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Abstract

By a symmetric residuated lattice we understand an algebra A =
(A,∨,∧, ∗,→,∼, 1, 0) such that (A,∨,∧, ∗,→, 1, 0) is a commutative in-
tegral bounded residuated lattice and the equations ∼∼ x = x and
∼ (x ∨ y) =∼ x∧ ∼ y are satisfied. The aim of the paper is to in-
vestigate properties of the unary operation ε defined by the prescription
εx :=∼ x → 0. We give necessary and sufficient conditions for ε being
an interior operator. Since these conditions are rather restrictive (for in-
stance, on a symmetric Heyting algebra ε is an interior operator if and
only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider
when an iteration of ε is an interior operator. In particular we consider
the chain of varieties of symmetric residuated lattices such that the n
iteration of ε is a boolean interior operator. For instance, we show that
these varieties are semisimple. When n = 1, we obtain the variety of
symmetric stonean residuated lattices. We also characterize the subva-
rieties admitting representations as subdirect products of chains. These
results generalize and in many cases also simplify, results existing in the
literature.
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Introduction
Heyting algebras endowed with an involution were introduced by Moisil in 1942
[23], as the algebraic models of an expansion of intuitionistic propositional cal-
culus by means of a De Morgan negation. These algebras have been extensively
investigated by A. A. Monteiro under the name of symmetric Heyting algebras
[25]. They were also considered by Sankappanavar [26], independently of the
previous work. In [12], Esteva, Godo, Hájek and Navara, also independently
of previous work, considered pseudocomplemented BL-algebras with an added

∗The research communicated in this paper was partially supported by a bilateral Argen-
tinean - Spanish project CONICET - CSIC.
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involution. This line of research was continued in [10], where subvarieties of
pseudocomplemented BL-algebras with involution were introduced, and in [14],
where the more general case of MTL-algebras was considered.

As Heyting algebras, Bl-algebras and MTL-algebras were introduced as al-
gebraic counterparts of logical systems (see §1 for details), and the three form
subvarieties of the variety BRL of commutative integral bounded residuated lat-
tices, or residuated lattices, for short. Residuated lattices were introduced in the
nineteen thirties as models of the divisibility properties of ideals in commutative
rings, and recently acquired importance as the algebraic counterparts of certain
substructural and fuzzy logics [16, 18, 13].

In all the papers referred to above, but [26], the introduction of the involution
had strong logical motivations. Moisil [23] considered that εx :=∼ x → 0 could
be interpreted as a modal operator of necessity, where ∼ denotes the added
involution and → denotes the intuitionistic implication. In [12], an involution
is introduced on pseudocomplemented BL-algebras in order to define a dual
multiplicative disjunction since the defined negation is very weak (what is called
a Gödel negation in fuzzy logic literature). An involutive pseudocomplemented
BL-algebra is defined as a pseudocomplemented BL-algebra A equipped with an
order-reversing involution ∼ such that εx (where now → means the implication
operation in BL-algebras) satisfy certain equations. In particular it is required
that εx be complemented for all x ∈ A. It follows that ε is an interior operator.
Remarkably, this coincides with Moisil’s interpretation of ε as a modal necessity,
i. e., an interior operator from the algebraic point of view. In [14] the involution
is added to MTL4-algebras, that is, MTL-algebras already equipped with a
complemented interior operator 4.

The aim of this paper is to investigate the operator ε in residuated lattices.
Our approach is algebraic. Since varieties of residuated lattices correspond to
axiomatic extensions of some substructural and fuzzy logics, our results have
logical interpretations that we are not going to discuss in this paper.

After the introduction and preliminaries on residuated lattices, in Section
2 we define the variety of symmetric residuated lattices and the ε operator.
We investigate congruences and conditions for ε being an interior operator. In
Section 3 we consider interior operators obtained by iterating ε. In particular
we consider the chain of varieties of symmetric residuated lattices such that
the n iteration of ε is a boolean interior operator. For instance, we show that
these varieties are semisimple. When n = 1, we obtain the variety of symmetric
stonean residuated lattices. We also characterize the subvarieties admitting
representations as subdirect products of chains.

These results generalize and in many cases also simplify results given in the
papers [25, 12].
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1 Preliminaries

1.1 Residuated lattices
Recall that an integral residuated lattice-ordered commutative monoid, or resid-
uated lattice for short, is an algebra A = (A,∨,∧, ∗,→, 1) of type (2, 2, 2, 2, 0)
such that 〈A, ∗, 1〉 is a commutative monoid, 〈A,∨,∧, 1〉 is a lattice with greatest
element 1, and the following residuation condition holds:

(1.1) x ∗ y ≤ z if and only if x ≤ y → z,

where x, y, z denote arbitrary elements of A and ≤ is the order given by the
lattice structure.

Although we are assuming familiarity with the theory of residuated lattices,
as developed, for instance in [20, 22]1, we list some well known properties for
further reference.

Under the assumption of integrality (which means that the neutral element
of the monoid reduct coincide with the greatest element of A) one has that

(1.2) x ≤ y if and only if x → y = 1,

(1.3) x ∗ y ≤ x ∧ y,

(1.4) if x ≤ y, then x ∗ z ≤ y ∗ z, y → z ≤ x → z and z → x ≤ z → y,

(1.5) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z).

Residuated lattices form a variety. Indeed, the residuation condition can be
replaced by the following identities (see [22]):

RL1 (x ∗ y) → z = x → (y → z),

RL2 (x ∗ (x → y)) ∨ y = y,

RL3 (x ∧ y) → y = 1.

