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Abstract. In this paper we focus on how to use CBR for making col-
lective decisions in groups of agents. Moreover, we show that using CBR
allows us to dispense with standard but unrealistic assumptions taken in
these kind of tasks. Typically, social choice studies voting methods but
assumes complete knowledge over all possible alternatives. We present a
more general scenario called open-ended deliberative agreement with ra-
tional ignorance (ODARI), and show how can CBR be used to deal with
rational ignorance. We will apply this approach to the Banquet Agree-
ment scenario, where two agents deliberate and jointly agree on a two
course meal. Rational ignorance makes sense in this scenario, since it
would be unreasonable for the agents to know all the alternatives. Un-
known alternatives, as well as a strategy to increase chances of reaching
an agreement, are problems addressed using case-based methods.

1 Introduction

Case-based reasoning (CBR) has been applied to a wide number of of real life
tasks, and one feature that stands out in comparison to other AI techniques is
its resilience and robustness in the presence of incomplete knowledge. This ca-
pability of dealing with incomplete knowledge, by analyzing and exploiting the
implicit knowledge in a case base, is a core idea in CBR, and a main factor in
being able to perform well in real-life applications in which standard oversimpli-
fying assumptions (like having complete knowledge) can not be held.

In this paper we focus on how to use CBR for making collective decisions
in groups of agents. Moreover, we show that using CBR allows us to dispense
with standard but unrealistic assumptions taken in these kind of tasks. Social
choice is the theoretical study of methods for aggregating individual preferences
(or utilities) into collective decisions —and how to evaluate adequacy of these
collective outcomes (welfare). Typically, social choice studies voting methods and
their properties as a means to aggregate individual preferences into a collective
outcome. However, current social choice approaches make strong assumptions
that are tantamount to require complete knowledge to the individual agents
participating in a collective decision (see Section 2).



We claim that these assumptions are too strong for Artificial Intelligence
applications, specially in multiagent systems approaches, and that we should
be focusing on group decisions where individuals have partial knowledge of the
decision domain. Specifically, we propose that CBR offers a practical and nat-
ural way to allow individual agents with partial knowledge to achieve collective
decisions that are reasonable and satisficing3.

Let us consider a group decision scenario in a context related to the ICCBR
Computer Cooking Competition. While the main challenges of the Computer
Cooking Competition are retrieving and adapting a recipe given some query,
we propose to focus on the task we call Banquet Agreement scenario4. Let us
consider a group of 2 or more individuals that have to decide on the specific
dishes to be served in a banquet: these individuals may be the Chairs of a
conference deciding on the Conference Banquet, or the members of two families
for a marriage banquet, or a couple inviting a large group of friends to dinner.

This scenario allows us to consider the implications of assuming complete or
incomplete knowledge. Classical social choice assumes complete knowledge: every
individual knows the utility value of every alternative —usually this is phrased
as every individual having a utility function over the set of alternatives. However,
in the cooking domain, the set of alternatives are the different dishes or recipes,
for which there are thousands. Clearly, assuming that an individual has a utility
value for every and all recipes (complete knowledge) is unfeasible. Moreover, in
a group decision, the set of known alternatives (i.e. those for which the utility
value is known) to each individual may differ, and the set of alternatives known
to all individuals in the group may be small or empty.

Thus, in any realistic scenario, specially in group decision, assuming complete
knowledge is too restrictive and we have to deal with incomplete knowledge. This
means, in the Banquet Agreement scenario, that each individual may know a
specific subset of recipes (and thus have utility value for them), but not the
rest. In fact, some models of economics recognize this possibility, which is called
rational ignorance. The notion of rational ignorance means that, in those situa-
tions where the cost of acquiring information is greater than the benefits to be
derived from the information, it is rational to be ignorant. Thus, in the cooking
domain, it is rational to be ignorant — otherwise the time and cost involved
in finding all possible recipes, tasting them, and acquiring an individual utility
value would be a (maybe pleasurable but) daunting task.

Our approach is based on considering the set of alternatives under discus-
sion to be open ended —instead of being fixed beforehand by an external entity,
the alternatives are introduced in the discussion by the individual agents. This
3 The word satisfice was proposed by Herbert Simon in 1956 as an alternative desider-

atum for AI tasks, in contrast with the more classical word maximize; Simon cham-
pioned the notion of bounded rationality as a more realistic approach to rationality
that takes into account different kinds of cognitive limitations.

