean a representation of the problem using
the language of Boolean propositional logic. It is a declarative approach: we only need to define a
model and from that model an optimal solution is automatically derived. Furthermore, the method is
highly efficient because we may take advantage of the extremely efficient MaxSAT solvers which are
publicly available.

It is commonly assumed that designing an algorithm to work directly on the original problem en-
coding should outperform approaches that require a translation via a generic intermediate formalism,
such as a CSP, SAT or MaxSAT. However, this line of reasoning ignores the fact that generic solvers
can benefit from many years of development by a broad research community. It is not easy to replicate
this kind of effort in other domains.

In the present formulation of the problem, we consider the preferences of the students. Neverthe-
less, our approach could also be easily adapted to take into account other factors that can be relevant
to the performance of a team such as personality, expertise, competence, competitiveness and human
formation [15, 16]. To illustrate this point, we describe how the Synergistic Team Composition Model
(STCM) [17], can be mapped into our framework.

This paper extends the results of [18]. The new contributions are the definition of the minimiz-
ing encoding, experiments with maximally-satisfied instances (only fully-satisfied were considered in
[18]), and an empirical comparison of the maximizing and minimizing encodings that provides evi-
dence that the minimizing encoding outperforms the maximizing encoding. Furthermore, we describe
a MaxSAT encoding of the STCM problem and add a related work section.

The rest of the paper is organized as follows: Section 2 defines the TCPC formally and proves that
it is NP-hard. Section 3 gives some background on MaxSAT. Section 4 defines the maximizing and
minimizing MaxSAT encodings of the TCPC. Section 5 reports on the empirical investigation con-
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ducted. Section 6 illustrates how to solve the STCM problem with the proposed approach. Section 7
discuss some related work. Section 8 gives some conclusions and future work.

2. The team composition problem in a classroom

Depending on the activity to be performed in a classroom at a given moment, the distribution of the
students may need to be different. In the general case, we consider there is a fixed number of students
and there is a list of preferred classmates to sit with for each student. Then, the goal is to partition
students into teams, which may have different sizes, in such a way that the preferences of the students
are maximally-satisfied.

The version of the TCPC that we use as a case study in this paper has the following constraints:

• The classroom has n students.

• The classroom has tables of 2 and 3 students with a combined capacity for n students.

• Each student has provided a list of classmates she would prefer to sit with.

The objective is to find an assignment of students to tables such that the preferences of students
are maximally-satisfied. Notice that the first two constraints are hard whereas the last one is soft. We
will say that a solution is fully-satisfied if, and only if, all the students in the same table have the rest of
the students of the table in their list of preferences. We will say that a solution is maximally-satisfied
if, and only if, the number of students who have their preferences satisfied is maximized. Note that a
fully-satisfied solution is also a maximally-satisfied solution.

Proposition 2.1. Given n students, a classroom that has tables of 2 and 3 students with a combined
capacity for n students, and a list of preferred classmates to sit with for each student, the problem of
deciding if there is a fully-satisfied solution is NP-complete.

Proof:
This problem belongs to NP: we can check, in polynomial time, wether or not an assignment of
students to tables is a fully-satisfied solution by inspecting the lists of preferences of the students.

We now prove that this problem is NP-hard by reducing the problem of partitioning a graph into
triangles (PIT problem) to it. Given a graph G = (V,E), where V is the set of vertices and E is the
set of edges, that verifies that |V | = 3q for some integer q, the partition of V into triangles consists on
finding a partition of V formed by V1, . . . , Vq, each containing exactly 3 vertices, such that for each
Vi = {ui, vi.wi}, 1 ≤ i ≤ q, the edges {ui, vi}, {ui, wi} and {vi, wi} belong to E. This problem is
NP-complete [19].

That problem can be reduced to an instance of our problem without loss of generality by consid-
ering a classroom with 3q students, 0 tables of 2 and q tables of 3. For each edge {u, v} on graph V ,
establish a preference of student u for student v and a preference of student v for student u. Note that
this reduction takes polynomial time. Then, the problem of partitioning the vertices of a graph into
triangles has a solution if, and only if, all the students in the classroom can be sat in such a way that
all the preferences of students are fully-satisfied. ut
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Corollary 2.2. The TCPC is NP-hard.

Proof:
This follows from the fact that every fully-satisfied solution ia also a maximally-satisfied solution. ut

We can find a fully-satisfied solution with a decision algorithm but need an optimization algorithm
to find a maximally-satisfied solution. Indeed, finding a maximally-satisfied solution is in general
harder than finding a fully-satisfied solution. For example, if we assume that there are just tables of 2
students, finding a fully-satisfied solution can be solved in polynomial time but finding a maximally-
satisfied solution remains NP-hard.

3. The MaxSAT problem

We assume readers have some familiarity with basic concepts of Boolean propositional logic. The
most well-know problem of propositional logic is SAT: given a formula φ in Conjunctive Normal
Form (CNF), decide whether there is a truth assignment that satisfies φ.