A bounded residuated lattice is a residuated lattice A equipped with a con-
stant 0 that is the bottom of the lattice. In this case, 0 turns to be an absorbent
element for ∗, and a derived unary operation ¬ is defined by ¬ x = x → 0. As
usual this operation is called the negation operation. It is well known, and easy
to prove, that the following equation holds in bounded residuated lattices:

(1.6) ¬ (x ∨ y) = ¬ x ∧ ¬ y,

1Our main reference for residuated latices will be [22] because some of the results in the
mentioned paper can not be found in the recent book [16].
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(1.7) x ≤ ¬¬ x,

(1.8) ¬¬¬ x = ¬ x.

By a residuated chain (bounded residuated chain) we understand a residu-
ated lattice (bounded residuated lattice) A whose natural order is total, i. e.,
given x, y ∈ A, x ≤ y or y ≤ x.

Recall that a t-norm is a binary operation ∗ on the real segment [0, 1] which is
associative, commutative, order preserving and satisfying 1∗x = x and 0∗x = 0
for each x ∈ [0, 1]. With each t-norm we can associate a binary operation →
defined as follows:

x → y := sup{z ∈ [0, 1] : z ∗ x ≤ y}.

It is well known (see, for instance, [3]) that ∗ and → satisfy the residuation
condition (1.1) if and only if ∗ is left continuous with respect to the first variable
(and the usual topology of [0, 1]).

Thus left-continuous t-norms on the real segment [0, 1] with its usual order
provide examples of bounded residuated chains. They generate the subvariety
MTL of BRL, that provides the algebraic models of monoidal t- norm based
logic [11, 21]. The subvariety MTL is characterized by the following prelinear
equation:

(1.9) (x → y) ∨ (y → x) = 1.

This implies that a bounded residuated lattice A belongs to MTL if and only
if A is a subdirect product of bounded residuated chains [11]. The elements of
MTL are called MTL-algebras.

The subvariety BL of MTL generated by the continuous t-norms is charac-
terized by the following divisibility equation

(1.10) x ∧ y = x ∗ (x → y)

[7, 11] and has been extensively considered in Hájek’s monograph [18]. The
elements of BL are called BL-algebras.

The subvariety G of BL characterized by the equation x ∗ x = x coincide
with the variety of Heyting algebras satisfying the prelinearity equation (1.9).
The algebras in G are called linear Heyting algebras in [25]. Following the
nomenclature of [18], we shall call them Gödel algebras.

A bounded residuated lattice is called involutive (or integral, commutative
Girard monoid [20]) when its negation ¬ is involutive, i. e., when the following
equation holds:

x = ¬¬ x = (x → 0) → 0.

MV-algebras, the algebras of Łukasiewicz infinite-valued logic, coincide with
the involutive BL-algebras (see, for instance, [18]). The subvariety of BL formed
by the MV-algebras will be denoted by MV.
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By a (weak) negation on [0, 1] we understand a function neg : [0, 1] → [0, 1]
that is order reversing and satisfies neg(1) = 0 and x ≤ neg(neg(x)) for all
x ∈ [0, 1]. Given a negation neg, define the following binary operation on [0, 1]:

x ∗ y =

{
x ∧ y if x > neg(y),
0 if x ≤ neg(y).

It follows from [8, Theorem 2 (i)] that ∗ is a left-continuous t-norm such that
¬ x = x → 0 = neg(x) for all x ∈ [0, 1], where → is the residual of ∗. The
real segment [0, 1] with the bounded residuated lattice determined by this left-
continuous t-norm, is the standard WNM-algebra determined by the negation
neg [11].

Remark 1.1 Let A be a bounded residuated lattice. If x ∧ ¬ x = 0, then ¬ x
is the pseudocomplement of x as a lattice: y ∧ x = 0 if and only if y ≤ ¬ x.
Indeed, suppose y ∧ x = 0. Then by (1.3), y ∗ x = 0, and since ¬ x = x → 0, we
have y ≤ ¬ x. This justifies to call pseudocomplemented residuated lattices the
bounded residuated lattices satisfying x ∧ ¬ x = 0.

The variety of pseudocomplemented residuated lattices will be denoted by
PRL.

An implicative filter or i-filter of a residuated lattice A is a subset F ⊆ A
satisfying the following conditions: F1: 1 ∈ F ; F2: If x ∈ F and x ≤ y, then
y ∈ F ; F3: If x, y are in F , then x ∗ y ∈ F . Alternatively, an implicative filter
can be defined by properties F1 and F4: If x ∈ F and x → y ∈ F , then y ∈ F .
An implicative filter is proper if F 6= A, i. e., if 0 6∈ F . We quote, for further
reference, the following well known result (see, for instance, [22]).

Theorem 1.2 Let A ∈ RL. Then one has:

(i) For each congruence ϑ of A, the set F (ϑ) := {x ∈ A : (x, 1) ∈ ϑ} is an
i-filter.

(ii) For each i-filter G of A, the binary relation θ(G) defined by (x, y) ∈ θ(G)
if and only if x → y ∈ G and y → x ∈ G is a congruence of A.

(iii) For each i-filter G, G = F (θ(G)), and for each congruence ϑ, ϑ = θ(F (θ)).
�

We shall write A/F to denote the quotient algebra A/θ(F ), and x/F to denote
the equivalence class of an element x ∈ A.

Recall that an element x of a bounded lattice L is complemented if there is
an element y such that x∨y = 1 and x∧y = 0. Such an y is called a complement
of x. The set of complemented elements of L will be denoted by B(L). The
following results are borrowed from [22, pp. 10–12].