4 We will consider group decisions as a form of group agreement. In our approach,
negotiation, mediation, social choice, etc. are different kinds of processes whose aim
is to reach agreements between 2 or more agents. In what follows, we will speak of
group decision or agreement interchangeably.



process by which agents try to reach an agreement (and in which the set of alter-
natives is expanded) will be called deliberative agreement5. For instance, in the
Banquet Agreement scenario one agent may know about one risotto recipe (e.g.
mushroom risotto), but once another agent proposes as a candidate agreement
another risotto recipe (e.g. fresh asparagus risotto), the set of what we call public
alternatives is increased. Then, the first agent can deal with one more alterna-
tive, and although rational ignorance implies that the agent has no utility value
for an unknown alternative, case-based reasoning can be used to estimate utility
values of unknown public alternatives by such an agent. Therefore, CBR can be
used to deal with rational ignorance (incomplete information) based on what
is known by each agent. This capability allows us to deal with more realistic
scenarios with an open-ended set of alternatives.

Moreover, we will show that CBR can also be used during deliberative agree-
ment process to reach faster a group agreement. A CBR agent can make a
case-based model of another agent using the proposals offered by that agent. In
the Banquet Agreement scenario, for instance, if one agent proposes the alterna-
tive fresh asparagus risotto, another agent may safely infer that the agent would
also like similar recipes, and use CBR to try to propose a preferred recipe (e.g.
risotto with “fava” beans) that is also similar to recipes proposed by another
agent. Although our approach is valid for n agents, in most of the paper we will
focus on the 2 agent scenario for sake of expository clarity

In this paper, we will present an approach to group agreement in multiagent
systems in which CBR is used in situations where rational ignorance applies.
Case-based reasoning will be shown to deal with incomplete knowledge of indi-
viduals and, moreover, support satisficing behavior in combinatorial domains in
multi-issue group agreement. The next section introduces the classical notions
of single-issue and multi-issue collective decisions, while the rest of the paper
presents our approach to open-ended group agreement in Section 3, and the
CBR strategy to deal with group agreement and rational ignorance in Section
5. An experimental evaluation in the cooking domain is shown in Section 7, and
the paper comes to an end with sections on related work and conclusions.

2 Background

Social choice theory [3, 6, 1] is a mathematical theory of collective decision mak-
ing, which is concerned about how groups actually do make decisions, focusing on
methods to aggregate individual preferences into a collective decision or choice.
A social choice problem consists of a number of individuals that have prefer-
ences over a set of alternatives Di = x1, . . . , xk on an issue Xi. A preference
aggregation method, typically a voting method, aggregates the preferences over
alternatives, ranks those alternatives in a global ordering, and determines the
5 While classical social choice focuses on voting methods, current research in deliber-

ative democracy (and deliberation in multimember bodies in general) show that in
real life situations it is useful having a first stage of deliberation before the stage of
voting on a collective outcome [4].



winning alternative for the issue (the collective decision). Voting methods include
the majority rule, approval voting, Borda count, the Condorcet method, etc. So-
cial choice theory studies the properties satisfied or not by different aggregation
methods. However, they share some basic assumptions: agents are supposed to
have perfect knowledge: they know all possible alternatives Di = x1 . . . xk on
the issue at hand Xi and know which ones are preferred over the others.

When the decision is more complex, such decision is modeled as a set of
issues, each one with a number of alternatives. Thus, multi-issue social choice
consists of a set of issues X = {X1, . . . , Xm} and for each issue Xk there might
be a set of alternatives x to choose from, in a domain Dk. The number of possible
decisions is now much greater: all possible combinations in Ω = D1 × . . .×Dm.
Assuming the issues are independent (i.e. preferences are separable) is a common
simplification that allows issue-by-issue voting to achieve a group multi-issue de-
cision. However, the individuals’ preferences are not necessarily separable, since
the issues may be interdependent, i.e. that an individual’s preference for one
issue, may depend on the alternative taken for another issue. For instance, in
the Banquet Agreement scenario, a group has to decide on a two-course meal.
Clearly, an individual’s preference on the main course may depend on the alter-
native taken as a starter, e.g. having “arròs rossejat” as main course rules out
having a rice salad as a starter, since both alternatives’ main ingredient is rice.

Thus, in multi-issue social choice with dependences between issues, the issue-
by-issue voting method may lead to suboptimal results. For instance, in the
Banquet Agreement scenario, a subgroup constituting a majority of individuals
may select “rice salad” as a starter while another sub group constitute a majority
selecting “arròs rossejat” as main course even when no individual votes for having
both rice salad and “arròs rossejat” together. The approach we will take is that
multi-issue social choice problem is composed of the possible combinations in
D1× . . .×Dm and a set of constraints C over them in such a way that we define
a set of valid combinations Ω ⊂ D1 × . . .×Dm.