Reminder: a literal is a propositional variable or a negated propositional variable, a clause is a
disjunction of literals, a CNF formula is a conjunction of clauses, and a truth assignment is a mapping
that assigns 0 (false) or 1 (true) to each propositional variable. A CNF is satisfied by an assignment if
it is true under the usual truth-functional interpretation of ∨ and ∧ and the truth values assigned to the
variables.

An optimization variant of SAT is MaxSAT: given a CNF formula φ, MaxSAT is to find a truth
assignment that maximizes the number of satisfied clauses of φ. However, in this paper we use the
term MaxSAT in a broad sense: we allow to distinguish between hard and soft clauses, and allow to
associate a weight to soft clauses (formally, hard clauses have an infinite weight). This more general
formulation of MaxSAT is technically known as weighted partial MaxSAT [10], which is formally
defined in the remaining of this section.

We start by defining a more general notion of clause. A weighted clause is a pair (c, w), where c
is a clause and w, its weight, is a positive integer or infinity. A clause is hard if its weight is infinity;
otherwise it is soft.

A weighted partial MaxSAT instance is a multiset of weighted clauses

φ = {(h1,∞), . . . , (hk,∞), (c1, w1), . . . , (cm, wm)},

where the first k clauses are hard and the last m clauses are soft. For simplicity, in what follows,
we omit infinity weights, and write φ = {h1, . . . , hk, (c1, w1), . . . , (cm, wm)}. A soft clause (c, w) is
equivalent to having w copies of the clause (c, 1), and {(c, w1), (c, w2)} is equivalent to (c, w1 +w2).

Weighted partial MaxSAT for an instance φ is the problem of finding an assignment that satisfies
all the hard clauses and minimizes the sum of the weights of the falsified soft clauses; such an assign-
ment is called optimal assignment of φ. It can also be defined as the problem of finding an assignment
that satisfies all the hard clauses and maximizes the sum of the weights of the satisfied soft clauses.
Both definitions are equivalent and relevant for the TCPC because in the next section we define one
MaxSAT encoding based on the first option and another based on the second option.
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4. MaxSAT encodings for the TCPC

We present two different ways of encoding the TCPC in the weighted partial MaxSAT formalism. In
the first approach, the objective is to maximize the quality of the solution and we refer to it as the
maximizing encoding. In the second approach, the objective is to minimize the quality loss and we
refer to it as the minimizing encoding.

4.1. The maximizing encoding

We first present how the TCPC can be represented as a weighted partial MaxSAT instance using the
maximizing encoding. To illustrate how to model the problem, we will consider that the classroom has
28 students and there are 8 tables of 2 students and 4 tables of 3 students. This is a typical classroom
distribution in some secondary schools.

First of all, we define the set of Boolean variables of our encoding:

{xij |1 ≤ i < j ≤ 28} ∪ {xijk|1 ≤ i < j < k ≤ 28} ∪ {yi|1 ≤ i ≤ 28}

These variables have the following intended meaning: xij is true iff students i and j sit together
in a table of 2; xijk is true iff students i, j and k sit together in a table of 3; and yi is true if student i
sits in a table of 2 and is false if student i sits in a table of 3.

Using the previous Boolean variables, we create a Weighted Partial MaxSAT instance that encodes
the constraints of the problem. The proposed encoding has the following hard clauses:

1. For each student i, where 1 ≤ i ≤ 28, the encoding contains a set of hard clauses that encode
the following cardinality constraint:

(a) If i = 1, then
28∑
j=2

x1j +

27∑
j=2

28∑
k=j+1

x1jk = 1

(b) If 2 ≤ i ≤ 27, then

i−1∑
j=1

xji +
28∑

j=i+1

xij +
i−1∑
k=2

k−1∑
j=1

xjki +
i−1∑
j=1

28∑
k=i+1

xjik +
27∑

j=i+1

28∑
k=j+1

xijk = 1

(c) If i = 28, then
27∑
j=1

xj28 +

26∑
j=1

27∑
k=j+1

xjk28 = 1

This cardinality constraint states that student i sits exactly in one table, and the table is either of
2 or of 3.

2. For each variable xij , the encoding contains the hard clauses ¬xij ∨ yi and ¬xij ∨ yj . Note that
(¬xij ∨ yi) ∧ (¬xij ∨ yj) is equivalent to xij → yi ∧ yj . This clause states that if xij is true,
then students i and j sit in a table of 2.
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3. For each variable xijk, the encoding contains the hard clauses ¬xijk ∨ ¬yi, ¬xijk ∨ ¬yj and
¬xijk ∨¬yk. Note that (¬xijk ∨¬yi)∧ (¬xijk ∨¬yj)∧ (¬xijk ∨¬yk) is equivalent to xijk →
¬yi∧¬yj ∧¬yk. This clause states that if xijk is true, then students i, j and k sit in a table of 3.

4. The encoding contains a a set of hard clauses that encode the following cardinality constraints:∑28
i=1 yi = 16 and

∑28
i=1 ¬yi = 12. These cardinality constraints state that there are 16 students

sitting in tables of 2 and 12 students sitting in tables of 3.

