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Abstract

Possibility and necessity measures are commonly defined over Boolean algebras. This work consider
a generalization of these kinds of measures over MV-algebras as a possibilistic counterpart of the

(probabilistic) notion of state on MV-algebras. Two classes of possibilistic states over MV-algebras
of functions are characterized in terms of (generalized) Sugeno integrals. For reasoning about these

representable classes of possibilistic states, we introduce many-valued modal logics based on the

Rational  Lukasiewicz Logic, that are be shown to be complete with respect to corresponding classes
of Kripke models equipped with those states.
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1 Introduction

Probability measures are without a doubt the main tool for modelling and reasoning
under uncertainty. In the field of uncertain reasoning, however, many formalisms,
upper and lower probabilities [23], Dempster-Shafer plausibility and belief functions
[21], possibility and necessity measures [7], have been developed to deal with different
notions of non-additive uncertainty.

The most general notion of uncertainty is captured by monotone set functions with
two natural boundary conditions. In the literature, these functions have received
several names, like Sugeno measures [22] or plausibility measures1 [18]. In its simplest
form, given a Boolean algebra U = (U,∧,∨,¬, 0U , 1U ), a Sugeno measure is a mapping
µ : U → [0, 1] satisfying µ(0U ) = 0, µ(1U ) = 1, and the monotonicity condition
µ(x) ≤ µ(y) whenever x ≤U y, where ≤U is the lattice order in U . The class of Sugeno
measures encompass the above mentioned classes of measures, i.e. probabilities, upper

1The reader should be warned not to confuse this term coined by Halpern with the term “plausibility function”

used in the Dempster-Shafer model framework. Plausibility functions, related to the notion of monotone Choquet

capacity of order ∞, are indeed just a subclass of the class of plausibility measures.
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and lower probabilities, Dempster-Shafer plausibility and belief functions, possibility
and necessity measures. In this work, we particularly focus on the latter.

Recall that a possibility measure on a (finite) Boolean algebra of events U =
(U,∧,∨,¬, 0U , 1U ) is a Sugeno measure µ∗ satisfiying the following ∨-decomposition
property

µ∗(u ∨ v) = max(µ∗(u), µ∗(v)),

while a necessity measure is a Sugeno measure µ∗ satisfying the ∧-decomposition
property

µ∗(u ∧ v) = min(µ∗(u), µ∗(v)).

Actually, in presence of these decomposition properties, there is no need for the
monotonicity condition since it easily follows from each one of them. Possibility
and necessity measures are dual in the sense that if µ∗ is a possibility measure, then
the mapping µ∗(u) = 1 − µ∗(¬u) is a necessity measure, and vice versa. If U is the
power set of a finite set X, then any dual pair of measures (µ∗, µ∗) on U is induced
by a normalized possibility distribution, namely a mapping π : X → [0, 1] such that,
maxx∈X π(x) = 1, and, for any A ⊆ X,

µ∗(A) = max{π(x) | x ∈ A} and µ∗(A) = min{1− π(x) | x 6∈ A}.

Certainly, it makes sense to consider appropriate extensions of these classes of non-
additive measures on algebras of events more general than Boolean algebras, in a
similar way the notion of (finitely additive) probability has been generalized in the
setting of MV-algebras by means of the notion of state [19]. In fact, in this paper, we
focus on the investigation and logical formalization of meaningful generalizations of
possibility and necessity measures over MV-algebras. Abusing the language, and by
analogy with the case of probabilistic states, we will refer to them as possibilistic states.
In more concrete terms, our aim in this paper is twofold: (i) to study possibilistic
states over some particular MV-algebras from a measure-theoretic point of view and
axiomatically characterize two of their subclasses; (ii) to introduce a logical framework
to reason about these possibilistic states over finitely-valued  Lukasiewicz events (in the
sense of equivalent classes of formulas of an n-valued  Lukasiewicz logic  Ln), following
the approach used in [12] for the case of (probabilistic) states.

We restrict our basic approach to finitely-valued events, since this allows us to
get completeness results with respect to the intended semantics, while the case of
infinitely-valued events remains an open problem. However, notice that the logics  Ln
can arbitrarily approximate  L in the sense that, for each theorem ϕ of  L, there is a
sufficiently large n such that ϕ is a theorem of  Ln as well (cf. [1]).

This work is organized as follows. In the next section we introduce the basic
background notions concerning finitely and infinitely valued  Lukasiewicz logics, along
with their algebraic semantics. In Section 3, we define suitable notions of possibilistic
states over MV-algebras and provide two axiomatic characterizations that are shown
to be equivalent to the existence of a possibility distribution defining the state as a
measure from two different forms of the generalized Sugeno integral. In Section 4
and Section 5, we introduce the many-valued modal logic N( L+

n ,R L) to reason about
possibilistic states over finitely-valued  Lukasiewicz logics. Different semantic models
are introduced, and N( L+

n ,R L) is shown to be complete w.r.t. all of them. We
also discuss two other kinds of (strong) completeness for N( L+

n ,R L) and N(R L,R L),
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the logic obtained by replacing the finitely-valued logic  L+
n by the infinitely-valued

Rational  Lukasiewicz logic R L as the logic for the events. In Section 6, we briefly
study the logic QN( L+

n ,R L), that formalizes a slightly different notion of possibilistic
states. Finally, we show that checking the satisfiabiliy of formulas of both N( L+

n ,R L)
and QN( L+

n ,R L) is an NP-complete problem. We end with some final remarks.

2 Preliminaries on  Lukasiewicz and related logics

The language of  Lukasiewicz logic  L (cf. [6, 15]), consists of a countable set of propo-
sitional variables {p1, p2, . . .}, the binary connective → and the truth constant 0 (for
falsity). Further connectives are defined as follows:

¬ϕ is ϕ→ 0̄, ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ&ψ is ¬(ϕ→ ¬ψ), ϕ⊕ ψ is ¬(¬ϕ&¬ψ),
ϕ ∨ ψ is ((ϕ→ ψ) → ψ), ϕ↔ ψ is (ϕ→ ψ)&(ψ → ϕ).

The axioms of  Lukasiewicz logic are the following:

( L1) ϕ→ (ψ → ϕ), ( L2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)),
( L3) (¬ϕ→ ¬ψ) → (ψ → ϕ), ( L4) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ).