A different but related approach to collective decision making is of that of
deliberation in the study of deliberative democracy [2]. Deliberative democracy
contends that collective decision processes should not just aggregate individual
preferences but help shaping those individual preferences. Therefore, delibera-
tive democracy encourages the individuals to deliberate about which alternative
is to be preferred for an issue, in an open dialogue with one another, before vot-
ing. During the public discussion, the individuals may change their preferences
since they can acquire new alternatives for the issues at hand, and other rele-
vant information, such as the concerns of the other individuals. Thus, votes and
preferences should emerge from processes of deliberation, since then individuals
are able to make a more informed decision.

Given that group decisions are not necessarily limited to a process of choos-
ing among given alternatives, but also a process of generating new alternatives
(brainstorming), an argument in favor of discussing publicly before voting, is
that the limitations due to bounded rationality might be alleviated, since de-
liberation can provide more creative outcomes [5]. In our approach, a process



of deliberation is required for allowing the individual agents to introduce new
alternatives to an issue —deliberation makes possible to take collective decisions
within a context of rational ignorance (incomplete knowledge).

From the point of view of CBR, this approach continues the work on mul-
tiagent case-based reasoning that previously focused on classification tasks [9,
7, 8]. In this paper, multiagent CBR is used not to solve a problem (find a cor-
rect outcome) but reach an agreement (find a decision with high group welfare).
Moreover, the CBR approach (together with deliberation democracy approach)
are used to develop a more realistic framework for group choice that embrace
openness and incompleteness of knowledge.

3 Open-Ended Deliberative Agreement

This section introduces the open deliberative agreement with rational ignorance
(ODARI) framework, in which a group of agents deliberates on a set of issues and
their alternatives in order to reach an agreement about the alternatives (rational
ignorance). Although ODARI is defined for a group on n agents, it is easier to
explain the case where there are 2 agents deliberating on an agreement, and we
will use a set of 2 agents A = {A1, A2} in our exposition here. How CBR is used
to deal in the ODARI framework is explained later in Section 5.

The ODARI framework is a model of group decisions in multiagent systems
with the following properties:

Open-Endedness The first feature in ODARI is that it is a multi-issue group
decision problem X = {X1, . . . , Xm} where each issue Xk is open-ended, i.e.
the set of alternatives Dk is not fixed and known by all individual agents
(rational ignorance).

Deliberation A second feature is that new alternatives to issues can be in-
troduced during a process of deliberation to reach an agreement.

Interrelated Issues A third feature is that there is a set of constraints C
that determine a subset of valid combinations Ω ⊂ D1 × . . .×Dm

Time-sensitiveness Finally, since the space of valid combinations Ω can be
very large, we assume there is a finite time limit that precludes the explo-
ration of all valid combinations in Ω during deliberative agreement process.

We contend that these four features makes the ODARI framework closer to
realistic scenarios of group decisions in multiagent systems.

An issue is open-ended when the set of alternatives it may take increases
monotonically over time. An agent Ai has a limited experience in each issue Xk,
and knows a subset of all alternatives that may exist in the world, which we will
denote as Dk

i . The agreement space of an agent Ai based on its initial knowledge
of the world is Ωi ⊂ D1

i × . . .×Dm
i , the set of combinations of the individually

known alternatives that satisfy the constraints in C.
Thus, ODARI assumes that an alternative x ∈ Dk

i may be a known alterna-
tive to an agent, but unknown to another, and every agent has a utility value



(or preference) for each known alternative to him. In our CBR approach, dis-
cussed later in Section 5, this experience-based knowledge will be determined
by the individual case base of each agent. Moreover, on the Banquet Agreement
scenario, the case base is composed of the cooking recipes known to an agent.

The preferences of an agent Ai for each issue Xk will be expressed by a
utility function: Uki : Dk

i → [0, 1]. However, Ai has no utility value for unknown
alternatives (those not in Dk

i ). The domain of alternatives for an issue Xk given
a group of agents A1, . . . , An is Dk =

⋃
i=1...nD

k
i , where every agent knows a

subset Dk
i . The space of possible combinations is D1×. . .×Dm, but given a set of

constraints C, the space of possible agreements is the subset Ω ⊂ D1× . . .×Dm

of combinations satisfying C. Individual agents have no immediate access to this
larger space, since they are working only in a subspace Ωi ⊂ Ω.

During the deliberation process the agents may come to know new alterna-
tives for the issues at hand as they are included in proposals made by other
agents. If the agents use this new alternatives the space of possible agreements
that may be proposed increases accordingly. Moreover, since this alternatives are
presented in a public space (all participating agents have access to all information
flow during deliberation), all agents become aware of the new alternatives.