In practice, it is sufficient to add either the constraint
∑28

i=1 yi = 16 or the constraint∑28
i=1 ¬yi = 12 because if there are exactly 16 (12) variables yi, 1 ≤ i ≤ 28, that evaluate

to true (false), then the remaining 12 (16) variables must evaluate to false.

The encoding of a cardinality constraint of the form x1 + . . . + xn = k has O(n) clauses if one
uses the encoding based on counters and defined in [20]. Other efficient encodings of cardinality
constraints are described and analyzed in [21, 22]. In our empirical investigation, we encode the
previous cardinality constraints using PBLib1, which is a C++ tool for efficiently encoding pseudo-
Boolean constraints to CNF.

Since we considered two sizes of tables, we just need one variable yi for each student. If we
consider n different sizes, then we need dlog2 ne variables for each student. For example, for four
different sizes, we need two variables (yi, y′i) and each size is represented by one of the following
conjunctions: yi ∧ y′i, ¬yi ∧ y′i, yi ∧ ¬y′i and ¬yi ∧ ¬y′i.

The soft clauses of our encoding are the following weighted unit clauses:

1. For each variable xij , 1 ≤ i < j ≤ 28, the encoding contains the weighted unit clause
(xij , wij).

2. For each variable xijk, 1 ≤ i < j < k ≤ 28, the encoding contains the weighted unit clause
(xijk, wijk).

A key aspect of our encoding is how weights are assigned to the variables of the form xij and
xijk. First of all, we build a directed graph G = (V,E), where V contains a vertex i for each student
i in the classroom, and E contains an edge (i, j) if student i wants to sit with student j. The weight
associated with each student i in G, denoted by w(i), is the out-degree of the vertex i of G.2 The
weight associated with the variable xij , denoted by wij , is 2(w(i) × w(j)), where w(i) and w(j)
are the weights associated with vertices i and j, respectively, in the subgraph of G induced by the
set of vertices {i, j} (i.e.; the weight of student i and j in G({i, j})). The weight associated with
the variable xijk, denoted by wijk, is 3(w(i) × w(j) × w(k)/8), where w(i), w(j) and w(k) are the
weights associated with vertices i, j and k, respectively, in G({i, j, k}). The value of w(i) × w(j)
ranges from 0 to 1 and the value of w(i) × w(j) × w(k) ranges from 0 to 8. This explains the fact
that w(i) × w(j) × w(k) is divided by 8. Moreover, we multiply the weights by 2 in the tables of 2
and by 3 in the tables of 3. In this way, we maximize the number of satisfied students. Note that if the
weight assigned to xij is 2, there are 2 satisfied students if they sit together in a table of 2, whereas if

1http://tools.computational-logic.org/content/pblib.php
2The out-degree of a vertex is the number of edges going out of a vertex in a directed graph.
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the weight assigned to xijk is 3, there are 3 satisfied students if they sit together in a table of 3. The
weight wij (wijk) associated with a table of 2 (3) indicates the quality of the assignment of students
i and j (i, j and k) to a table of 2 (3): the bigger the weight, the better the assignment of students to
tables.3

In the previous encoding, if the weight associated with a variable is 0, then the negation of this
variable is added as a unit clause in the hard part. Moreover, an optimal solution corresponds to a fully-
satisfied solution if, and only if, all the satisfied soft clauses of the form (xij , wij) and (xijk, wijk)
have weight 2 and 3, respectively.

For fully-satisfied instances, if we add to the hard part the negation of xij (i.e., the unit hard clause
¬xij) for each variable xij whose associated weight is different from 2 and the negation of xijk (i.e.,
the unit hard clause ¬xijk) for each variable xijk whose associated weight is different from 3, then we
do not need to add any soft clause. Moreover, any satisfying assignment of the hard part allows us to
derive a fully-satisfied solution. This case can be solved either with a SAT solver or with a MaxSAT
solver fed with a MaxSAT instance that only contains hard clauses. Actually, to find a fully-satisfied
solution is a decision problem.

If there is no fully-satisfied solution, the problem becomes an optimization problem and the ob-
jective is to find a solution that satisfies students as much as possible. Because of that, in the general
case, we add the clauses (xij , wij) and (xijk, wijk) such that wij 6= 0 and wijk 6= 0 in the soft part of
the encoding. In this way, we provide a solution that maximizes the number of satisfied students. In
this case, we say that we have a maximally-satisfied solution.

An optimal solution to the TCPC is obtained from a MaxSAT optimal interpretation by assigning
students i and j to the same table of 2 if, and only if, the literal xij is satisfied by the optimal inter-
pretation; and by assigning students i, j and k to the same table of 3 if, and only if, the literal xijk is
satisfied by the optimal interpretation.

If an optimal interpretation satisfies the soft clause (xij , wij), then this interpretation falsifies all
the soft clauses (xlm, wlm) and (xlmn, wlmn) such that l, m or n are equal to i or j because of the
cardinality constraint that states that every student sits exactly in one table. A similar situation happens
when the satisfied clause is of the form (xijk, wijk), corresponding to a table of 3. Thus, the number of
falsified soft clauses is usually greater than the number of satisfied soft clauses, and the maximum sum
of weights of satisfied clauses indicates the maximum quality that can be reached taking into account
the preferences of the students.