The only inference rule is modus ponens, i.e.: from ϕ→ ψ and ϕ derive ψ.
For each n ∈ N, the n-valued  Lukasiewicz logic  Ln is the schematic extension of  L

with the axiom schemas:

( L5) (n− 1)ϕ↔ nϕ, ( L6) (kϕk−1)n ↔ nϕk,

for each integer k = 2, . . . , n − 2 that does not divide n − 1, and where nϕ is an
abbreviation for ϕ ⊕ · · · ⊕ ϕ (n times) and ϕk is an abbreviation for ϕ& . . .&ϕ, (k
times).

A proof in  L ( Ln) is a sequence ϕ1, . . . , ϕn of formulas such that each ϕi either is
an axiom of  L ( Ln) or follows from some preceding ϕj , ϕk (j, k < i) by modus ponens.
As usual, a set of formulas is called a theory. We say that a formula ϕ can be derived
from a theory T , denoted as T ` ϕ, if there is a proof of ϕ from a set T ′ ⊆ T . A
theory T is said to be consistent if T 6` 0.

The algebraic semantics for  Lukasiewicz logic is given by MV-algebras [6], i.e.
structures A = 〈A,⊕,¬, 0〉 satisfying the following equations:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, (MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x, (MV4) ¬¬x = x,
(MV5) x⊕ ¬0 = 0, (MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

MV algebras can be equivalently presented as commutative bounded integral residu-
ated lattices 〈A,⊗,→,u,t, 0, 1〉 satisfying (see [6, 15]):

(x→ y) t (y → x) = 1; (Prelinearity)
x u y = x⊗(x→ y); (Divisibility)

(x→ 0) → 0 = x. (Involution)

Indeed, in the signature 〈⊕,¬, 0〉, the monoidal operation ⊗ can be defined as x⊗y :=
¬(¬x⊕¬y), while the residuum of⊗ is definable as x→ y := ¬x⊕y. The top element is
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defined as 1 := ¬0, and the order relation is obtained by defining x ≤ y iff x→ y = 1,
while the lattice operations are given by xuy := x⊗(¬x⊕y) and xty := (x⊗¬y)⊕y.

For each n ∈ N, an MVn-algebra is an MV-algebra that satisfies the equations:

(MV7) (n− 1)x = nx (MV8) (kxk−1)n = nxk

for each integer k = 2, . . . , n− 2 not dividing n− 1, and where nx is an abbreviation
for x ⊕ · · · ⊕ x (n times), and xk is an abbreviation for x ⊗ · · · ⊗ x, (k times), with
x⊗ y := ¬(¬x⊕ ¬y).

The class of MV-algebras (MVn) forms a variety MV (MVn) that also is the
equivalent algebraic semantics for  L ( Ln), in the sense of Blok and Pigozzi [4].
MV is generated as a quasivariety by the standard MV-algebra [0, 1]MV , i.e. the
MV-algebra over the real unit interval [0, 1], where x ⊕ y = min(x + y, 1), and
¬x = 1 − x. Each MVn is generated by the linearly ordered MV-algebra over the
set Sn = {0, 1/n, . . . , (n− 1)/n, 1} and whose operations are those of the MV-algebra
over [0, 1], restricted to Sn.

Interesting examples of MV-algebras are the so-called  Lukasiewicz clans of func-
tions. Given a non-empty set X, consider the set of functions [0, 1]X endowed with
the pointwise extensions of the operations of the standard MV-algebra [0, 1]MV . Then
a ( Lukasiewicz) clan over X is any subalgebra C ⊆ [0, 1]X , i.e. a set such that

1. if f, g ∈ C then f ⊕ g ∈ C,
2. if f ∈ C then ¬f ∈ C,
3. 0 ∈ C.

Similarly, one can define an  Ln-clan of functions over some set X to be any subalgebra
C ⊆ (Sn)X .

Let Form denote the set of  Lukasiewicz logic formulas. An evaluation e from Form
into the standard MV-algebra [0, 1]MV is a mapping e : Form → [0, 1] assigning to all
propositional variables a value from the real unit interval (with e(0) = 0) that can be
extended to compound formulas as follows:

e(¬ϕ) = 1− e(ϕ), e(ϕ↔ ψ) = 1− |e(ϕ)− e(ψ)| ,
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)), e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)),
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ)), e(ϕ&ψ) = max(0, e(ϕ) + e(ψ)− 1).

An evaluation e is a model for a formula ϕ if e(ϕ) = 1. An evaluation e is a model
for a theory T , if e(ψ) = 1, for every ψ ∈ T . The notions of evaluation and model for
 Ln are defined analogously just replacing [0, 1] by Sn as set of truth values.

The fact that MV is the equivalent algebraic semantics for  Lukasiewicz logic and is
generated as a quasivariety by the standard MV-algebra implies that the  Lukasiewicz
logic is finitely strongly standard complete, i.e.: for every finite theory T and every
formula ϕ, T ` ϕ iff every model e of T also is a model of ϕ.

Rational  Lukasiewicz logic R L is an expansion of  Lukasiewicz logic introduced by
Gerla in [13], obtained by adding the unary connectives δn, for each n ∈ N, plus the
following axioms:

(D1) δnϕ⊕ · · · ⊕ δn︸ ︷︷ ︸
n

ϕ↔ ϕ, (D2) ¬δnϕ⊕ ¬(δnϕ⊕ · · · ⊕ δnϕ︸ ︷︷ ︸
n−1

).
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The algebraic semantics for R L is given by DMV-algebras (divisible MV-algebras),
i.e. structures A = 〈A,⊕,¬, {δn}n∈N, 0〉 such that 〈A,⊕,¬, 0〉 is an MV-algebra and
the following equations hold for all x ∈ A and n ∈ N:

(δn1) n(δnx) = x, (δn2) δnx⊗ (n− 1)(δnx) = 0.

An evaluation e of R L formulas into the real unit interval is just a  Lukasiewicz logic
evaluation extended for the connectives δn as follows: e(δnϕ) = e(ϕ)/n.

Notice that in R L all rationals in [0, 1] are definable as truth constants in the
following way:

- 1/n is definable as δn1 , and
- m/n is definable as m(δn1)

since, as easy to check, for any evaluation e, e(δn1) = 1/n and e(m(δn1)) =
(1/n)⊕ · · · ⊕ (1/n)︸ ︷︷ ︸

m

= m/n.