Let l Πk be the alternatives for the issue Xk made public at some moment in
time during deliberation; the agreement space of public alternatives is then ΩP =
Π1 × . . .×Πm. In this situation, ΩP is the “common knowledge” of the agent
group, but the agents still need some way to integrate the unknown alternatives
in their preference structure, i.e. the set of “new” alternatives Nk

i = Πk − Dk
i

for every issue Xk. Section 5 explains how CBR is used to deal with these new
alternatives. Notice, however, that an agent using public alternatives can now
generate a larger set of proposals: for each issue Xk the agent can choose from
a larger set of alternatives, namely Dk

i ∪ Nk
i . Therefore, the set of agreements

that can be proposed by an agent is now ΩPi ⊂ D1
i ∪N1

i × . . .×Dm
i ∪Nm

i (the
set of combinations satisfying the set of constraints C).

4 Deliberation Process

The deliberation process among agents is an interaction protocol on which agents
propose and accept (or reject) possible agreements of the form (x1, . . . , xm), i.e.
assigning one alternative to each of the m issues involved in the deliberative
agreement task. For instance, in the Banquet Agreement scenario, with two
main courses, an example proposal may be (Xató, arròs-rossejat), where the dishes
specify their ingredients: Xató is a endive salad with cot, olives, etc. and a hot
sauce, and arròs-rossejat is a fishermen’s fried noodles dish with aioli. A valid
proposal is a combination of alternatives that satisfies the set of constraints C.

In this section we will present the interaction protocol DAP2 for 2 agents
participating in the deliberation; extending DAP2 to n agents is possible but
the 2 agent scenario is easier to understand. DAP2 allows a group of two agents
A = {A1, A2} making proposals until one agent accepts a proposal made by the
other agent (which becomes the agreement); each proposal is made in a new



round of the protocol. A maximum number of rounds M establishes a deadline
for reaching an agreement.

During deliberation the agents interchange the following types of messages:

– propose(Ai, ω, t): where an agent Ai proposes a valid combination of alter-
natives ω at the round t; moreover ω has to be a new combination (i.e. ω
has never been proposed before).

– accept(Ai, ω, t): where an agent Ai accepts the valid combination of alterna-
tive ω at the round t; the proposal ω has been proposed previously by the
other agent Aj but need not be the last proposal of Aj .

The DAP2 protocol starts at the round t = 0 with the token randomly
assigned to an agent:

1. The agent Ai who has the token can act in different ways:
– Ai accepts a previous proposal ω of the other agent Aj sending it message
accept(Ai, ω, t) and then the protocol terminates with agreement ω.

– Ai makes a new proposal ω sending propose(Ai, ω, t) to the agent Aj ; if
Ai is unable to find a new proposal an abstain(Ai, t) is sent. The token
passes to the other agent Aj , and the protocol moves to the step 2.

2. If the deadline M is reached or none of the agents made a proposal in the pre-
vious two rounds, the protocol terminates without an agreement. Otherwise
a a new round t+ 1 starts and the protocol moves to the step 1.

For using the DAP2 protocol, agents just need a decision policy that allows
them to decide how to act in the protocol (when to accept, and when to make
new proposals). We present such policies in the next section.

5 CBR Agents

This section presents how case-based reasoning can address, in a natural way,
the challenges associated with a more realistic scenario for collective decision
(essentially knowledge incompleteness) in the context of deliberative agreement,
where the deliberation process allows agents to acquire new and unknown al-
ternatives. Let use define some auxiliary notions before presenting CBR-based
decision policies to be used with the DAP2 protocol.

Open Minded Strategy. We will define two different strategies, open-
minded and narrow-minded reasoning strategies. An open-minded agent will con-
sider acceptable agreements containing alternatives that are new and unknown
for that agent. The narrow-minded reasoning strategy, on the other hand, will
not consider acceptable any agreement containing unknown alternatives. In the
Banquet Agreement scenario, for instance, an agent may like paella but does not
know arròs rossejat: the narrow-minded would not accept any agreement with
arròs rossejat (even when it is very similar to paella), while the open-minded
agent will consider the similarity and may accept agreements with arròs rossejat.
Clearly, the open-minded strategy allows a larger space of possible agreements,



while the narrow-minded strategy constrains the space of possible agreements
to those containing alternatives known to all agents. For instance, between two
agents, a narrow-minded strategy has an agreement space Ω1 ∩ Ω2, while an
open-minded strategy has an agreement space ΩP1 ∪ΩP2 .