Lemma 1.3 The following properties are true in every bounded residuated lat-
tice A:
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(i) If x ∈ A has a complement, the complement must coincide with ¬ x,

(ii) B(A) = {x ∈ A : ¬ z ∨ z = 1},

(iii) If z ∈ B(A), then for each x ∈ A, x ∗ z = x ∧ z,

(iv) B(A) is the universe of a subalgebra of A, which is a Boolean algebra that
we shall denote by B(A).

A stonean filter of a bounded distributive lattice L is a filter F generated
by the complemented elements of L: x ∈ F if and only if there is z ∈ F ∩B(L)
such that z ≤ x.

Since x ∗ y ≤ x∧ y it follows that i-filters are lattice filters, but the converse
is not true in general. The next result is well known. We offer a proof for
completeness.

Lemma 1.4 Every stonean filter F of a bounded residuated lattice A is an i-
filter of A, and (x, y) ∈ θ(F ) if and only if there is z ∈ F ∩ B(A) such that
z ∧ x = z ∧ y.

Proof: Since F satisfies F1 and F2, we need to show F3. Suppose x, y ∈ F .
Then there are v, w ∈ B(A) ∩ F such that v ≤ x, w ≤ y, and then x ∗ y ≥
v ∗ w = v ∧ w ∈ F . Hence, by F2, x ∗ y ∈ F and F3 is satisfied. Suppose there
is z ∈ B(A) ∩ F such that z ∧ x = z ∧ y. By (iii) in Lemma 1.3, we have that
z ∗ x ≤ y, hence z → (x → y) = 1 ∈ F , hence x → y ∈ F . Interchanging x
and y we also obtain that y → x ∈ F . Therefore (x, y) ∈ θ(F ). Suppose now
that (x, y) ∈ θ(F ). Then there are u, v ∈ B(A) ∩ F such that u ≤ x → y and
v ≤ y → x. Hence z = u ∧ v ∈ B(A) ∩ F , and by (iii) in Lemma 1.3 we have
x ∧ z ≤ x ∗ (x → y) ≤ y and y ∧ z ≤ y ∗ (y → x) ≤ x, and these inequalities
imply that z ∧ x = z ∧ y. �

1.2 Stonean residuated lattices
A Stonean residuated lattice is a bounded residuated lattice satisfying the Stone
equation

(1.11) ¬ x ∨ ¬¬ x = 1.

Lemma 1.5 Each stonean residuated lattice is pseudocomplemented.

Proof: Since A is stonean, ¬x ∨ ¬¬ x = 1. Then by (1.6) and (1.8)

0 = ¬1 = ¬(¬ x ∨ ¬¬ x) = ¬¬¬ x ∧ ¬¬ x = ¬ x ∧ ¬¬ x,

and now, by (1.7) ¬ x ∧ x ≤ ¬ x ∧ ¬¬ x = 0. �

The following construction provides plenty of examples of stonean residuated
lattices. Let L be an arbitrary bounded lattice, and let L′ be the lattice obtained
by adding a new top element > to L. Then L′ becomes a residuated lattice if
we define the opeartion ∗ as x ∗ y = 0 if x, y ∈ L, and > ∗ x = x ∗ > = x for
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all x ∈ L ∪ {>}. If we add a new bottom ⊥ to L′, then it becomes a stonean
residuated lattice if we extend the definition of ∗ by setting x ∗ ⊥ = ⊥ ∗ x = ⊥
for all x ∈ {⊥} ∪ L′. In particular, this shows that stonean residuated lattices
do not need to satisfy any lattice equation, like distributivity or modularity.

It is known that in a distributive residuated lattice, equation (1.11) is equiv-
alent to the following

(1.12) ¬ (x ∧ y) = ¬ x ∨ ¬ y

(see, for instance, [2, VIII. 7. Theorem 1]). The next lemma shows that for
residuated lattices, (1.11) implies (1.12) without assuming the distributivity of
the underlying lattice.

Lemma 1.6 A stonean residuated lattice A satisfies equation (1.12).

Proof: Observe first that by (1.5), for any pair of elements of a residuated lattice
we have (x∧ y)∗ (¬ x∨¬ y) = ((x∧ y)∗¬ x)∨ ((x∧ y)∗¬ y) = 0. Suppose that
A is a stonean residuated lattice and take x, y, z ∈ A such that z ∗ (x ∧ y) = 0.
Then z ≤ ¬ (x ∧ y) and by Lemma 1.5, z ∧ (x ∧ y) = 0. Hence taking into
account Remark 1.1, we have that z ∧ x ≤ ¬ y, and then z ∧ x ∧ ¬¬ y = 0,
i. e., z ∧ ¬¬ y ≤ ¬ x. Hence, taking into account (iii) of Lemma 1.3, we have
z = z∗1 = z∗(¬ y∨¬¬ y) = (z∗¬ y)∨(z∗¬¬ y) = (z∧¬ y)∨(z∧¬¬ y) ≤ ¬ y∨¬ x.
This completes the proof. �

Theorem 1.7 The following are equivalent conditions for a bounded (integral,
commutative) residuated lattice A:

(i) A is stonean,

(ii) A ∈ PRL and satisfies equation (1.12),

(iii) B(A) ⊇ ¬(A) := {¬ x : x ∈ A}.

Proof: In a bounded residuated lattice satisfying x∧¬ x = 0, (1.12) implies the
Stone identity. Indeed: 1 = ¬ 0 = ¬ (x ∧ ¬ x) = ¬ x ∨ ¬¬ x. Hence it follows
from Lemmas 1.5 and 1.6 that (i) and (ii) are equivalent. It follows from (i) in
Theorem 1.3 that ¬ x is complemented if and only if ¬ x∨¬¬ x = 1. Hence (i)
and (iii) are equivalent. �

Lemma 1.8 Let C be a bounded residuated chain. Then C is pseudocomplented
if and only if C is stonean.