4.2. The minimizing encoding

The minimizing encoding focus on minimizing the quality loss instead of maximizing the quality of
the solution as in the maximizing encoding. So, the challenge now is to adequately represent the
notion of quality loss in the TCPC and derive a more efficient encoding.

The minimizing encoding is defined over the same set of Boolean variables and has the hard
constraints of the maximizing encoding. The soft clauses are derived from the soft clauses of the
maximizing encoding as follows:

3Since most of the MaxSAT solvers deal with weights that are positive integers, in the experiments we multiply the weights
by 100 and take the integer part.
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1. each soft clause (xij , wij) is replaced with the soft clause (¬xij , wmax − wij), and

2. each soft clause (xijk, wijk) is replaced with the soft clause (¬xijk, w′max − wijk),

where wmax is the maximum weight that can be assigned to a table of 2 and w′max is the maximum
weight that can be assigned to a table of 3. In our encoding, wmax = 2 and w′max = 3.

An optimal solution to the TCPC is obtained from a MaxSAT optimal interpretation by assigning
students i and j to the same table of 2 if, and only if, the literal ¬xij is falsified by the optimal
interpretation; and by assigning students i, j and k to the same table of 3 if, and only if, the literal
¬xijk is falsified by the optimal interpretation. Note that ¬xij and ¬xijk are falsified if, and only
if, xij and xijk are satisfied. If an optimal interpretation falsifies the soft clause (¬xij , w′ij), then it
satisfies all the soft clauses (¬xlm, w′lm) and (¬xlmn, w′lmn) such that l, m or n are equal to i or j
because of the cardinality constraint that states that every student sits exactly in one table. A similar
situation happens when the falsified clause is of the form (¬xijk, w′ijk).

In contrast to the maximizing encoding, the number of satisfied soft clauses in an optimal solution
of the minimizing encoding is usually greater than the number of falsified soft clauses. This implies
that the number of conflicts that a MaxSAT solver has to identify for finding an optimal solution
is greater in the maximizing encoding than in the minimizing encoding and, as we will see in the
experimental results, this has a tremendous impact on the performance of the solver.

The weight of the soft clause (¬xij , wmax − wij) ((¬xijk, w′max − wijk)) indicates the quality
loss if students i and j (i, j and k) sit together in a table of 2 (3): the smaller the weight, the better
the assignment of students to tables. In fact, the weight wmax − wij (w′max − wijk) is the penalty to
be paid by students i and j (i, j and k) if they sit in the same table. So, the minimum sum of weights
of falsified clauses indicates the minimum quality loss that can be reached taking into account the
preferences of the students.

If the minimum sum of weights of falsified clauses in an optimal solution is 0, then this solution is
fully-satisfied. Note that the clauses of the form (¬xij , 0) correspond to tables of 2 in which students
i and j prefer to sit together, and the clauses of the form (¬xijk, 0) correspond to tables of 3 in which
students i, j and k prefer to sit together. In practice, the clauses (¬xij , 0) and (¬xijk, 0) can be
removed from the soft part and the encoding remains correct.

It is worth mentioning that the minimization approach proposed here can be extended to other
combinatorial optimization problems. It is particularly useful when the resulting MaxSAT encoding
has subsets of soft unit clauses whose literals are involved in cardinality constraints in the hard part,
because it can reduce considerably the number of conflicts needed to find an optimal solution. The
main difficulty of the minimizing encoding is to define a suitable weighting function that preserves
the optimal solutions between the maximizing and the minimizing encodings.

Finally, it is worth mentioning that it is possible to define the previous MaxSAT encodings of the
TCPC using the set of propositional variables {xti|1 ≤ i ≤ 28, 1 ≤ t ≤ 12}, where the intended
meaning of xti is that xti is true if, and only if, student i sits at table t. However, all the experiments
performed with encodings using this set of variables did not outperform the experiments performed
with the encodings proposed in this section.
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5. Experimental results

We carried out an experimental investigation to evaluate the proposed MaxSAT-based approach to
the TCPC on both fully-satisfied and maximally-satisfied instances, and compared the performance
of the maximizing and minimizing encodings on the selected instances. In the experiments, in order
to analyze the scaling behavior, we considered different sizes of classrooms: the rows always have 2
tables of 2 and 1 table of 3, and the number of rows ranges from 1 to 18. So, the number of students
per classroom ranges from 7 to 126. Besides, we assumed that each student gives a list of students she
would like to sit with. We generated the preferences at random in such a way that we can guarantee that
the generated instances have either fully-satisfied or maximally-satisfied solutions. We generated 50
different TCPC instances for each size of classroom, encoded them to weighted partial MaxSAT, and
solved the resulting maximizing and minimizing encodings with the exact MaxSAT solver WPM3 [4]
using a cutoff time of 900 seconds. All the experiments were performed in a 3.60GHz Intel(R) i7-4790
with 8GB RAM.