Furthermore, an open-minded agent can also use new unknown alternatives
when proposing an agreement. For instance, an agent that proposed (green-
salad, paella) has later received a proposal containing arròs rossejat; since this
means that the other agent likes arròs rossejat and it is similar to paella, the
agent can now make a new proposal with more chances to succeed: (green-salad,
arròs rossejat). Thus, as we will see in the experimental evaluation section, open-
mindedness helps in reaching an agreement faster (while maintaining high levels
of satisfaction) by allowing to propose agreements closer to the preferences of
the other agent. Narrow-mindedness, on the other hand, risks running out of
time without finding a common agreement.

Multi-issue Deliberation. Generating and evaluating proposals of agree-
ment is much more complex in multi-issue group agreement than in single-issue
group agreement. Moreover, constraints over the combination of alternatives
make infeasible estimating the utility of alternatives in isolation; thus, utility
will be measured by a function over possible agreements Ui : Ω → [0, 1]. There-
fore the CBR agents have to reason about valid combinations of alternatives, but
the combinatorial nature of this process together with time-sensitivity makes im-
possible an approach based on maximization: an approach based on satisficing
is needed, where an agent Ai accepts an agreement ω if it is satisfactory to Ai.
Later in Section 6 we will formalize this idea with the notion of the aspiration
level of an agent, such that when a proposed agreement’s surpasses the aspiration
level the agent accepts that agreement.

In general, the agents should be able to evaluate any agreement in Ω; thus,
for each issue Xk, an agent requires a way of evaluating the utility degree of
every alternative in Dk. In the classical approach studied in social choice, since
the alternatives are just a set of identifiers, without an intrinsic structure, all
knowledge resides in the utility function. However, in ODARI, there are un-
known alternatives for any agent Ai —i.e. Ai does not have utility degree for
some of alternatives that an issue may take. For this reason, we assume that
each CBR agent Ai has a similarity measure over the alternatives of an issue
ski : Dk ×Dk → [0, 1]. This new assumption involves access to some character-
ization of the alternatives, and the similarity measure works upon that charac-
terization. Consequently, we assume (1) that the alternatives have some char-
acterization or description in some language, and (2) that a similarity measure
can be defined on the space of descriptions of alternatives. Clearly, the similarity
among alternatives is domain specific; Section 7 presents the similarity we have
used in the Banquet Agreement scenario.

Issue Case Base. In our approach, a CBR agent Ai has a case base Cki
for each issue Xk, where a case c ∈ Cki is a pair c = 〈x, u〉 such that x is a
known alternative to Ai for an issue Xkand u is the utility degree of x to Ai,
i.e. c.u = Uki (x).



Next, using these issue case bases, we will be able to define a function U
k

i

that estimates the utility of unknown alternatives for each issue. Using U
k

i an
agent Ai is able to evaluate each possible agreement in Ω, and thus, is able both
to accept a proposal, even if it has unknown alternatives, and to use unknown
alternatives in generating proposals.

Utility of an Unknown Alternative. The similarity measure allows us
to estimate the utility of an unknown alternative xr of an issue Xr, by using a
k-nearest neighbor method which is calculated as the weighted sum of utilities
of the k most similar cases in Cri :

U
r

i (x
r) =

∑
c∈K s

r
i (c.x, x

r)× c.u∑
c∈K s

r
i (c.x, xr)

where K is the set of k most similar cases.
Utility of an Alternative. An agent Ai either knows the utility of an

alternative or can estimate it for unknown alternatives.

Uk
i (x) =

{
Uki (x) ifx ∈ Dk

i

U
k

i (x) otherwise

Utility of an agreement. The utility of an agreement ω (a valid combina-
tion of alternatives for m issues) is Ui(ω) = 1

m

∑
1≤k≤mUk

i (xk).

Modeling Agent Preferences. An agent does not have any a priori in-
formation about the other agent’s preferences. During the deliberation process,
an agent does not know, for any ω in the agreement space that has never been
proposed, whether ω could be satisfactory to the other agent. However, an agent
Ai may exploit the information that emerges during the deliberation, in order
to acquire clues about the other agents’ preferences. Specifically, when an agent
Ai has the token, Ai is aware that the proposals made by Aj up to that point
are satisfactory to Aj , because as soon as Aj has proposed an agreement, he
commits to accept that agreement. Additionally, Ai is aware that no agreement
it has proposed up to that point has been satisfactory to Aj , otherwise Aj would
have accepted one of them.

For this reason, when an agent Ai makes a proposal that is similar to pro-
posals made by the agent Aj in previous rounds, Ai increases the likelihood of
it being accepted by Aj , since the proposals made by Aj are satisfactory to Aj .