Proof: If A is pseudocomplemented, then by Remark 1.1 we have that ¬x = 0
for each x > 0, therefore ¬¬ x = 1 for each x > 0, and this obviously imply that
A is stonean. Conversely, if A is stonean, then by Lemma 1.5 x ∧ ¬ x = 0. �

Remark 1.9 Since MTL-algebras are subdirect product of bounded residuated
chains, it follows that a MTL-algebra A is stonean if and only if it is pseudo-
complemented. Consequently, the variety of stonean MTL-algebras coincides
with the variety SMTL as defined in [11].
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Let A be the boolean algebra with two atoms with a new top element added.
It is an example of a Heyting algebra (and hence, a pseudocomplemented resid-
uated lattice) which is not stonean.

2 Symmetric residuated lattices
Following the nomenclature introduced by A. A. Monteiro for the case of Heyting
algebras (see [25]), by a symmetric residuated lattice we shall understand a
bounded residuated lattice A equipped with an unary operation ∼ satisfying
the following conditions:

M1 ∼∼ x = x,

M2 ∼ (x ∨ y) =∼ x∧ ∼ y,

M3 ∼ (x ∧ y) =∼ x∨ ∼ y.

We shall denote by SRL the variety of symmetric residuated lattices.
Each involutive residuated lattice A becomes a symmetric residuated lattice

if we define ∼ x = ¬x = x → 0 for all x ∈ A. The symmetric residuated lattice
so obtained will be denoted by A∼.

For every A ∈ SRL, define, for each x ∈ A,

(2.13) εx := ¬ ∼ x,

and

(2.14) K(A) := {x ∈ A : ¬ x = ∼ x}.

We shall denote by SPRL the variety of symmetric pseudocomplemented
residuated lattices.

Lemma 2.1 The following properties hold in every A ∈ SPRL, where x, y de-
note arbitrary elements of A:

(i) x ∨ ∼ εx = 1,

(ii) ε(x → y) ≤ ∼ y → ∼ x.

Proof: Since ∼ x ∧ εx = 0, (i) follows from M1 and M3. To prove (ii), note
that ∼ ε(x → y) ≤ x →∼ ε(x → y). Hence by (i) and (1.4):

1 = (x → y) ∨ (x →∼ ε(x → y) ≤ x → (y ∨ ∼ ε(x → y)).

Therefore taking into account (1.2), (1.4) and M2, we have:

x ≤ y ∨ ∼ ε(x → y) =∼ (∼ y ∧ ε(x → y) ≤∼ (∼ y ∗ ε(x → y)).

Consequently ∼ y ∗ ε(x → y) ≤∼ x, and (ii) follows from (1.1). �
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By an ε-filter of a symmetric residuated lattice A we understand an i-filter
F of A which is closed under ε: x ∈ F implies εx ∈ F .

The next theorem is an immediate consequence of Theorem 1.2 and Lemma 2.1,
and it generalizes [25, Théorème 4.11].

Theorem 2.2 Let A ∈ SRL. Then:

(i) For each congruence ϑ of A, F (ϑ) is an ε-filter, and ϑ = θ(F (ϑ)).

(ii) If A ∈ SPRL, then for each ε-filter G of A, θ(G) is a congruence of A,
and G = F (θ(G)). �

Note that the condition that A be pseudocomplemented is sufficient for the
validity of (ii) in the above theorem, but it is not necessary. As a trivial example,
take any involutive residuated lattice A which is not a boolean algebra. Then
A is not pseudocomplemented, and in A∼ ε-filters and i-filters coincide.

A symmetric residuated lattice is called normal (cf [23, 25]) provided it
satisfies the following equation:

(2.15) ¬ x = ¬ x∧ ∼ x.

Notice that A ∈ SRL is normal if and only if εx ≤ x for all x ∈ A.
The variety of normal symmetric residuated lattices will be denoted by

NSRL.

Recall that a Kleene algebra [2, 25] is a distributive lattice equipped with a
unary operation ∼ satisfying equations M1, M2 , M3 and

(2.16) ∼ x ∧ x = (∼ x ∧ x) ∧ (∼ y ∨ y).

It was shown in [6, Lemma 1.1] that in a Kleene algebra, x ∧ y = 0 implies
y ≤ ∼ x. Then we have the following generalization of a result of A. Monteiro
for symmetric Heyting algebras [25, Chap. III, Cor. 6.2]:

Proposition 2.3 All symmetric pseudocomplemented residuated distributive lat-
tices satisfying (2.16) are normal.

In [25, Pages 89–90] an example is given of a normal symmetric Heyting
algebra which does not satisfy (2.16).

Since all symmetric pseudocomplemented chains satisfy the distributivity
equation and equation (2.16), we have:

Corollary 2.4 All subdirect products of symmetric pseudocomplemented resid-
uated chains are Kleene algebras, and therefore normal.

We shall return to the relations between Kleene and normality conditions in
Corollary 3.13.

