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Abstract. In this paper we introduce an extension of the lazy learning
method called Lazy Induction of Descriptions (LID). This new version
is able to deal with fuzzy cases, i.e., cases described by attributes tak-
ing continuous values represented as fuzzy sets. LID classifies new cases
based on the relevance of the attributes describing them. This relevance
is assessed using a distance measure that compares the correct partition
(i.e., the correct classification of cases) with the partitions induced by
each one of the attributes. The fuzzy version of LID introduced in this
paper uses two fuzzy versions of the Rand index to compare fuzzy parti-
tions: one proposed by Campello and another proposed by Hüllermeier
and Rifqi. We experimented with both indexes on data sets from the
UCI machine learning repository.

1 Introduction

Case-based reasoning (CBR) is based on the idea that similar problems (cases)
have similar solutions. Given a problem to be solved the first step of a CBR
method [1] is to retrieve a subset of cases assessed as the most similar to the
problem. Depending on the similarity criteria, the subset of retrieved cases will
be different and, thus, the solution of the new problem will also be different.
Notice that, differently than inductive learning methods (e.g., decision trees),
CBR methods are lazy in the sense that the problem solving process depends
on each new problem. Lazy Induction of Descriptions (LID) [3] is a lazy learning
method useful for classification tasks. LID retrieves precedents based on the
relevance of attributes. This relevance is assessed using a distance measure that
compares the correct partition (i.e., the correct classification of cases) with the
partitions induced by each one of the attributes.

Although LID is able to deal with relational objects represented as feature
terms [2], we take here a version of LID that handles objects (cases) represented
using propositional representation, that is, as a set of pairs attribute-value, where
the values are nominal (i.e., they take values in a finite set of values). However,
sometimes this representation is not appropriate (for instance to represent peo-
ple weight, age or some physical measures) being common the necessity to give
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continuous values to attributes. There are a lot of approaches dealing with at-
tributes taking continuous values. Some of these approaches discretize the con-
tinuous values and then they use the usual similarity measures on the discretized
values [9, 11]. By means of the discretization, continuous values can be handled
as nominal. However in this procedure there is a lost of information since the
values near to the thresholds of the discretization interval are considered equal
but, in fact, they are not. With the goal of reducing such lost of information,
other approaches use fuzzy sets to deal with continuous values (see for instance
[12]). Previous versions of LID handle cases with attributes having nominal val-
ues and, when cases have attributes taking continuous values, they are previously
discretized. The distance measure to compare partitions, denoted here by LM, is
the one introduced by López de Mántaras in [7]. In this paper we want to analyze
the performance of LID when the continuous values of attributes are represented
using fuzzy sets. Since the distance LM is not appropriate for this task, it must
be replaced by some other measure able to deal with fuzzy partitions.

In this paper we use two fuzzy versions of the Rand index [10]: one proposed
by Campello [5], which can compare a fuzzy partition with a crisp one, and
another one proposed by Hüllermeier and Rifqi [8], which can compare two
fuzzy partitions. In Section 2 we give a brief introduction of LID and the Rand
index. In Section 3 we explain the fuzzy version of LID. In Section 4 we show
the results of the experiments with fuzzy LID.

2 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant attributes of a problem and
searches in a case base for cases sharing these relevant attributes. The prob-
lem is classified when LID finds a set of relevant attributes shared by a subset
of cases all of them belonging to the same class. We call similitude term the
description formed by these relevant features and discriminatory set the set of
cases satisfying the similitude term.

Given a problem for solving p, the LID algorithm (Fig. 1) initializes D0 as
a description with no attributes, the discriminatory set SD0 as the set of cases
satisfying D0, i.e., all the available cases, and C as the set of solution classes
into which the known cases are classified. Let Di be the current similitude term
and SDi

be the set of all the cases satisfying Di. When the stopping condition
of LID is not satisfied, the next step is to select an attribute for specializing Di.
The specialization of Di is achieved by adding attributes to it. Given a set F
of attributes candidate to specialize Di, the next step of the algorithm is the
selection of an attribute f ∈ F . Selecting the most discriminatory attribute in
F is heuristically done using a distance (the LM distance in [3]). Such distance
is used to compare each partition Pf induced by an attribute f with the correct
partition Pc. The correct partition has as many sets as solution classes. Each
attribute f ∈ F induces in the discriminatory set a partition Pf with as many
sets as the number of different values that f takes in the cases. Given a distance
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Function LID (p, Di, SDi, C)
  if stopping-condition (SDi) then return class (SDi)
       else  fd := Select-attribute (p, SDi, C)
               Di+1 := Add-attribute (fd, Di)
               SDi+1 := Discriminatory-set (Di+1, SDi)
               LID (p, Di+1, SDi+1, C)
  end-if
end-function

Fig. 1. The LID algorithm. On the right there is the intuitive idea of LID.