Moreover, the agent Ai may exploit the information about the proposals it
made that were rejected by Aj . Here, the intuition is that those proposals give
some information to Ai of what kind of proposal are not satisfactory to Aj . This
way, the more similar a possible agreement to the proposals made by Ai, the
more likelihood it will not be satisfactory to Aj .

Thus, an agent Ai may use the similarity between proposals to estimate the
proposals’ likelihood of being satisfactory (or not) to another agent Aj , based in
the proposals previously made by both agents. In this sense, the set of proposals



have been made during a deliberation process are treated as a “case base” that
models Aj ’s preferences.

Proposal Case Base. Every agent Ai in ODARI has a proposal case base
CPi such that, for each proposal ω made by any agent a in the deliberation
(including itself), there is a case 〈ω, a〉 ∈ CPi .

Proposal Similarity. An agent Ai has a similarity function Si : Ω ×Ω →
[0, 1], which expresses the similarity between two proposals (two valid combina-
tion of alternatives):

Si({x1
1, . . . , x

m
1 }, {x1

2, . . . , x
m
2 }) =

1
m

∑
1≤k≤m

ski (xk1 , x
k
2)

Let Mi = {ω ∈ CPi |c.a = Ai} be the set of proposals made by Ai to the agent Aj .
Notice that proposals in Mi have not been accepted by Aj , since those proposals
are not satisfactory to Aj ; thus, other proposals similar to Mi are likely to be
unsatisfactory to Aj . Let Rji = {ω ∈ CPi |c.a = Aj} be the proposals received
by Ai from Aj , i.e. the set of proposals that are known to be satisfactory to Aj .
Therefore, proposals similar to those in Rji are more likely to be satisfactory Aj .
Thus, the likelihood of a proposal to be accepted by Aj increases if it is similar
to proposals in Rji and decreases if it is similar to proposal in Mi.

Proposal Acceptance Likelihood. Following these two heuristic criteria,
based in the proposals made by the agents, we will define a function Ei allowing
Ai to estimate the likelihood of a new agreement proposal ω′ being accepted by
another agent as follows:

Ei(Aj , ω′) =
1
2

(
max
ω∈Rj

i

Si(ω′, ω)
)

+
1
2

(
min
ω∈Mi

(1− Si(ω′, ω))
)

6 Proposal generation and aceptance

A CBR agent Ai, in the ODARI framework, will propose agreements taking
into account (1) the proposals’ utility degree to Ai (possibly estimated with a
similarity) and (2) the likelihood of the proposals being accepted by the other
agent Aj . If Ai follows the open-minded strategy, the agreement proposal has to
be selected from the space of possible agreements ΩPi . Since a proposal cannot
be repeated, however, the space of possible new proposals is Ω′i = ΩPi −P , where
P is the set of agreements already proposed. We define first how the agreement
to be proposed is selected by an agent.

Proposal Selection Heuristic. The candidate agreements Ω′i will be eval-
uated by a heuristic Hi : Ω′i → [0, 1] that combines the utility for the proposing
agent and the likelihood to be accepted by the other agent, as follows:
Hi(ω) = (1− α)× Ui(ω) + α× Ei(Aj , ω).

where α ∈ [0, 1] is the weight given to the acceptance likelihood estimated for the
other agent. The selection of the agreement to be proposed is simply Hi(Ω′i) =
argmaxω∈Ω′

i
Hi(ω) (i.e. the agreement with highest Hi value).



Now we turn to the issue of an agent deciding to accept or not a proposed
agreement, based on the notion of aspiration level. The main idea is twofold: (1)
an agent Ai accepts an agreement ω when its utility Ui(ω) is above its aspiration
level ∂i, and (2) the aspiration level ∂i decreases during the deliberation process.

Aspiration Level. At any moment in time, an agent Ai has proposed Mi

agreements. Since all agreements in Mi are satisfactory to Ai, let us take the
one with minimum utility ω∗i = argminω∈Mi

Ui(ω); therefore ∂i = Ui(ω∗i ) —
i.e. that the aspiration level is Ui(ω∗i ), since agent Ai is already proposing an
agreement with that utility degree. Any agreement proposal ω that agent Ai
receives whose utility for Ai is equal or greater than the aspiration level should
be accepted by Ai (since Ai is already proposing agreement with that degree
of utility). Notice that ∂i will decrease monotonically with time, since the set
Mi increases with new proposed agreements and no proposed agreement can be
withdrawn according to the protocol DAP2.