Lemma 2.5 The following properties hold for every A ∈ NSRL:
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(i) If x ∈ K(A), then ¬¬ x = x,

(ii) K(A) is closed under ¬ and ∼,

(iii) {x ∈ A : εx = x} = K(A),

(iv) B(A) ⊆ K(A) ⊆ ¬(A),

Proof: Taking into account normality, ∼ x = ¬ x implies ¬¬ x = ¬ ∼ x ≤ x,
and since x ≤ ¬¬ x, we have (i). Notice that by (i), ¬ x = ∼ x implies

(2.17) ∼∼ x = x = ¬¬ x = ¬ ∼ x

and ¬¬ x = x = ∼∼ x = ∼ ¬ x. Hence ∼ x and ¬ x both belong to K(A),
and (ii) is proved. It follows from (2.17) that ¬x = ∼ x implies εx = x. On
the other hand, if εx = x, then ¬ ∼ x = x =∼∼ x. Hence ∼ x ∈ K(A), and
by (ii), x ∈ K(A), and the proof of (iii) is completed. Suppose that z ∈ B(A).
Then 1 = ¬ z ∨ z ≤∼ z ∨ z, and by M1 and M2, we also have z∧ ∼ z = 0.
Hence ∼ z is a complement of z, and from (i) in Lemma 1.3 we can conclude
that B(A) ⊆ K(A). Finally, the inclusion K(A) ⊆ ¬(A) is an immediate
consequence of (i). �

Lemma 2.6 Let A be a normal symmetric residuated lattice. If {xi}i∈I is a
family of elements of A such that

∧
i∈I xi exists in A, then

∧
i∈I εxi also exists,

and
ε(
∧
i∈I

xi) =
∧
i∈I

εxi.

Proof: Let x =
∧

i∈I xi. Then ∼ x =
∨

i∈I ∼ xi, and εx = ¬
∨

i∈I ∼ xi =∧
i∈I ¬ ∼ xi =

∧
i∈I εxi. �

As a particular case of the above lemma, we have that ε(x ∧ y) = εx ∧ εy.
This implies that K(A) is closed under ∧, and by M2 and (ii) in Lemma 2.5,
K(A) is also closed under ∨. Summing up, we have:

Theorem 2.7 For each A ∈ NSRL, K(A) is a sublattice of A, closed under ∼
and ¬. Moreover ¬¬ z = z for all z ∈ K(A). �

Let P = (P,≤) be a poset. A subset S ⊆ P is called upper relatively complete
provided that for each x ∈ P , {s ∈ S : s ≤ x} has a greatest element.

By an interior operator on a bounded lattice L we understand a function
I : L → L satisfying the conditions I1: I 1 = 1, I2: Ix ≤ x, I3: I(x∧y) = Ix∧Iy,
I4: IIx = Ix, where x, y denote arbitrary elements of L.

The following result, that we quote for further reference, is well known (see,
for instance, [2]).

Lemma 2.8 Let L be a bounded lattice. If I is an interior operator on L, then
x ∈ I(L) if and only if Ix = x, I(L) is an upper relatively complete sublattice
of L and for each x ∈ L, Ix is the greatest element in {z ∈ I(L) : z ≤ x}.
Conversely, given an upper relatively complete sublattice S of L, the prescription
ISx = max({s ∈ S : s ≤ x}) defines an interior operator on L, such that
IS(L) = S. �
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Theorem 2.9 The following are equivalent conditions for every A ∈ NSRL:

(i) ε is an interior operator on A,

(ii) the equation εεx = εx holds in A,

(iii) the equation ε(¬ x) = ¬ x holds in A,

(iv) K(A) = ¬(A).

Proof: Clearly ε satisfies condition I1, I2 (normality) and I3 ( Lemma 2.6).
Therefore (i) and (ii) are equivalent conditions. Interchanging x and ∼ x we
obtain the equivalence between (ii) and (iii), and taking into account (iv) of
Lemma 2.5 we obtain the equivalence between (iii) and (iv). �

Clearly symmetric residuated lattices such that ε is an interior operator form
a subvariety of NSRL that we shall denote by INT.

The following result is an immediate consequence of (iv) of the above theo-
rem.

Corollary 2.10 If A is an involutive bounded residuated lattice and ∼ is an
involution on A such that A∼ ∈ INT, then ∼ = ¬, and ε is the identity. �

The above corollary applies in particular to MV-algebras. We shall denote
by MV∼ the subvariety of INT formed by the symmetric MV-algebras such that
the involution ∼ coincides with the MV-negation ¬.

Corollary 2.11 Let A ∈ NSPRL. Then A ∈ INT if and only if A is stonean.

Proof: If A is stonean, then by (iii) in Theorem 1.7, B(A) ⊇ ¬(A), hence by
(iv) in Lemma 2.5 we have K(A) = ¬(A). Therefore (iv) in Theorem 2.9 implies
that ε is an interior operator. Conversely, suppose that ε is an interior operator
and let x ∈ A. Taking into account M2, (ii) in Lemma 2.5 and (iv) in Lemma 2.5
we have:

1 =∼ (¬x ∧ ¬¬x) =∼ ¬x∨ ∼ ¬¬x = ¬¬x ∨ ¬¬¬x = ¬¬x ∨ ¬x,

and the Stone equation (1.11) holds in A. �

Corollary 2.12 Let A be a normal symmetric Heyting algebra. Then A ∈ INT
if and only if the Stone equation (1.11) holds in A. �

Corollary 2.13 If a BL-chain A admits an involution ∼ such that ε is an
interior operator, then A is either pseudocomplemented or A is involutive.