∆ and two attributes f and g inducing respectively partitions Pf and Pg, we
say that f is more discriminatory than g iff ∆(Pf ,Pc) < ∆(Pg,Pc). This means
that the partition Pf is closer to the correct partition than the partition Pg. LID
selects the most discriminatory attribute to specialize Di. Let fd be the most
discriminatory attribute in F . The specialization of Di defines a new similitude
term Di+1 by adding to Di the attribute fd. The new similitude term Di+1 =
Di ∪ {fd} is satisfied by a subset of cases in SDi

, namely SDi+1 . Next, LID
is recursively called with SDi+1 and Di+1. The recursive call of LID has SDi+1

instead of SDi because the cases that are not satisfied by Di+1 will not satisfy any
further specialization. Notice that the specialization reduces the discriminatory
set at each step, i.e., we get a sequence SDn

⊂ SDn−1 ⊂ . . . ⊂ SD0 . LID has two
stopping situations: 1) all the cases in the discriminatory set SDj

belong to the
same solution class Ci, or 2) there is no attribute allowing the specialization of
the similitude term. When the stopping condition 1) is satisfied, p is classified as
belonging to Ci. When the stopping condition 2) is satisfied, SDj contains cases
from several classes; in such situation the majority criteria is applied, and p is
classified in the class of the majority of cases in SDj

.
Now let us explain how to select the most discriminant attribute using the

Rand index [10]. This index is used to compare clusterings being both classical
partitions and it takes as basic unit of comparison the way in which two objects
are clustered. The situation in which two objects are placed either together in
the same cluster in both clusterings, or placed in different clusters in both clus-
terings, represents a similarity between the clusterings. Conversely, the situation
in which two objects are in the same cluster in one clustering and in different
clusters in the other, shows a dissimilarity between both clusterings. The Rand
index assesses the similarity between clusterings based on the number of equal
assignments of pairs of objects normalized by the total number of pairs. Inside
LID, the Rand index is used to compare the partitions induced by each one of the
attributes describing the objects with the correct partition. Let X = {x1, . . . , xn}
be a finite set of objects, and let P = {P1, . . . , Pk} and Q = {Q1, . . . , Qh} be
two partitions of X in k and h sets, respectively. Given two objects x and x′
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(define (object :id OBJ-50) 
     (Sepallength (define (fuzzy-value)
                (Value 7.0)
                     (Membership 0 0 1)))
     (Sepalwidth (define (fuzzy-value)
                  (Value 3.2)
                  (Membership 0 1 0)))
     (Petallength (define (fuzzy-value)
                  (Value 4.7)
                  (Membership 0 0.6087 0.3913)))
     (Petalwidth (define (fuzzy-value)
                  (Value 1.4)
                  (Membership  0 1 0))))

(define (object :id OBJ-50) 
     (Sepallength 7.0)
     (Sepalwidth 3.2)
     (Petallength 4.7)
     (Petalwidth 1.4))

Fig. 2. On the left there is a propositional representation of an object. On the right
there is the representation of the same object extended with the membership vector.

we say that both objects are paired in a partition when both objects belong to
the same set of the partition. Otherwise, we say that both objects are impaired.
Now let us consider the set C := {(xi, xj) ∈ X ×X : 1 ≤ i < j ≤ n}, which can
be identified with the set of unordered pairs {x, y}, with x, y ∈ X. The Rand
index between the partitions P and Q is defined as follows:

R(P,Q) =
a + d

a + b + c + d
(1)

where a = |{(x, x′) ∈ C : x and x′ paired in P and paired in Q}|,
b = |{(x, x′) ∈ C : x and x′ paired in P and impaired in Q}|,
c = |{(x, x′) ∈ C : x and x′ impaired in P and paired in Q}|,
d = |{(x, x′) ∈ C : x and x′ impaired in P and impaired in Q}|.

Notice that in fact the Rand index gives a measure of the similarity between
two partitions. Therefore we say that the attribute f inducing Pf is more dis-
criminatory than the attribute g inducing Pg iff 1−R(Pf ,Pc) < 1−R(Pg,Pc).