As shown in [13], the variety of DMV-algebras is generated as a quasivariety by
the standard DMV-algebra [0, 1]DMV (i.e. the expansion of [0, 1]MV with the δn
operations), and hence R L is finitely strongly standard complete.

3 A possibilistic counterpart of states and their integral
representation

In this section we consider some generalizations of possibility and necessity measures
over MV-algebras, and in particular two families of such measures over MV-algebras
of functions which admit an integral representation in terms of Sugeno-like integrals.

Although the real unit interval [0, 1] is the most usual scale for all kinds of un-
certainty measures, any bounded totally ordered set can be actually used (possibly
equipped with suitable operations), especially in the case of non-additive measures of
a more qualitative nature like possibility and necessity measures.

Definition 3.1
Let A be an MV algebra, let L = (L,≤, 0L, 1L) be a bounded totally ordered set, and
let µ : A→ L be an order preserving mapping such that µ(0A) = 0L and µ(1A) = 1L.
Then:

• µ is called an L-valued possibility measure when for all x, y ∈ A

µ(x ∨ y) = max(µ(x), µ(y)),

• µ is called an L-valued necessity measure when for all x, y ∈ A

µ(x ∧ y) = min(µ(x), µ(y)).

In what follows we will restrict ourselves to expanded scales L equipped with the
operations ⊕L and ¬L making the structure L = (L,⊕L,¬L, 0L) into a (linearly-
ordered) MV-algebra. In particular one can choose L to be the standard MV-algebra
[0, 1]MV or the standard n-valued MV-algebra Sn.
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Definition 3.2
Let µ∗ and µ∗ be respectively an L-valued possibility and an L-valued necessity over
an MV-algebra A. The pair 〈µ∗, µ∗〉 will be called an L-valued possibilistic state on
A whenever µ∗ and µ∗ are a dual pair, i.e. when µ∗(x) = ¬Lµ∗(¬Ax) for all x ∈ A.

Notation: Since in a possibilistic state 〈µ∗, µ∗〉 one mapping is completely deter-
mined by the other, sometimes we may indistinctively refer, by abuse of language, to
either µ∗ or µ∗ as a possibilistic state.

Let us introduce two notable examples of L-valued possibilistic states on MV-
algebras that will play a major role in this work. Let X be a finite set, and let us
consider the particular clan over X of the MV-algebra of all functions of X on L, i.e.
the algebra LX = (LX ,⊕L,¬L, 0, 1) whose operations are the pointwise extensions2

of the operations over L. Moreover, let π : X → L be a normalized3 possibility
distribution. Then, the two pairs of mappings µ∗, µ∗ : LX → L defined below are
examples of L-valued possibilistic states:

(E1) µ∗(f) = max
x∈X

π(x)⊗L f(x) µ∗(f) = min
x∈X

¬Lπ(x)⊕L f(x);

(E2) µ∗(f) = max
x∈X

min(π(x), f(x)) µ∗(f) = min
x∈X

max(¬Lπ(x), f(x)).

The above examples are adaptations of existing ones in the literature extending (clas-
sical) possibility and necessity measures for fuzzy sets in the framework of possibility
theory (see e.g. [9, 8, 14]). Indeed, notice that both (E1) and (E2) are generalizations
of the definition of possibility and necessity measures over Boolean algebras. Actually,
as we will now see, these two classes of possibilistic states can be represented by a
special kind of fuzzy integrals, called (generalized) Sugeno integrals [22].

Given a L-valued measure µ : 2X → L, the Sugeno integral of a function f : X → L
with respect to µ is defined as∮

S

f dµ = max
i=1,...,n

min(f(xσ(i)), µ(Aσ(i)))

where σ is a permutation of the indices such that f(xσ(1)) ≥ f(xσ(2)) ≥ . . . ≥ f(xσ(n)),
and Aσ(i) = {xσ(1), . . . , xσ(i)}.

When µ is the (classical) possibility measure on 2X induced by a (normalized)
possibility distribution π : X → L, i.e. when µ(A) = max{π(x) | x ∈ A} for every
A ⊆ X, then the above expression of the Sugeno integral becomes (see e.g. [5])∮

S

f dπ = max
x∈X

min(π(x), f(x)).

When the above minimum operation is replaced by the MV-operation ⊗L (that inter-
prets the strong conjunction in  Lukasiewicz logic), we obtain the so-called generalized

2That is, for all x ∈ X we define (f ⊕L g)(x) := f(x) ⊕L g(x), (f ⊗L g)(x) := f(x) ⊗L g(x), (f ∨L g)(x) :=

max(f(x), g(x)), (f ∧L g)(x) := min(f(x), g(x)) and (¬Lf)(x) := ¬Lf(x); moreover, for each r ∈ X, we will denote

by r the constant function of value r, i.e. r(x) := r for all x ∈ X.
3That is, maxx∈X π(x) = 1L.
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Sugeno integral [22] ∮
S,⊗

f dµ = max
i=1,...,n

f(xσ(i))⊗L µ(Aσ(i)),

which, in the case of µ being the possibility measure on 2X defined by a possibility
distribution π becomes ∮

S,⊗
f dπ = max

x∈X
π(x)⊗L f(x).

Therefore, (E2) and (E1) can be seen as two possible definitions of possibilistic
states over MV-algebras of functions under the form of a Sugeno and a generalized
Sugeno integral, respectively. Notice that (E2) does not actually require the whole
MV-algebraic structure of the scale L, since it makes use only of the linear ordering
and the involutive negation operation. (E2), instead, specifically relies on the MV-
operations.

The next theorem offers an axiomatic characterization of those measures for which
there exists a possibility distribution that allows to represent them either in the form
of a Sugeno or a generalized Sugeno integral (cf. [2]).

Theorem 3.3
Let L′ be an MV-subalgebra of the MV-chain L, and let L′X be the  Lukasiewicz
clan of all L′-valued functions over some finite set X. Let 〈µ∗, µ∗〉 be an L-valued
possibilistic state over L′X . Then, there exists a normalized possibility distribution
π : X → L such that:

(i) µ∗(f) =
∮
S,⊗

fdπ and µ∗(f) = ¬L
∮
S,⊗

(¬Lf)dπ = min
x∈X

(¬Lπ(x)⊕L f(x)),

if and only if
µ∗(r⊕Lf) = r ⊕L µ∗(f)

for all r ∈ L′;

(ii) µ∗(f) =
∮
S

fdπ and µ∗(f) = ¬L
∮
S

(¬Lf)dπ = min
x∈X

(max(¬Lπ(x), f(x))),

if and only if
µ∗(r ∨ f) = max(r, µ∗(f))

for all r ∈ L′,

where r stands for the constant function of value r, i.e. r(x) = r for all x ∈ X.