Table 1. Experimental results for fully-satisfied instances: Students: number of students; Hard: mean number
of hard clauses per instance; Variables: mean number of variables per instance; Soft _Max: mean number of
soft clauses per instance in the maximizing encoding; Soft _Min: mean number of soft clauses per instance in
the minimizing encoding; Time_Max: mean time, in seconds, needed to solve an instance with the maximizing
encoding; and Time_Min: mean time, in seconds, needed to solve an instance with the minimizing encoding.
The number of solved instances, within a cutoff time of 900s, is shown in parentheses.

Students Hard Variables Soft_Max Soft_Min Time_Max Time_Min

7 246 117 21 11 0,01 (50) 0,01 (50)

14 1040 659 56 35 0,01 (50) 0,01 (50)

21 2594 1916 93 60 0,05 (50) 0,01 (50)

28 5214 4239 128 85 0,25 (50) 0,01 (50)

35 9127 7937 150 98 0,63 (50) 0,01 (50)

42 14934 13387 189 124 3,65 (50) 0,01 (50)

49 22772 20889 221 147 10 (50) 0,02 (50)

56 33069 30842 257 172 63 (49) 0,03 (50)

63 46079 43552 286 191 123 (43) 0,04 (50)

70 62232 59365 324 218 191 (31) 0,06 (50)

77 81833 78584 357 240 234 (25) 0,08 (50)

84 105200 101588 386 260 286 (20) 0,11 (50)

91 132775 128730 426 286 513 (10) 0,21 (50)

98 164741 160326 456 308 634 (5) 0,25 (50)

105 201629 196844 493 332 815 (2) 0,28 (50)

112 243565 238390 522 351 0 (0) 0,30 (50)

119 291154 285487 568 385 0 (0) 0,49 (50)

126 344370 338356 590 398 0 (0) 0,62 (50)
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We selected the solver WPM3 because it was ranked in the first positions in the last MaxSAT
Evaluations and was the best performing solver on our instances in preliminary tests. WPM3 refor-
mulates the MaxSAT optimization problem into a sequence of SAT decision problems and introduces
Pseudo-Boolean (PB) constraints to refine the lower bound after each execution of the SAT solver. In
order to identify the most suitable PB constraints, WPM3 analyzes the unsatisfiable cores retrieved
from the previous SAT executions.

Table 1 compares the maximizing and minimizing encodings on fully-satisfied instances. We ob-
serve that the minimizing encoding clearly outperforms the maximizing encoding: the minimizing
encoding needs a mean time of less than one second to solve an instance, independently of the num-
ber of students in the classroom, but the maximizing encoding is only able to solve all the selected
instances within the cutoff time if the number of students is less than or equal to 49. The maximizing
encoding only solves 43, 31 and 5 instances out of 50 when the number of students is 63, 77 and 84,
respectively. It was not able to solve any instance for more than 84 students.

Table 2. Experimental results for maximally-satisfied instances: Students: number of students; Hard: mean
number of hard clauses per instance; Variables: mean number of variables per instance; Soft _Max: mean
number of soft clauses per instance in the maximizing encoding; Soft _Min: mean number of soft clauses per
instance in the minimizing encoding; Time_Max: mean time, in seconds, needed to solve an instance with the
maximizing encoding; and Time_Min: mean time, in seconds, needed to solve an instance with the minimizing
encoding. The number of solved instances, within a cutoff time of 900s, is shown in parentheses.

Students Hard Variables Soft_Max Soft_Min Time_Max Time_Min

7 225 113 18 11 0,01 (50) 0,01(50)

14 956 640 44 30 0,01 (50) 0,01(50)

21 2416 1879 67 47 0,02 (50) 0,01 (50)

28 4953 4184 91 64 0,07 (50) 0,01 (50)

35 8911 7892 118 83 0,34 (50) 0,02 (50)

42 14632 13321 145 103 1,29 (50) 0,04 (50)

49 22421 20814 170 121 2,78 (50) 0,15 (50)

56 32692 30760 203 144 15 (50) 0,59 (50)

63 45645 43457 222 159 44 (50) 0,71 (50)

70 61734 59256 252 179 83 (47) 4,92 (50)

77 81198 78445 266 190 78 (45) 8,66 (50)

84 104574 101452 296 212 97 (35) 26 (50)

91 132063 128574 323 232 182 (22) 20 (50)

98 164001 160166 350 251 182 (19) 67 (48)

105 200797 196664 374 268 292 (18) 79 (44)

112 242692 238203 396 284 281 (14) 31 (38)

119 290160 285272 426 307 236 (6) 59 (37)

126 343404 338146 452 325 422 (4) 39 (30)
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Table 2 compares the maximizing and minimizing encodings on maximally-satisfied instances.
We observe that the minimizing encoding scales much better than the maximizing encoding, and also
needs less time to solve an instance. While the minimizing encoding is able to solve all the instances
with less than 98 students, the maximizing encoding fails to solve some instances when there are 70 or
more students. The difference performance profile between the maximizing and minimizing encodings
is due to the number of conflicts that must be detected by WPM3 to find an optimal solution. As said
above, an optimal solution of the maximizing encoding falsifies much more soft clauses and WPM3
usually has to solve a larger sequence of SAT problems in this case.