Proof: It is well known [19, 7, 11, 9] that if A is a BL-chain that is neither
pseudocomplemented nor involutive, then it is a proper ordinal sum with a first
component [0, a] (a 6= 1) such that ¬ is involutive over (0, a) and ¬x = 0 for
all x > a. Then ¬(A) = {1} ∪ [0, a). A simple computation proves that it is
impossible to define an involution on A that coincides with ¬ on ¬(A) since in
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[0, a) ¬ is not continuous in 0 with respect to order topology while all involutions
must be continuous with respect to the order topology of a chain. Now the result
follows from (iv) in Theorem 2.9. �

The hypothesis that the BL-algebra A is totally ordered cannot be omitted
in the above corollary, as the following example shows.

Example 2.14 Let A1 be a normal symmetric Gödel algebra such that B(A1)
& A1 and let A2 ∈ MV∼ be such that B(A2) & A2. Then A = A1 ×A2 is a
non-pseudocomplemented and non-involutive symmetric BL-algebra belonging
to INT. �

In contrast with the case of BL-chains, the next example shows that there
are symmetric MTL-chains in INT that are neither involutive nor pseudocom-
plemented.

Example 2.15 Let A be the standard WNM-algebra determined by the fol-
lowing negation on the real segment [0, 1]:

¬(x) =



1− x, if x ∈ [0, 1
4 ] ∪ [ 13 , 2

3 ] ∪ [ 34 , 1],

2
3 , if x ∈ ( 1

4 , 1
3 ],

1
4 , if x ∈ ( 2

3 , 3
4 ].

Since ¬(A) = [0, 1
4 ] ∪ [ 13 , 2

3 ] ∪ [ 34 , 1], by (iv) in Theorem 2.9 there are as many
involutions ∼ on [0, 1] such that ε is an interior operator as possible continuous
strictly decreasing bijections from [ 14 , 1

3 ] into [ 23 , 3
4 ], hence infinitely many. The

simplest such involution is ∼ x = 1− x. �

3 From ε to Boolean interior operators
Theorem 3.1 Let A be a normal symmetric residuated lattice, and consider
the following properties:

(i) ε∞x :=
∧

n ≥ 1 εnx exists for all x ∈ A.

(ii) There exists an interior operator ε′ such that, for all x ∈ A,

ε′x = x if and only if εx = x.

(iii) K(A) is upper relatively complete.

Then (i) implies (ii), and ε′ = ε∞. (ii) and (iii) are equivalent, and ε′x is the
greatest element in {z ∈ K(A) : z ≤ x}.
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Proof: Suppose that (i) holds. Given x ∈ A, let z = ε∞x. By Lemma 2.6,

(3.18) εz = ε

( ∧
n∈N

εnx

)
=
∧

n∈N

εn+1x = z.

Now it is easy to see, by induction on n, that εnz = z. Then it follows that
ε∞ε∞x = ε∞x. By normality, ε∞x ≤ x, and by Lemma 2.6, ε∞(x ∧ y) =
ε∞x ∧ ε∞y. Since clearly ε∞1 = 1, we have proved that ε∞ is an interior
operator on A. It is obvious that εx = x implies ε∞x = x, and it follows from
(3.18) that ε∞x = x implies εx = x. Therefore (i) implies (ii). The equivalence
between (ii) and (iii) follows from (iii) in Lemma 2.5 and Lemma 2.8. �

The following example shows that in general, condition (i) in Theorem 3.1
is stronger that conditions (ii) and (iii).

Example 3.2 Let {ai}i ≥ 0 be a strictly increasing sequence in [0, 1] whose
limit is 1

2 and a0 = 0. The standard WNM-algebra determined by the following
negation function:

¬ x =


1, if x = 0,
1− ai, if x ∈ (ai−1, ai], i ≥ 1,
1
2 , if x = 1

2 ,
ai, if x ∈ (1− ai+1, 1− ai], i ≥ 0.

becomes a normal symmetric residuated lattice A when endowed with the in-
volution ∼ x = 1 − x on [0, 1]. Let C be the subalgebra of A with universe
C = [0, 1

2 ) ∪ ( 1
2 , 1]. It is clear that on C, K(ε) = {0, 1}, hence it is trivially

upper relatively complete. Since for x ∈ (0, 1
2 ),
∧

n ≥ 1 εn(x) does not exist, ε∞
is not defined on C. On the other hand, ε′ as defined in (ii) of Theorem 3.1
exists, since K(C) = {0, 1}. �

As an immediate consequence of Theorem 3.1 we have:

Corollary 3.3 If A ∈ NSRL is complete as a lattice, then (i), (ii) and (iii) in
Theorem 3.1 are equivalent conditions. �

Another case in which we can assert the existence of an interior operator ε′

on a normal symmetric residuated lattice A such that ε′ and ε have the same
invariant elements, is when there is a positive integer n such that the following
equation holds in A:

(3.19) εn+1x = εnx.

Clearly every finite normal symmetric residuated lattice satisfies equation
(3.19) for a suitable integer n ≥ 1.

Notice that since εx ≤ x, (3.19) is equivalent to the equation ε2nx = εnx,
and as in the proof of Theorem 3.1, it follows the last equations holds if and
only if εn is an interior operator. Specially interesting is the case in which also
the equality K(A) = B(A) holds, that we are going to consider next.
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Given n ≥ 1, an n-boolean interior symmetric residuated lattice is a normal
symmetric residuated lattice A such that K(A) = B(A) and equation (3.19)
holds in A.

It is easy to see that n-boolean interior symmetric lattices form a subvariety
of NSRL, characterized by equations (3.19) and

(3.20) ¬εnx ∨ εnx = 1,

that we shall denote by BISRLn.
Clearly BISRLn ⊆ BISRLn+1 for each n ≥ 1. The next example shows that

the inclusions are proper.