Proof. (i) Suppose that 〈µ∗, µ∗〉 is a possibilistic state over L′X such that

µ∗(r ⊕L f) = r ⊕L µ∗(f).

It is easy to check that every f ∈ L′X can be written as

f =
∧
x∈X

xc ⊕L f(x),



8 On the Logical Formalization of Possibilistic Counterparts of States

where xc : X → L′ is the characteristic function of the complement of the singleton
{x}, i.e. xc(y) = 1L if y 6= x and xc(x) = 0L, and f(x) stands for the constant
function of value f(x).

Now, by applying the axioms of possibilistic states and the assumption that µ∗(r⊕
f) = r ⊕L µ∗(f), we obtain that

µ∗(f) = µ∗(
∧
x∈X

xc ⊕L f(x)) = min
x∈X

µ∗(xc ⊕L f(x)) = min
x∈X

µ∗(xc)⊕L f(x).

By putting π(x) = ¬Lµ∗(xc), we get

µ∗(f) = min
x∈X

¬Lπ(x)⊕L f(x),

which, of course, by duality implies that

µ∗(f) =
∮
X,⊗

f dπ.

The converse is easy.

(ii) The proof is completely analogous to (i), only noticing that

xc ⊕L f(x) = xc ∨ f(x),

since xc is a {0L, 1L}-valued function (see [3, 2]).

4 The logic N( L+
n , R L) and its semantics

In the rest of the paper we aim at defining and studying properties of completeness
and complexity of modal many-valued logics to reason about the necessity of many-
valued events (in the sense of the possibilistic states (E1) and (E2) introduced in the
previous section), more precisely of formulas of finitely-valued  Lukasiewicz logic.

We first consider the logic N( L+
n ,R L) for dealing with possibilistic states of type

(E1). N( L+
n ,R L) is based on the Rational  Lukasiewicz logic R L, and on the n-valued

Lukasiewicz logic expanded with the truth constant 1/n, which will be denoted as
 L+
n

4. Formulas of N( L+
n ,R L) split into two classes: (i) the set Fm(V ) of non-modal

formulas ϕ,ψ . . ., which are formulas of  L+
n built from set of propositional variables

V = {p1, p2, . . .} and the truth constant 1/n; (ii) the set MFm(V ) of modal formulas
Φ,Ψ . . ., built from atomic modal formulas Nϕ, with ϕ ∈ Fm(V ) and N denoting
the modality necessity, using R L. Notice that nested modalities are not allowed.

The axioms of N( L+
n ,R L) are the axioms of  L+

n for non-modal formulas, the axioms
of R L for modal formulas, plus the following possibilistic state related axioms:

(N1) ¬N⊥
(N2) N(ϕ ∧ ψ) ↔ (Nϕ ∧Nψ)
(N3) N(r ⊕ ψ) ↔ r ⊕Nψ, for each r ∈ {0, 1/n, . . . , (n− 1)/n, 1}.

The rules of inference of N( L+
n ,R L) are modus ponens (for modal and non-modal

formulas); necessitation: from from ϕ derive Nϕ; and monotonicity: from ϕ → ψ
derive N(ϕ) → N(ψ).

4This logic is axiomatized by adding to the axioms of  Ln the axioms n(1/n) and ¬(1/n⊗ (n− 1)(1/n)).
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The notion of proof in N( L+
n ,R L), denoted by `N , is defined as usual from the

above axioms and rules.
The semantics of N( L+

n ,R L) is given by weak and strong possibilistic Kripke models.
A weak possibilistic Kripke model (or weak model) for N( L+

n ,R L) is a system M =
〈W, e, I〉 where:

• W is a non-empty set whose elements are called nodes or worlds,
• e : W × V → {0, 1/n, . . . , (n − 1)/n, 1} is such that, for each w ∈ W , e(w, ·) :
V → {0, 1/n, . . . , (n − 1)/n, 1} is an evaluation of propositional variables which
can be extended to an  L+

n -evaluation of (non-modal) formulas of Fm(V ) in the
usual way.

• For each ϕ ∈ Fm(V ) we define its associated function ϕ̂W : W →
{0, 1/n, . . . , (n− 1)/n, 1}, where ϕ̂W (w) = e(w,ϕ). The set FmW = {ϕ̂W | ϕ ∈
Fm(V )} is a clan over W .

• I : FmW → [0, 1] is a possibilistic state over the clan FmW , i.e. it satisfies
(i) I(>̂W ) = 1, I(⊥̂W ) = 0,
(ii) I(ϕ̂W ∧ ψ̂W ) = min(I(ϕ̂W ), I(ψ̂W )).

Moreover, I satisfies the following additional decomposition property:
(iii) I(r̂W ⊕ ψ̂W ) = r ⊕ I(ψ̂W ) for each r ∈ {0, 1/n, . . . , (n− 1)/n, 1}.

Now, given a formula Φ and a world w ∈ W , the truth value of Φ in M = 〈W, e, I〉
at the node w, denoted ‖Φ‖M,w, is inductively defined as follows:

• If Φ is a non-modal formula ϕ, then ‖ϕ‖M,w = e(w,ϕ),
• If Φ is an atomic modal formula Nϕ, then ‖Nϕ‖M,w = I(ϕ̂W )
• If Φ is a non-atomic modal formula, then its truth value is computed by evaluating

its atomic modal subformulas, and then by using the truth functions associated
to the R L-connectives occurring in Φ.

A strong possibilistic Kripke model is a system N = (W, e, π) where W and e are
defined as in the case of a weak possibilistic Kripke model and π is a possibility
distribution on W , i.e. π : W → [0, 1], satisfying maxw∈W π(w) = 1. Evaluations of
formulas of N( L+

n ,R L) in a strong possibilistic Kripke model N are defined as in the
case of weak models except for the case of atomic modal formulas, i.e.:

• if Φ is an atomic modal formula N(ψ), then

‖Nψ‖N ,w = inf
w∈W

(1− π(w))⊕ e(w,ψ).