WPM3 has an incomplete version that stops the solver after a prefixed time. This option could be
used to obtain good quality solutions when the complete version of WPM3 used in the experiments
fails to find an optimal solution. The incomplete version often computes optimal solutions but it cannot
certify that the solutions are optimal as the exact version does.

6. Reducing team formation to TCPC

We solved TCPC like a particular team formation problem that only considers the preferences of
students to create teams. However, classroom team formation can involve more sophisticated and
sensible criteria based, for example, on Organisational Psychology (OP). In this section, we show how
a more involved OP-based problem, the Synergistic Team Composition Model (STCM) [17], can be
mapped into our framework.

The dominant OP approaches to finding good teams rely on individual competences and person-
ality traits. In the field of education, such competences refer to different types of intelligences, which
can be roughly judged by teachers in order to avoid an invasive and expensive testing process. On the
other hand, personality traits are usually measured by means of subjective self-assessment tests.

A Post-Jungian personality test is based on the cognitive mode model developed by the pio-
neering psychiatrist Carl Gustav Jung [23]. It has two pairs of complementary variables that de-
termine psychological functions: Sensing/Intuition (SN) and Thinking/Feeling (TF); and two pairs
of complementary variables that determine psychological attitudes: Perception/Judgment (PJ) and
Extroversion/Introversion (EI). Psychological functions and attitudes form a four-dimension vector
p = (EI, SN, TF, PJ) ∈ [−1, 1]4 that characterizes a personality. In [24, 25], Wilde proposes bal-
ancing the teams by incorporating individuals of different gender having diverse sensing/intuition and
thinking/feeling, at least one introvert person and at least one extrovert, thinking and judging person.

For competences, we consider the Multiple Intelligences Theory [26]. In this theory, each person
has a competence profile given by an eight-dimension vector l = 〈vl, lm, sv, bk,mu, ie, ia, na〉 ∈
[0, 1]8, where each dimension represents a type of intelligence. We consider the following intelli-
gences: vl is verbal-linguistic intelligence, lm is logical-mathematical intelligence, sv is spatial-visual
intelligence, bk is bodily-kinesthetic intelligence, mu is musical intelligence, ie is interpersonal intel-
ligence, ia is intrapersonal intelligence and na is naturalist intelligence.

The goal of our problem is to create teams for performing a given task taking into account the
personality and competences of individuals. A task τ requires a set of competences (ci ∈ Cτ ), where
each competence has an associated weight wi ∈ [0, 1] that indicates its relevance for the task fulfill-
ment and a desired level li ∈ [0, 1]. Furthermore, any task has a parameter λ ∈ [0, 1] that balances the
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importance of the proficiency uprof(k) and congeniality ucon(k) of team k, and is used to calculate the
suitability s(k) = λ · uprof(k) + (1 − λ) · ucon(k) of team k. Moreover, every task has a parameter
v ∈ [0, 1] that balances the importance of under-competence and over-competence for the calculation
of proficiency uprof(k), as we explain below.

A competent student set for a competence ci is defined as δ(ci) = {a ∈ k | ci ∈ {lai | lai > 0}},
where the zero is a typical arbitrary threshold. We define a responsibility assignment as a correspon-
dence between students and required competences such that every competence is associated at least
with a student in δ(ci). We note by Θk

τ the set of competence assignments η for task τ and team k.
The proficiency degree ηprof (k, τ) for a team k and task τ given a responsibility assignment η is one
minus the sum of penalties associated to over-competence o(η) and under-competence u(η) of that
team performing the task. We define under-competence and over-competence as follows:

u(η) =
∑
i∈Iτ

wi ·
∑

a∈δ(ci) | min(la(ci)− li, 0) |
| {a ∈ δ(ci) | la(ci)− li ≤ 0} |

o(η) =
∑
i∈Iτ

wi ·
∑

a∈δ(ci)max(la(ci)− li, 0)

| {a ∈ δ(ci) | la(ci)− li ≥ 0} |

Proficiency is defined as uprof(k) = maxη∈Θkτ
(1 − (v · u(η) + (1 − v) · o(η)). Penalties are

added because over-competence causes boredom and under-competence causes frustration. We note
that students who are not responsible for a given competence for the task can remain free of paying
penalties for that competence. Competence assignments can have different properties. In the education
case, we are interested in inclusive assignments, which are the ones where each team member is
responsible of at least one competence for the task.

Congeniality is defined as ucon(k) = uSNTF (k) + uETJ(k) + uI(k) + ugender(k), where:

• uSNTF (k) = σSN (k) · σTF (k), the product of standard deviation for SN and TF personality
components of the members of team k.

• uETJ(k) = maxa∈kETJ [max((0, α,α,α) · p, 0), 0], where α ≈ 0.5287/3 and kETJ =
{a ∈ k | tfa > 0, eia > 0, pja > 0}. It is the importance of having a strong ETJ individual.

• uI(k) = maxa∈kI [max((0,0,−β,0) · p, 0), 0], where β = 3 ·α = 0.5287 and kI = {a ∈
k | eia ≤ 0}. This is the importance of having a strong I (introvert) individual.