Decision Policy. Whenever an agent Ai owns the token in protocol DAP2,
the decision policy of an agent Ai decides either to accept an agreement proposed
by Aj or to propose a new agreement. Now, agent Ai has an aspiration level ∂i
and a new agreement to propose, namely Hi(Ω′i). Let ωk = argmaxω∈Ri(j)Ui(ω)
be the best proposal received by Ai from Aj , then the decision policy is:

1. if Ui(ωk) ≥ min(∂i, U(Hi(Ω′i))) then Accept ωk
2. otherwise Propose Hi(Ω′i).

i.e. an agent Ai will accept the best proposal received if it has an utility better
or equal than the aspiration level or the utility of the next agreement that Ai
intends to propose next; otherwise Ai proposes that agreement.

7 Banquet Agreement Scenario

In this section, we experimentally evaluate our approach on the two-issues Ban-
quet Agreement scenario, based on the recipes database of the 2010 Computer
Cooking Contest (CCC). Specifically, these experiments involve two agents A1

and A2, that will engage in the deliberative process to reach an agreement on
a two-course meal, i.e. agreeing on a specific recipe for the starter (issue one)
and for the main course (issue two). The agreement must satisfy the following
constraint: no main ingredient may be used in both recipes6. The experimental
database R consists of 600 recipes (with 380 different ingredients) from the CCC,
randomly split into two sets: R1 and R2 of starters and main courses.

The domain-specific similarity functions among alternatives of an issue is
here a similarity s1 over recipes in R1 and s2 over recipes in R2. Both s1 and s2
are based on the Jaccard similarity

s(x1, x2) =
|Ing(x1) ∩ Ing(x2) |
|Ing(x1) ∪ Ing(x2) |

6 Main ingredients like rice or potato cannot be repeated, but secondary ingredients
like oil or salt can be used in both course’s recipes.



where Ing(x) is the set of main ingredients in recipe x.
The agents’ preferences are built by the experiment designer in the following

way. Each agent has a profiler-creation function that randomly assigns a utility
value in [0, 1] to each ingredient at each run of the experiment. From the utility
of ingredients the utility of a recipe x is computed as the normalized sum of
the utility of the ingredients in x. The recipes known to a agent constitute a
case base where there is a case 〈x, u〉 for each known recipe x and its utility u.
Notice that (1) the agent does not know the utility of ingredients, only the global
utility of recipes, so it is unable to ascertain the utility of unknown recipes from
their ingredients, and (2) people usually have clear utilities for courses rather
than ingredients (although some ingredients may be a no-no), using the hidden
profiler-creation function is just a convenient way to generate a large number of
profiles for experimentation.

Moreover, random profiles constitute a rather worst case scenario, where any
commonality of tastes among two artificial agents might be much lower than
other scenarios where participants may share some tastes. Finally, notice that
an agent only knows the utility for the recipes in its case base and is ignorant of
other recipes contained in other case bases (except for the recipes both agents
know, which will be a smaller subset in the experiments).

7.1 Experiments

In our experiments, we have set the maximum number of rounds for DAP2 to
M = 150, unless specified otherwise, and we have used k = 5 for the k-nearest
neighbor method U i(x) to estimate the utility degree of unknown alternatives.
Given the maximum number of M rounds, if this maximum is reached the proto-
col terminates without agreement. The experiments, unless specified otherwise,
assign 400 recipes to each agent, 200 of which are shared by both agents.

In order to evaluate the quality of the agreements reached by the agents, we
need to define a function assessing the degree of “goodness” of these agreements
for the group. These functions are called social welfare functions, and there are
several that are defined in the literature, depending on the criteria of what does it
mean for a agreement to be good for the group. The utilitarian welfare WU (ω) =
1
2 (U1(ω)+U2(ω)) measures the overall utility as the average of individual utilities;
this takes into account the total but not the inequality of utilities —i.e. a welfare
of WU (ω) = 0.5 may be achieved with individual utilities 0.5 and 0.5 or with 0.9
and 0.1. The egalitarian welfare of an agreement WE(ω) = minAi∈AUi(ω), takes
into account the level of inequality by defining welfare as the minimum utility of
the two agents. Since this welfare is very strict, we will use a combination of both
called the group welfare WG(ω) = 1

2 (WU (ω)+WE(ω)). In the experiments, group
welfare is computed using the ingredient-based utility (hidden to the agents).

The experiments are made for different values of α ∈ [0, 1] —recall that α is
the weight used in the Proposal Selection Heuristic. Thus, when α = 0 the agent
behaves as an egoist, since all proposed agreements take only into account its
individual utility. The higher the α the less egoist is an agent, since it will propose
agreements that have less utility for itself but are more similar to the proposals
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Fig. 1. Group welfare average (left), percentage of times reaching an agreement (cen-
ter), and number of proposals exchanged (right) for different α values when there is a
time limit of 150 rounds (©) or no limit (

`
).

of the other agent. Consequently, the higher the α the faster the aspiration level
of the agent decreases during the deliberation process.