It is worth mentioning that each strong possibilistic model M = 〈W, e, π〉 induces a
weak possibilistic model M′ = 〈W, e, Iπ〉, where Iπ : FmW → [0, 1] is defined as

Iπ(ϕ̂W ) = infw∈W (1− π(w))⊕ e(w,ϕ),

which is equivalent to M in the sense that ‖Φ‖M,w = ‖Φ‖M′,w for any modal formula
Φ and any w ∈W 5. Due to Theorem 3.3, the converse also holds when W is finite.

5Actually, the evaluation of modal formulas in both weak and strong models does not depend on any particular

world.
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The notions of model and 1-validity of a formula in a (weak or strong) model or in a
class of (weak or strong) models are defined as usual. A (weak or strong) possibilistic
Kripke model is said to be finite if its corresponding set of worlds W is finite.

It is easy to show that axioms (N1), (N2) and (N3) are 1-valid in each weak or
strong possibilistic Kripke model, and the monotonicity and necessity inference rules
preseve validity. Notice that that the analogue of the modal logic axiom K for the
modality N ,

N(ϕ→ ψ) → (Nϕ→ Nψ),

is not 1-valid in the class of strong possibilistic Kripke models, as already noticed in
[17]. Indeed, let M = 〈W,π, e〉 be a strong model for N( L+

3 ,R L) such that:

• W = 〈w1, w2〉,
• π(w1) = 0.5, π(w2) = 1,
• e(w1, p) = 0.5 e(w1, q) = 0, e(w2, p) = 1, e(w2, q) = 1.

Then it is easy to check that ‖N(p → q)‖M = 1, ‖Np‖M = 1, and ‖Nq‖M = 0.5,
which implies that ‖N(p → q) → (Np → Nq)‖M = 0.5 < 1. In the next section we
will show that N( L+

n ,R L) is complete w.r.t. both weak and strong models. From that
result, the fact that the axiom K fails also w.r.t. weak possibilistic Kripke models
will immediately follow.

5 Completeness results for N( L+
n , R L)

In this section we are going to show that the logic N( L+
n ,R L) is sound and complete

for deductions from finite modal theories with respect to weak and strong models.
Also, we will show that completeness for infinite modal theories holds by introducing
the notions of Pavelka-style and hyperreal completeness.

5.1 Completeness with respect to weak and strong models

Theorem 5.1
The logic N( L+

n ,R L) is finitely strongly complete with respect to the class of finite
weak possibilistic Kripke models.

Proof. Let Γ be a finite modal theory, and Φ be a modal formula. Suppose that
Γ 6`N Φ. We show that there is a weak possibilistic modelM of Γ such that ‖Φ‖M < 1.
We follow the strategy adopted in [15, 12] that amounts to translating theories over
N( L+

n ,R L) into theories over R L. For each modal formula Φ, let Φ? be obtained
from Φ by replacing every occurrence of an atomic subformula of the form Nϕ by a
new propositional variable pϕ. Then, inductively define the mapping ? from modal
formulas into R L-formulas as follows:

- (N(ϕ))? = pϕ,
- (Φ → Ψ)? = Φ? → Ψ?,
- (¬(Φ))? = ¬(Φ?),
- (δn(Φ))? = δn(Φ?)

Let, therefore, Γ? and F? be defined as
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Γ? = {Ψ? | Ψ ∈ Γ}

and

F? = {Υ? | Υ is an instance of (Ni), i = 1, 2, 3} ∪
{pϕ |  L+

n ` ϕ} ∪ {pϕ → pψ |  L+
n ` ϕ→ ψ}

respectively.
Using the same technique used in [15] it is not difficult to prove that

Γ 6`N Φ iff Γ? ∪ F? 6`R L Φ?. (5.1)

Since the set V 0 ⊂ V of propositional variables appearing in Γ∪{Φ} is finite, without
loss of generality we can assume to be working with a finitely generated (over V 0)
non-modal language Fm(V 0).

Notice that the Lindenbaum algebra Fm(V 0)/∼n, where ∼n denotes the relation
of provable equivalence in  L+

n , is finite (see [6] for more details). This means that
there are only finitely many different classes

[ϕ]∼n
= {ψ ∈ Fm(V 0) |  L+

n ` ϕ↔ ψ}.

For each [ϕ]∼n , let ϕ] be the representative of the class. We define a further transla-
tion:

- For each modal formula Φ, let Φ] be the formula resulting from the substitution
of each propositional variable pϕ occurring in Φ? by pϕ] ,

- If Φ = Θ → Λ then Φ] = Θ] → Λ].
- If Φ = [Θ then Φ] = [Θ] with [ ∈ {¬, δn}.

Consequently, we define Γ] and F ] as:

Γ] = {Ψ] | Ψ? ∈ Γ?}

and

F ] = {Υ] | Υ is an instance of (Ni), i = 1, 2, 3} ∪
{pϕ] |  Ln ` ϕ} ∪ {pϕ] → pψ] |  L+

n ` ϕ→ ψ}.

As shown in [12]:

Lemma 5.2
Γ∗ ∪ F∗ `R L Φ∗ iff Γ] ∪ F ] `R L Φ].

Therefore, we obtain:
Γ 6`N Φ iff Γ] ∪ F ] 6`R L Φ]. (5.2)

Since Γ] ∪ F ] is a finite theory and since R L is finitely strongly complete, we know
that there exists an R L-evaluation v that is a model of Γ] ∪ F ] such that v(Φ]) < 1.

Let now M be the system M = 〈Ωn, e, I〉, where Ωn is the class of all the  L+
n -

evaluations of the propositional variables in V 0; e : Ωn×V 0 → {0, 1/n, . . . , n−1/n, 1}
is defined as e(w, q) = w(q) if q ∈ V 0 and e(w, q) = 0 otherwise; I : FmΩn

→ [0, 1]
is defined as I(ϕ̂Ωn) = v(pϕ]). For the sake of simplicity, we will write ϕ̂ instead
of ϕ̂Ωn . Notice that Ωn is finite. In fact, V 0 is finite, and so there are only finitely
many functions from V 0 into {0, 1/n, . . . , n− 1/n, 1}. In order to prove that M is a
weak possibilistic Kripke model for N( L+

n ,R L) we just have to show that I is indeed
a possibilistic state:
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- If  L+
n ` ϕ ↔ ψ, then  L+

n ` ϕ] ↔ ψ], and so R L ` pϕ] ↔ pψ] . Obviously
I(ϕ̂) = I(ψ̂).