Example 3.4 For each n ≥ 2 define the negation ¬n over the real segment
[0, 1] by the prescriptions:

¬n(x) =


1, if x = 0,
n−k

n , if k−1
n < x ≤ k

n , for 1 ≤ k ≤ n− 1,

0 if n−1
n < x ≤ 1.

Let An denotes the standard WNM-algebra determined by ¬n, equipped with
an involution ∼ such that ∼ x > 1− x. For instance, given 1

2 < z < 1, one can
take

∼ x =

{
(1− 1

z )x + 1, if 0 ≤ x ≤ z,
z

z−1x− z
z−1 , if z ≤ x ≤ 1.

It is easy to check that An+1 ∈ BISRLn+1 and An+1 6∈ BISRLn, for n ≥ 1. �

Let A ∈ NSRL. From items (iii) in Theorem 1.7, (iv) in Lemma 2.5 and (iv)
in Theorem 2.9 it follows that ε is an interior operator such that K(A) = B(A)
if and only if A satisfies the Stone equation (1.11). Therefore BISRL1 coincides
with the variety NSSRL of normal symmetric stonean residuated lattices.

Proposition 3.5 The following equations hold in every A ∈ BISRLn, for each
n ≥ 1:

(i) εn(x ∗ y) = εnx ∗ εny,

(ii) (εnx → εny) → εn(x → y) = 1.

Proof: Since εnx ∈ B(A), by (iii) in Lemma 1.3 we have that εnx ∗ εny =
εnx ∧ εny ∈ B(A) = K(A). Therefore εnx ∗ εny = εn(εnx ∗ εny) ≤ εn(x ∗
y) ≤ εnx ∧ εny = εnx ∗ εny, and (i) is proved. To prove (ii), note that by (i)
εnx ∗ εn(x → y) = εn(x ∗ (x → y) ≤ εny, and apply the residuation condition
(1.5). �

Let A ∈ BISRLn, with n ≥ 1, and let F be an i-filter of A. Clearly for each
x ∈ A, εx ∈ F if and only if εnx ∈ F , and since εnx is an interior operator on
A such that εn(A) = B(A), we have that the ε-filters of A coincide with the
stonean filters. Hence by (i) of Theorem 2.2 we have that for each congruence
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ϑ of A, F (ϑ) is a stonean filter, and ϑ = θF (ϑ)). On the other hand, it follows
from Lemma 1.4 that each stonean filter of A is an implicative filter, and it
follows that the congruence θ(F ) preserves the involution ∼. Indeed, suppose
that (x, y) ∈ θ(F ). By the same lemma we know that is z ∈ F ∩B(A) such that
x ∧ z = y ∧ z, and since by (iv) in Lemma 2.5, ∼ z = ¬z, taking into account
M1, M3, (iii) of Lemma 1.3 and (1.5), we have z ∧ ∼ x = z ∗ (∼ x ∨ ∼ z) =
z ∗ (∼ y ∨ ∼ z) = z ∧ ∼ y. Summing up we have:

Theorem 3.6 For each integer n ≥ 1 and each A ∈ BISRLn the correspon-
dence F 7→ θ(F ) establishes a one-one inclusion preserving correspondence be-
tween the stonean filters and the congruence relations of A. The inverse map-
ping is given by the correspondence θ 7→ 1/θ. �

Recall that an algebra A is simple if the only congruences of A are the
identity and A×A, and that an algebra is called semisimple if it is a subdirect
product of simple algebras [4].

Corollary 3.7 The following are equivalent conditions for each A ∈ BISRLn,
n ≥ 1:

(i) A is simple,

(ii) B(A) = {0, 1},

(iii) εx =

{
1, if x = 1,

0, if x 6= 1.

Proof: Suppose there is z ∈ B(A) such that 0 < z < 1. Then Fz = {x ∈ A :
z ≤ x} is a stonean filter, and {1} & θ(Fz) & A. This shows that (i) implies
(ii). On the other hand, (ii) implies that the only stonean filters of A are {1}
and A. Hence (i) and (ii) are equivalent. The equivalence between (ii) and (iii)
follows from the fact that B(A) = K(A) = εn(A). �

A maximal stonean filter of a residuated lattice A is a stonean filter F
of A such that F 6= A and for each stonean filter G of A, F & G implies
G = A. It follows from Theorem 3.6 that maximal stonean filters are in one-one
correspondence with maximal congruences of A. Therefore, for each maximal
stonean filter of A, the quotient A/F := A/θ(F ) is simple (see, for instance,
[4]).

It is easy to check that a stonean filter F of A is maximal if and only
if F ∩ B(A) is a maximal filter of the boolean algebra B(A)), and that the
correspondence

(3.21) U 7→ 〈U〉 := {x ∈ A : x ≥ u for some u ∈ U}

defines a bijection between the maximal filters of the boolean algebra B(A) and
the maximal stonean filters of A.

For each bounded residuated lattice A, the stonean radical of A, StRad(A),
is the intersection of all maximal stonean filters of A.
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Corollary 3.8 Every A ∈ BISRLn is semisimple.

Proof: Since maximal congruences of A are in one-one correspondence with
maximal stonean filters, it is sufficient to prove that StRad(A) = {1} (see, for
instance, [4]). Let x ∈ A, x 6= 1. Then 1 6= εnx ∈ B(A), and there is a maximal
filter U of B(A)) such that εnx 6∈ U . Hence x 6∈ 〈U〉, and this shows that
x 6∈ Rad(A). �

Observe that applying the construction indicated after Remark 1.1 to a
normal symmetric residuated lattice, and extending the involution defining
∼ > = ⊥ and ∼ ⊥ = >, we obtain a simple normal symmetric stonean resid-
uated lattice. This shows that the structure of the variety NSSRL = BISRL1

is rather complex. In particular, since it contains simple algebras of arbitrary
large cardinality, there are no injective algebras in BISRLn for every n ≥ 1 (see
[15]).