• ugender(k) = γ · sin ((π · w(k))/(w(k) +m(k))) where γ = 0.1, w(k) stands for the women
number of women and m(k) for the number of men in team k. This is the importance of having
a satisfactory gender balance.

Example 6.1. Assume that we want to solve a task τ with two competences, (c1, l1 = 0.8, w1 = 0.5)
and (c2, l2 = 0.6, w2 = 0.5), and an under-proficiency penalty of v = 0.6. In fact, the competences
are the set of intelligences needed for task τ . We want to find the inclusive assignment maximizing
s(k) = λ · uprof(k) + (1− λ) · ucon(k), where we consider λ = 0.5. In order to evaluate the suitability
of a three-student team k = {S1, S2, S3}, we have:

• 〈S1, woman, 〈p(sn) = 0.4, p(tf) = −0.4, p(ei) = 0.5, p(pj) = −0.7〉, [l(c1) = 0.9, l(c2) = 0.5]〉
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• 〈S2,man, 〈p(sn) = −0.7, p(tf) = 0.6, p(ei) = 0.8, p(pj) = 0.4〉, [l(c1) = 0.2, l(c2) = 0.8]〉

• 〈S3,man, 〈p(sn) = 0.8, p(tf) = −0.7, p(ei) = −0.4, p(pj) = −0.6〉, [l(c1) = 0.4, l(c2) = 0.6]〉

We want to assign students to task competences so that (1) each student is responsible for at least
one competence (inclusive), (2) each competence is covered by at least one student (assignment), and
(3) The proficiency degree ηprof (k, τ) for a team k and task τ given the assignment η is maximal in
Θk
τ . For this example, we consider individual competences like an atomic task.

Table 3 shows every valid student assignment for both competences as well as its under-proficiency
and over-proficiency penalty sum with v = 0.6. An assignment for both competences is not inclusive
if some student has no competence assigned. The maximization of uprof(k) = maxη∈Θkτ

(1 − (v ·
u(η) + (1−v) ·o(η)) involves the minimization of the under-proficiency and over-proficiency penalty
sum among the assignments. Table 4 shows every valid assignment η(k, τ) and, for the inclusive ones,
the cost(η(k, τ)) =

∑
i cost(η(k, ci)), or total cost for the assignment.

Table 3. For each competence ci and student assignment η(k, ci), under/over-proficiency costs are calculated
and added. Bold lines are base cases where only one student is responsible; the rest of lines are calculated from
these base lines. Only valid assignments are shown, excluding the case S1 = S2 = S3 = 0.

i η(k, ci) u(η(k, ci)) o(η(k, ci)) cost(η(k, ci))

S1 S2 S3

1 0 0 1 0,12 0 0,12
1 0 1 0 0,18 0 0,18
1 0 1 1 0,15 0 0,15
1 1 0 0 0 0,02 0,02
1 1 0 1 0,12 0,02 0,14
1 1 1 0 0,18 0,02 0,2
1 1 1 1 0,15 0,02 0,17
2 0 0 1 0 0 0
2 0 1 0 0 0,04 0,04
2 0 1 1 0 0,04 0,04
2 1 0 0 0,03 0 0,03
2 1 0 1 0,03 0 0,03
2 1 1 0 0,03 0,04 0,07
2 1 1 1 0,03 0,04 0,07

The former problem involving minimization of costs among assignments can be efficiently solved
using the minimum cost flow model [27]. The minimum cost flow problem has a time complexity of
O(m · log(n) · (m + n · log(n))) on a network with n nodes and m arcs [28], where n = |k| + |I|
(team size and competences number in task τ ) and m =

∑
i |δ(ci)|. Furthermore, this problem of cost

minimization among assignments can be avoided if we consider as valid just the assignments where
every student is responsible of all the task competences.
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Table 4. Valid assignments η(k, τ) from η(k, c1) and η(k, c2) showing costs u(η) + o(η). Inc stands for not
inclusive. uprof(k, τ ) = 0.94 (1− 0.06).

η(k, c1)

η(k, c2) 1 2 3 4 5 6 7

1 Inc Inc Inc Inc Inc 0.2 0.17
2 Inc Inc Inc Inc 0.18 Inc 0.21
3 Inc Inc Inc 0.06 0.18 0.24 0.21
4 Inc Inc 0.18 Inc Inc Inc 0.2
5 Inc 0.21 0.18 Inc Inc 0.23 0.2
6 0.19 Inc 0.22 Inc 0.21 Inc 0.24
7 0.19 0.25 0.22 0.09 0.21 0.27 0.24

We calculate now congeniality ucon(k) = uSNTF (k) + uETJ(k) + uI(k) + ugender(k), where:

• uSNTF (k) = σSN (k) · σTF (k) ≈ 0.7767 · 0.6807 ≈ 0.5287.

• uETJ(k) = maxa∈kETJ [max((0, α,α,α) · p, 0), 0], where α ≈ 0.1762 and kETJ = {S2}.
Calculating we get uETJ(k) = 0.3172.