- Similarly, if  L+
n ` ϕ, then I(ϕ̂) = 1; and if  L+

n ` ϕ→ ψ, then I(ϕ̂) ≤ I(ψ̂).
- Since  L+

n ` ¬⊥, then R L ` ¬p⊥] , which means I(⊥̂) = 0.
- As an instance of axiom N2 we have pϕ∧ψ ↔ pϕ ∧ pψ. Then, it is easy to see that
I(ϕ̂ ∧ ψ̂) = min(I(ϕ̂), I(ψ̂)).

- Finally, from axiom N3, we get that pr⊕ψ ↔ r⊕ pψ, and consequently I(r̂⊕ ϕ̂) =
r̂ ⊕ I(ϕ̂).

Then we obtain that M is a finite weak possibilistic Kripke model for N( L+
n ,R L).

Moreover it is fairly easy to observe that M clearly is a model for Γ, but ‖Φ‖M < 1.
This ends the proof of the theorem.

We now proceed to prove completeness w.r.t. strong Kripke models.

Theorem 5.3
The logic N( L+

n ,R L) is finitely strongly complete with respect to the class of strong
possibilistic finite Kripke models.

Proof. Let M be the finite weak possibilistic model (Ωn, e, I) defined in the proof
of the previous theorem. Theorem 5.1 shows that I is indeed a possibilistic state over
the clan of  L+

n -evaluations over the formulas Fm(V 0). Since I(r̂ ⊕ ϕ̂) = r̂ ⊕ I(ϕ̂),
and since Ωn is finite, Theorem 3.3 ensures the existence of a normalized possibility
distribution π : Ωn → [0, 1] such that

I(ϕ̂) =
∧

w∈Ωn

¬π(w)⊕ ϕ̂(w).

Hence, N = 〈Ωn, e, π〉 is the desired strong (finite) model.

5.2 Pavelka-style and hyperreal completeness

From Theorem 5.1 it can be seen that completeness fails for deductions from infinite
theories. In fact, if Γ is an infinite modal theory such that Γ 6` Φ, then the propo-
sitional theory Γ] ∪ N ] is infinite as well, hence, since R L is not strongly standard
complete, the previous strategy does not allow us to define a weak (strong) possi-
bilistic model where Φ fails to be true. Also notice that, if we consider the logic
N(R L,R L), obtained replacing the finitely-valued logic  L+

n by the infinitely-valued
logic R L as the logic for the events6, then the translation ] defined in the proof of
Theorem 5.1, would lead to an infinite theory Γ] ∪N ], even if the modal theory Γ is
finite7.

This observation points out that, in order to recover a notion of strong completeness
for both N( L+

n ,R L), and N(R L,R L), we have to look for (possibly different) notions
of strong completeness for R L.

The first notion we are going to use is due to Hájek [15]. Whenever a logic L allows
the definition of rational truth constants in its language (as is the case of R L), it

6Where axiom (N3) is considered for every rational r ∈ [01] ∩ Q.
7This depends on the fact that the variety of DMV-algebras is not locally finite (cf. [6, 13]), then, if V 0 is a finite

set of variables, the Lindenbaum DMV-algebra Fm(V 0)/ ∼, is not finite.
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makes sense to consider completeness a la Pavelka. Let Γ be a (finite or countable)
theory of L, and let Φ be a formula. Then,

- the provability degree of Φ over Γ is defined as as

|Φ|Γ = sup{r ∈ [0, 1] ∩Q | Γ `L r → Φ},

- the truth degree of Φ over Γ is defined as as

‖Φ‖Γ = inf{v(Φ) | v is a model for Γ}.

If, for every theory Γ and every formula Φ, |Φ|Γ = ‖Φ‖Γ, then L is said to be Pavelka-
style complete. Clearly, Pavelka completeness is a strong completeness in the sense
that no restriction is imposed on the cardinality of Γ.

Gerla proved in [13] that the logic R L enjoys Pavelka-style completeness. From this
fact, and defining the truth degree of a modal formula Φ over a modal theory Γ by
means of weak possibilistic models, it is fairly easy to prove that:

Theorem 5.4
The logics N( L+

n ,R L) and N(R L,R L) are Pavelka-style complete w.r.t. weak possi-
bilistic models.

Proof. We display the proof for N( L+
n ,R L) only, since the case of N(R L,R L) is

analogous (cf. [10, Theorem 5.5.2]).
Let Γ ∪ {Φ} be an arbitrary modal theory of N( L+

n ,R L). Let Γ], N ] and Φ] be
obtained as in the proof of Theorem 5.1. Since R L enjoys Pavelka-style completeness,

|Φ]|Γ]∪N] = ‖Φ]‖Γ]∪N] .

Moreover it is easy to see (cf. (5.2)) that |Φ|Γ = |Φ]|Γ]∪N] , hence, to prove the claim,
it is sufficient to show that ‖Φ]‖Γ]∪N] = ‖Φ‖Γ. This follows from the fact that every
[0, 1]-model for Γ] ∪ N ] can be translated into a weak possibilistic model for Γ and
vice versa.

We introduce now a second notion of strong completeness for N( L+
n ,R L) and

N(R L,R L), namely a strong completeness with respect to weak possibilistic models.
A hyperreal weak possibilistic model is a structure (W, e, I∗) where:

• W and e are as in the above considered possibilistic Kripke models with the only
exception that, for the case of a model for N(R L,R L), e : W × V → [0, 1] is
such that, for each w ∈ W , e(w, ·) : V → [0, 1] is an evaluation of propositional
variables which extends to an R L-evaluation of (non-modal) formulas of Fm(V )
in the usual way.

• I∗ : FmW → [0, 1]∗DMV is a possibilistic state taking value in the DMV-algebra
[0, 1]∗DMV , the latter being a non trivial ultrapower of the standard DMV-algebra
[0, 1]DMV .

The main result which will allows us to show completeness of N( L+
n ,R L) and

N(R L,R L) with respect to the classes of hyperreal-valued weak possibilistic Kripke
models introduced above is the following:
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Lemma 5.5 ([11])
The logic R L is sound and strongly complete with respect to the class of DMV-algebras
defined as ultrapowers of [0, 1]DMV . In other words, if Γ∪ {φ} is an arbitrary theory
of R L such that Γ 6`R L ϕ, then there exists a non-trivial ultrapower [0, 1]∗DMV of
[0, 1]DMV and a evaluation v into [0, 1]∗DMV , such that v(γ) = 1 for all γ ∈ Γ, and
v(ϕ) < 1.