Figure 1 shows the open-minded agent relationship with time-sensitiveness.
In this experiment, the abscissae are different values of α (for one agent) while
the other agent has a random value α ∈ [0, 1] at each run. The ordinates plot
the averages of group welfare, the percent of times an agreement is reached,
and the number of rounds needed to reach an agreement. If there is no time
limit, the deliberation can spend a lot of time examining a large number of
proposals. However, when there is a time limit, being egoist (having values of
α close to 0) is a bad option (as shown in Fig. 1): (1) when α increases then
the percentage of times in which an agreement is reached also increases (Fig. 1
center), which explains (2) when α is closer to zero group welfare is lower (Fig. 1
left). Finally, the number of exchanged proposals needed to reach an agreement
decreases when α increases (Fig. 1 right). Moreover, this last plot shows that
the Ei function is useful in estimating the proposals that the other agent may
consider satisfactory. For comparison, the centralized method7 gives a welfare
average of WG = 0, 6735.

The effect of egoism (α = 0) vs. benevolence (α = 1) is shown in Fig. 2
for open-minded and narrow-minded agents with a limit of 150 rounds. In this
experiment, as well as the following ones, both agents have the same α shown in
the abscissa, and both agents are either open-minded or narrow-minded. First,
we see in Fig. 2 that open-minded agents achieve agreements with higher wel-
fare values (left), more agreements (center) and with less rounds of deliberation
(right) than the close-minded agents. When α is low, both agents are egoistic

7 The centralized aggregation method has complete knowledge. Specifically, this
method receives all the cases from the two agents, receives the designer-level
ingredient-based evaluation function of each agent and computes the ingredient-
based utility for each recipe for each agent. Then performs exhaustive search to find
the pair of courses that maximize the group welfare function WG. This method has
complete knowledge of the utility of all alternatives in the experiment and unlimited
time to search all combinations, and gives an estimate of the best possible agreement
in ideal conditions.
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Fig. 2. Group welfare average (left), percentage of times reaching an agreement (cen-
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Fig. 3. Group welfare average (left), percentage of times reaching an agreement (cen-
ter), and number of proposals exchanged (right) for open-minded (©) and narrow-
minded strategies (

`
) agents with a 16% of shared recipes.

and thus their aspiration level decrease very slowly, which results in a lower num-
ber of agreements reached before the time limit (specially for narrow-minded).
When α is higher then the narrow-minded agents improve, but they are still
worse than the open-minded ones.

Another parameter affecting the outcome is the size of the case bases for
an issue k and the size of the shared recipes. The experiment shown in Fig.
3 has two agents with 150 recipes each agent, a 16% of shared recipes and
M = 150 rounds, showing the difference between open-minded and narrow-
minded agents. In this setting, with smaller case bases and a smaller set of
shared recipes, reaching an agreement is more difficult for the narrow-minded
agents: group welfare and number of agreements decrease. Moreover, the number
of rounds narrow-minded agents need to reach an agreement also increases. The
open-minded agents, however, even now that the size of shared alternatives is
smaller, keep a similar performance in group welfare, number of agreements, and
number of rounds as before.

8 Conclusion

Case-based reasoning is a methodology that allows to address AI under incom-
plete knowledge by exploiting dynamically available knowledge in a more flexible



way. We have addressed here the issues involved in group decisions (modeled here
as agreements). Classical mathematical models in social choice assume conditions
like perfect knowledge. Weakening this assumption requires a new approach, and
we have shown that CBR can deal with incomplete knowledge by exploiting the
dynamic exchange of information during deliberation.

Essentially, the classical approach encodes all knowledge in a utility function
over known alternatives. We have shown that incorporating a similarity function
over the space of possible descriptions of alternatives enables a CBR agent to
cope with unknown alternatives (and thus rational ignorance). We have also in-
cluded a process of deliberation, previous to the group decision itself, that allows
to introduce new, unknown alternatives in an incremental way. This approach
has been evaluated on the CCC dataset but could be applied to other domains
where a suitable similarity over alternatives can be designed.

Future work will address group decision for more than two agents (multi-
lateral agreement), which is a problem whose high complexity is well known.
The main idea will be to use the deliberation process to increase the knowledge
available to the agents, and then vote. That is to say, the goal is not to achieve
an agreement by consensus, since the complexity of the problem would require a
very long process. The goal will be that the deliberation process helps the agents
gaining new alternatives and acquiring a better model the preferences of other
agents before the final decision-making step of voting.
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