By a boolean n-interior symmetric residuated chain, or bin-chain for short,
we understand a symmetric residuated chain that satisfies equations (3.19) and
(3.20). Observe that bi1-chains are precisely the normal symmetric pseudocom-
plemented residuated chains.

Our next aim is to characterize the subvarieties of the varieties BISRLn

generated by the bin-chains.
Observe that since ε is order preserving, each symmetric residuated chain

satisfies the equation:

(3.22) ε(x ∨ y) = εx ∨ εy.

Therefore each variety generated by normal symmetric residuated chains must
satisfy (3.22).

Lemma 3.9 Equation (3.22) holds in a normal symmetric pseudocomplemented
residuated lattice A if and only if A is stonean.

Proof: If A is stonean, then by M2 and Lemma 1.6 ε(x ∨ y) = ¬(∼ x ∧ ∼ y) =
εx ∨ εy. Suppose now that A ∈ NSPRL and that (3.22) holds in A. Then by
M1 and M3 we have that ¬x ∨ ¬y = ε ∼ x ∨ ε ∼ y = ε(∼ x ∨ ∼ y) = ¬(x ∧ y).
Hence equation (1.12) holds in A, and by Lemma 1.6, A is stonean. �

We denote by BISRL∨n the subvariety of BISRLn determined by equation
(3.22).

It follows from the above lemma that BISRL∨1 = BISRL1. On the other
hand, the finite non-stonean Heyting algebra A ∈ BISRL2 depicted in Figure 1
shows that BISRL∨n is a proper subvariety of BISRLn for n ≥ 2.

By a 4-residuated lattice we understand a bounded residuated lattice A
equipped with a unary operation 4 satisfying the following properties (cf [18,
Definition 2.4.6]):

16



a b

0

d e

c

1

x     ¬ x     ~ x

0       1        1
a       b        e
b       a        d
c       0        c
d       0        b
e       0        a
1       0        0

Figure 1: A 6∈ BISRL∨2

(i) 41 = 1,

(ii) 4x ∨ ¬4x = 1,

(iii) 4(x ∨ y) = 4x ∨4y,

(iv) 4x ≤ x,

(v) 44x = 4x,

(vi) 4(x ∗ y) = 4x ∗ 4y.

Taking into account Proposition 3.5, we see that each A ∈ BISRL∨n becomes
a 4-residuated lattice if we define 4x = εnx for each x ∈ A.

Lemma 3.10 If A ∈ BISRL∨n , n ≥ 1, then each maximal stonean filter of A is
prime.

Proof: Let F be a maximal stonean filter of A, and suppose x ∨ y ∈ F . Then
εx∨εy = ε(x∨y) ∈ F ∩B(A), and since F ∩B(A) is a prime filter of the boolean
algebra B(A), we have that εx ∈ F ∩B(A) or εy ∈ F ∩B(A). Therefore x ∈ F
or y ∈ F . �

We denote by LBISRLn the subvariety of BISRL∨n determined by the pre-
linearity equation (1.9).

Theorem 3.11 A symmetric residuated lattice A belongs to LBISRLn if and
only if it is a subdirect product of bin-chains, for each integer n ≥ 1.

Proof: Clearly each subdirect product of normal symmetric residuated chains
satisfies (3.22) and (1.9). Therefore all subdirect products of bin-chains are in
LBISRLn. Suppose now that A ∈ LBISRLn. By Lemma 3.10, each maximal
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stonean filter of A is a prime i-filter, hence prelinearity implies that the quotient
A/F is a bin-chain. The result follows from the fact that StRad(A) = {1}, as
shown in the proof of Corollary 3.8. �

Remark 3.12 Since the symmetric residuated chains considered in Example 3.4
are bin-chains, it follows that BISRLn $ BISRLn+1 for each n ≥ 1. �

In [12, 10] pseudocomplemented BL-algebras are called strict BL-algebras, or
SBL-algebras for short. In [10], the SBL∼-algebras introduced in [12] are char-
acterized as a SBL-algebras equipped with an order reversing involution ∼ such
that equations (1.11) and (2.15) are satisfied. Since strict BL-algebras are pseu-
docomplemented MTL-algebras, by Remark 1.9 they satisfy equation (1.11).
Consequently SBL∼-algebras coincide with normal symmetric BL-algebras. It
will follow from the next corollary that BL∼-algebras also coincide with the
symmetric BL-algebras that satisfy Kleene equation (2.16).

A. Monteiro [25, Chap. V, §4] showed that a symmetric Gödel algebra A
is normal if and only if it satisfies the Kleene equation (2.16) if and only if it
is a subdirect product of symmetric Heyting chains. On the other hand, it was
shown in [12, Theorem 5] that every SBL∼-algebra is a subdirect product of
symmetric BL-chains. The next corollary generalizes both results.

Corollary 3.13 The following are equivalent conditions for each symmetric
pseudocomplemented MTL-algebra A:

(i) A is a subdirect product of symmetric pseudocomplemented residuated chains.

(ii) A satisfies the Kleene equation (2.16).

(iii) A is normal.

Proof: That (i) implies (ii) and (ii) implies (iii) follow from Corollary 2.4. By
Corollary 2.11, (iii) implies that A is stonean. Therefore A ∈ LBISRL1, and
by Theorem 3.11 we obtain (i). �
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