Theorem 5.6
The logics N( L+

n ,R L) and N(R L,R L) are strongly complete w.r.t. the related classes
of hyperreal weak possibilistic finite Kripke models.

Proof. The strong completeness of N( L+
n ,R L) with respect to hyperreal weak pos-

sibilistic models is easily provable using Lemma 5.5 and the proof of Theorem 5.1.
Therefore, if T ∪ {Φ} is a countable theory of N( L+

n ,R L) such that T 6`N Φ, let
M = (W, e, I∗) be a hyperreal weak possibilistic model such that ‖T‖M = 1, and
‖Φ‖M < 1.

The case of N(R L,R L) is analogous and left to the reader.

6 The logic QN( L+
n , R L)

In the two previous sections we have been concerned with the logic N( L+
n ,R L) which

captures reasoning about possibilistic states of type (E1). In this section we turn
our attention to a logic to reason about possibilistic states of the type (E2), directly
related to Sugeno integrals. Therefore, we introduce the logic QN( L+

n ,R L), where
Q stands for qualitative, whose axioms are those of  L+

n for non-modal formulas, the
axioms of R L for modal formulas, plus the following possibilistic state related axioms:

(K) N(ϕ→ ψ) → (Nϕ→ Nψ)
(N1) ¬N⊥
(N2) N(ϕ ∧ ψ) ↔ (Nϕ ∧Nψ)

(QN3) N(r ∨ ψ) ↔ r ∨Nψ, for each r ∈ {0, 1/n, . . . , (n− 1)/n, 1}

The rules of inference are modus ponens (for modal and non-modal formulas) and
necessitation, i.e., from from ϕ derive Nϕ.

It is worth pointing out that the most relevant differences between QN( L+
n ,R L)

and N( L+
n ,R L) are the axiom (QN3) (that differs from (N3)) and the axiom (K)

(from which the monotonicity rule is now derivable)8. Nevertheless, the analogy
with N( L+

n ,R L) is evident. For this reason, we will merely outline the Kripke-based
semantics for QN( L+

n ,R L) and formulate completeness results without proofs, that
can be easily retrieved by following the same argument carried out for N( L+

n ,R L).
The semantics of QN( L+

n ,R L) is given by corresponding weak and strong pos-
sibilistic Kripke models. A weak q-possibilistic Kripke model (or weak model) for
QN( L+

n ,R L) is a system M = 〈W, e, I〉 where:

• W , e are as in the possibilistic models of N( L+
n ,R L)

• I : FmW → [0, 1] is a possibilistic state over the clan FmW = {ϕ̂W | ϕ ∈ Fm(V )}
which further satisfies:

8Notice that the axiom K it is sound under the QN( L+
n , R L) semantics (see [17, Lemma 5.1]), while, as shown

above, it is not sound under the N( L+
n , R L) semantics.
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– I(r̂W ∨ ψ̂W ) = max(r, I(ψ̂W )).

A strong q-possibilistic Kripke model is a system N = (W, e, π) where W and e are
defined as in the case of a weak possibilistic Kripke model and π is a possibility dis-
tribution on W , i.e. π : W → {0, 1/n, .., 1} satisfying maxw∈W π(w) = 1. Evaluations
of formulas of N( L+

n ,R L) in a strong possibilistic Kripke model N are defined as in
the case of weak models except for the case of atomic modal formulas, i.e.:

• if Φ is an atomic modal formula N(ψ), then

‖Nψ‖N = inf
w∈W

max(1− π(w), e(w,ψ)).

Following the strategy adopted for N( L+
n ,R L), we can prove:

Theorem 6.1
The logic QN( L+

n ,R L) is sound and finitely strongly complete with respect to the class
of weak and strong q-possibilistic (finite) Kripke models. Moreover, QN( L+

n ,R L) is
Pavelka-style compete and sound and strongly complete w.r.t. the class of hyperreal
weak q-possibilistic models.

7 Complexity issues

In this section we will provide results concerning the complexity of the set of theorems
and of satisfiable formulas of N( L+

n ,R L) and QN( L+
n ,R L). First of all, we need to

recall some definitions and preliminary results.
Let A be a rational matrix having m rows and n columns, b be a rational column

vector, c be a rational row vector, and d be a rational number. The tuple (A, b, c, d)
is said to be a particular LP-problem whose size is the number of bits necessary to
represent all those rationals as fractions of dyadic numbers. The general LP-problem
reads: given any particular LP-problem (A, b, c, d), does the system Ax ≤ b, cx > d
have a solution?, i.e. is there a vector x = (x1, . . . , xn) such that

∑n
k=1 alkxk ≤ bk

for each l, and
∑n
k=1 ckxk > d? As proved in [20], the general LP-problem is in NP.

A particular MIP-problem (MIP-problem for short) is a tuple (A, b, c, d, k) where
(A, b, c, d) is a particular LP-problem and k represents the additional condition saying
that xk, . . . , xn must be Boolean (zeros or ones).

Lemma 7.1 ([15])
Any MIP problem is NP-complete.

Definition 7.2
Let Φ be a modal formula in the language of N( L+

n ,R L) (QN( L+
n ,R L) respectively).

Then Φ is said to be:

• satisfiable if there is a weak (strong) possibilistic model M such that ‖Φ‖M = 1;
• (<1)-satisfiable if there is a weak (strong) possibilistic modelM such that ‖Φ‖M <

1;

Of course the previous definition applies to any logic whose semantics is based on (a
subset) of the unit interval [0, 1].
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In [13], Gerla showed that the problem of checking if a formula ϕ of R L is either
satisfiable or (<1)-satisfiable is in NP, since it can be reduced to the solvability of a
MIP-problem.

Lemma 7.3
Let Φ be a formula of N( Ln,R L) (QN( L+

n ,R L) respectively). Then:

(1) Φ is satisfiable in a strong (weak) possibilistic model iff Φ is satisfied by a finite
weak (strong) possibilistic model.

(2) Φ is (<1)-satisfiable in a weak (strong) possibilistic model iff Φ is (<1)-satisfied
in a finite weak (strong) possibilistic model.