• uI(k) = maxa∈kI [max((0,0,−β,0) · p, 0), 0], where β = 0.5287 and kI = {S3}. Thus,
uI(k) = 0.2115.

• ugender(k) = γ · sin ((π · w(k))/(w(k) +m(k))) where γ = 0.1, w(k) stands for the number
of women and m(k) for the number of men in team k. Thus, ugender(k) = 0.1 · sin

(
π
3

)
≈

0.0183.

We calculate ucon(k) ≈ 0.5287 + 0.3172 + 0.2115 + 0.0183 ≈ 1.0757 and s(k) ≈ (0.5 · 0.94) +
(0.5 · 1.0757) ≈ 1, 00785. We now multiply this number by 1000 and round to the nearest integer as
it is needed by the majority of optimizers. Then we will use a final desirability degree s(k) = 1008.
In summary, we can use the same encoding of TCPC, adjusting the size of teams and number of
members and replacing the weights in soft clauses in such a way that every possible team has as
weight its desirability degree. If we had teams of different sizes we should scale s(k) as we did in the
TCPC case.

7. Related work

We can find similarities between TCPC and a classical matching theory problem known as the Stable
Roommate Problem (SRP). SRP is about finding a stable matching for an even-sized set. A matching
is a partition of the set into disjoint pairs of roommates. We say a matching is stable if there are not
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two individuals who are not roommates and both prefer each other to their roommate under the current
matching. TCPC and SRP try to match elements within a single set in groups of a given size (size two
for SRP).

Irving [29] described an algorithm to solve SRP with a time complexity of O(n2). Nevertheless,
this algorithm solves a decision problem; it determines whether a stable matching exists, and if so, it
returns that matching. We are not solving a decision problem but an optimization one. Furthermore,
our problem is about matching elements in groups of any given size or a combination of sizes. Standard
SRP uses rooms of size two but this problem becomes NP-complete for rooms of size three [30]. The
NP-completeness proof uses the partition into triangles problem as in the NP-completeness proof of
TCPC.

Note that TCPC is about finding an optimal assignment given a certain criterion, but matching
theory algorithms deal with the notion of stability. An optimization version of SRP has not always
an optimal solution among the stable solutions, so that they can miss optimality. We show below an
example.

Given a totally ordered preference list of possible mates for each student, the desirability of A to
be with B in a team k is calculated as the size for k minus the position in that list, starting by an index
equal to one. Thus, the last position in the list has a desirability of zero. We show this information in
the graph of Figure 1 for just four students.

Figure 1. Degree of individual convenience of students in a team.

Table 5 shows desirability degrees for every possible size-two partition of the graph. Partition
suitability is calculated as the sum of arities for each node into the subgraphs for each partition. We
observe, for a standard SRP and a usual team suitability degree calculation, by summing satisfactions,
that neither stability implies optimality nor optimality implies stability.

Table 5. Optimality and stability of size-two partitions of graph in Figure 1.

Partition Desirability Calculation Optimal Stable

DA , BC (1 + 0) + (1 + 1) = 3 7 7

DB , AC (2 + 0) + (1 + 2) = 5 3 7

DC , AB (0 + 0) + (2 + 2) = 4 7 3

There are criteria for the evaluation of team suitability that are different from the ones described
in the previous section for STCM. Another psychological theory, proposed by Belbin [31], insists on
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the importance of roles in team composition processes [32]. Belbin exposes nine important roles that
an individual can play in a team: plant, resource investigator, coordinator, shaper, monitor evaluator,
implementer, team-worker, specialist and completer-finisher. According to Belbin’s theory, people
play such roles with three different performances: preferred team roles, manageable roles and least
preferred roles. An effective team needs to be role balanced, having at least one individual playing any
role with a given minimum performance, which can be preferred or manageable. Based exclusively
on this theory, Alberola et al. [15] also pose this problem as a multi-agent coalition structure genera-
tion problem, developing a tool for practical use in an educational environment [33]. This tool uses
Bayesian learning to estimate the predominant roles for each student from the peer-evaluation history
made by their former teammates.

8. Concluding remarks

We have proposed two different ways of encoding the TCPC as a weighted partial MaxSAT problem,
proved its NP-hardness, and carried out experiments to evaluate our approach using an exact MaxSAT
solver. The results show that the minimizing encoding outperforms the maximizing encoding, and our
method is useful because it does not need a dedicated algorithm; it is declarative, hence all stakehold-
ers can be involved and understand the way the problem is specified; it is flexible because different
classroom configurations can be solved with it; and it is efficient because it provides an optimal so-
lution in a reasonable amount of time. It is also remarkable that the idea of creating a minimizing
MaxSAT encoding from a maximizing MaxSAT encoding is new and can be applied to encode a wide
range of optimization problems to MaxSAT.

In the future, we plan to model the problem using MinSAT [34, 35] instead of MaxSAT, and
explore the possibility of using our method to encode similar team composition problems. In practice,
our method could be combined with profiling techniques [36] to solve the group formation problem
in Computer Supported Collaborative Learning applications. Our contributions could also be applied
to other projects which have taken a different approach to solve related problems using other AI
techniques (see [15, 16, 33] and the references therein for further details).
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