Proof. (1). One direction is trivially true. In order to prove the other one, let Φ be
a formula of N( Ln,R L), and let M′ = (W ′, e′, π′) be a strong model which satisfies
Φ. Let V 0 be the finite set of propositional variables occurring in Φ. Now, let W
be the finite set of all the functions form V 0 into {0, 1/n, . . . , (n − 1)/n, 1}. Define
e : W × V → {0, 1/n, . . . , (n− 1)/n, 1} as e(w, p) = w(p), if p ∈ V 0, and 0 otherwise.
Let [w]V0 = {w′ ∈ W ′ | ∀p ∈ V 0, e(w, p) = e′(w′, p)}. Finally, let π : W → [0, 1] be
defined as follows: for all w ∈W ,

π(w) = max{π′(w′) | w′ ∈ [w]V0}.

Call M = (W, e, π) the finite model so defined. Then, the claim is that for each modal
formula Ψ whose underlying set of propositional variables is in V0, ‖Ψ‖M′ = ‖Ψ‖M.
Actually, we have to show the claim for atomic modal formulas, the case of R L
connectives being easy.

Let hence Ψ = Nγ where γ is built from variables in V0. Then, noting that
e(w, γ) = e′(w′, γ) for all w′ ∈ [w]V0 , the claim follows observing that

‖Nγ‖M′ = inf
w∈W

¬π(w)⊕ e(w, γ) = inf
w∈W

(
inf

w′∈[w]V0

¬π′(w′)⊕ e(w′, γ)
)

= ‖Nγ‖M

holds just using the definition of π. Thus, in particular, ‖Φ‖M′ = ‖Φ‖M, and hence
M |= φ, and the item (1) is settled for strong models.

As for weak models, (1) easily follows considering the (finite) weak model definable
from (W, e, π).

(2). If Φ is (<1)-satisfiable, then it is easy to see that there exists a t ∈ N such that
Φ → 1− 1/t is satisfiable, and, from (1) there exists a finite model which satisfies
Φ → 1− 1/t.

The proofs for QN( L+
n ,R L) are analogous.

The following is a well-known result of linear programming (see for instance [20])
that will be needed in the rest of the section.

Lemma 7.4
If a system of s linear equalities and/or inequalities has a non-negative solution, then
it has a non-negative solution with at most s+ 1 positive entries.

Now we are ready to prove that the sets of satisfiable and (<1)-satisfiable formulas
of N( L+

n ,R L) and QN( L+
n ,R L) are NP-complete.
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Theorem 7.5
The sets of satisfiable formulas, and (<1)-satisfiable formulas of N( L+

n ,R L) and
QN( L+

n ,R L) are NP-complete.

Proof. We will follow the lines of [16, Theorem 2.1].
We begin with N( L+

n ,R L). Let Φ(Nψ1, . . . , Nψk) be a formula in N( L+
n ,R L). A

formula of R L is obtained whenever any Nψi in Φ(Nψ1, . . . , Nψk) is replaced by a
new propositional variable pi. Therefore, the set of satisfiable R L formulas can be
reduced to the set of satisfiable formulas of N( L+

n ,R L). This shows that our problem
is NP-hard.

So as to show NP-completeness, consider the following NP-algorithm. As above,
let Φ(p1, . . . , pk) be the R L-formula obtained by replacing every Φ-subformula of the
form Nψi by pi. Call MIP (1) the MIP-problem associated to the satisfiability of
Φ(p1, . . . , pk) in R L.

Among all the variables occurring in MIP (1), let z1, . . . , zk be those associated to
the propositional variables p1, . . . , pk.

From Lemma 7.3 (and keeping the same notation), we must get values π(w), for
w ∈ {0, 1/n, . . . , (n − 1)/n, 1}V 0

, and by Theorem 3.3 we have to require that π(w)
satisfies:

max
w

π(w) = 1,

and for all i = 1, . . . k
zi = min

w
¬π(w)⊕ w(ψi).

The above conditions define a system of k + 1 linear equations in {0, 1/n, . . . , (n −
1)/n, 1}V 0

variables, which, by Lemma 7.4, admits a positive solution iff they have
a solution with at most k + 2 positive entries. This allows us to keep the size of the
problem polynomial. In fact now, guess k+ 1 mutually different vectors w1, . . . , wk+1

in {0, 1/n, . . . , (n − 1)/n, 1}V 0
, then compute the values αi,j = wj(ψi)9 (for every

i = 1, . . . k, and every j = 1, . . . , k + 1), and finally define k + 2 equations:

k+1
max
j=1

π(wj) = 1,

and for all i = 1, . . . k,

zi =
k+1
min
j=1

¬π(wj)⊕ αi,j .

Call MIP (2) the MIP-problem defined by adding to MIP (1) the above conditions.
Then Φ is satisfiable iff MIP (2) admits a solution.

From the above, we can conclude that the set of satisfiable formlas of N( L+
n ,R L) is

NP-hard, is in NP, and so it is NP-complete.

As for (<1)-satisfiable formulas, the claim follows replacing, in the above algorithm,
MIP (1) by the NP-algorithm checking if an R L-formula is (<1)-satisfiable (see [13]).

As for QN( L+
n ,R L), notice that the proof is very similar, with the difference that

the condition to be satisfied by the variables zi is for all i = 1, . . . k

zi = min
w

max(¬π(w), w(ψi)).

9These values can be computed in polynomial time in the length of Φ (see [16])
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This ends the proof of the theorem.

The following corollary can be immediately obtained observing that a formula Φ is
a theorem of N( L+

n ,R L) (QN( L+
n ,R L) respectively) iff Φ is not (<1)-satisfiable.

Corollary 7.6
The sets of theorems of N( L+

n ,R L) and QN( L+
n ,R L) are both co-NP-complete.

8 Final remarks

In this work we have focused both on a measure-theoretic and on a logical study of
possible notions of possibilistic states over MV-algebras that generalize the notion of
possibility and necessity measures commonly defined over Boolean algebras of events.

The approach adopted in this paper (and in [12]) can be followed in order to
study suitable notions of measures over algebras of events which are generalizations
of Boolean algebras.

In our future work we plan to investigate the logic of possibilistic states over events
associated to the infinitely-valued  Lukasiewicz logic. In fact, the problem of estab-
lishing completeness for this logic, with respect to the intended standard semantics,
remains open.
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