3 A fuzzy version of LID

In this section we explain a fuzzy version of LID using two fuzzifications of
the Rand index: the one defined by Campello [5] and another one defined by
Hüllermeier and Rifqi [8]. Firstly, we will explain how to represent the fuzzy
cases handled by fuzzy LID. The left of Fig. 2 shows an example of an object
from the Iris data set represented as a set of pairs attribute-value. The right of
Fig. 2 shows the fuzzy representation of the same object. Notice that the value of
each attribute is an object that has in turn two attributes: Value and Membership.
The attribute Value takes the same value v that in the crisp version (for instance,
7.0 in the attribute Sepallength). The attribute Membership takes as value the
so-called membership vector associated to v, that is, a n-tuple µ, being n the
number of fuzzy sets associated to the continuous range of an attribute. Each
position i of µ represents the membership of the value v to the corresponding
fuzzy set Fi. In the next we will explain how to compute the membership vector.
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Given an attribute taking continuous values, let us suppose that the domain
expert has given α1, . . . , αn as the thresholds determining the discretization in-
tervals for that attribute. Let α0 and αn+1 be the minimum and maximum
respectively of the values that this attribute takes in its range. For each one of
the n + 1 intervals [α0, α1], . . . , [αn, αn+1] corresponds a trapezoidal fuzzy set
defined as follows, where 1 < i < n + 1:

F1(x) =


1 when α0 ≤ x ≤ α1 − δ1

α1+δ1−x
2δ1

when α1 − δ1 < x < α1 + δ1

0 when α1 + δ1 ≤ x

Fi(x) =


0 when x ≤ αi−1 − δi−1

x−(αi−1−δi−1)
2δi−1

when αi−1 − δi−1 < x < αi−1 + δi−1

1 when αi−1 + δi−1 ≤ x ≤ αi − δi
αi+δi−x

2δi
when αi − δi < x < αi + δi

0 when αi + δi ≤ x

Fn+1(x) =


0 when x ≤ αn − δn

x−(αn−δn)
2δn

when αn − δn < x < αn + δn

1 when αn + δn ≤ x ≤ αn+1

The parameters δi are computed as follows: δi = p · |αi − αi−1|, where the
factor p corresponds to a percentage that we can adjust. Figure 3 shows the
trapezoidal fuzzy sets defined when n = 2. For instance, for the Iris data set
the values of αi for the Petallength attribute are: α0 = 1, α1 = 2.45, α2 = 4.75,
α3 = 6.9. The value 4.7 taken by the object obj-50 in the attribute Petallength
(Fig. 2) has associated the membership vector (0, 0.6087, 0.3913), meaning that
such value belongs to a degree 0 to the fuzzy set F1 corresponding to the interval
[1, 2.45], to a degree 0.6087 to the fuzzy set F2 corresponding to [2.45, 4.75], and
to a degree 0.3913 to the fuzzy set F3 corresponding to [4.75, 6.9].

In the fuzzy version of LID, the correct partition is the same than in the
crisp case since each object belongs to a unique solution class. However, when

α1 α2

F1 F2 F3

δ1 δ1 δ2 δ2

α1 + δ1 -x
      2δ1

F1(x) =
x − (α1 − δ1)

      2δ1

F2(x) =

α0
α3

Fig. 3. Trapezoidal fuzzy sets. The values α1 and α2 are given by the domain expert
as the thresholds of the discretization intervals for a given attribute.
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the partitions induced by each attribute are fuzzy, an object can belong (to a
certain degree) to more than one partition set. Thus the algorithm of the fuzzy
LID is the same explained in Section 2 but using the particular representation
for the fuzzy cases and replacing the Rand index by one of its fuzzy versions.

3.1 The Campello’s fuzzy Rand index

In [5] Campello extends the Rand index to make it feasible to compare fuzzy
partitions. To this end, he first rewrite the original formulation of the Rand
index in an equivalent form by using basic concepts from set theory. Given the
partitions P and Q of a set of objects X, and the set C of pairs of elements in
X defined in Sec. 2, Campello defines the following subsets of C:
V = {(x, x′) : x and x′ paired in P}, W = {(x, x′) : x and x′ impaired in P},
Y = {(x, x′) : x and x′ paired in Q}, Z = {(x, x′) : x and x′ impaired in Q}.

According to these definitions, the coefficients in Eq. (1) can be rewritten as
follows: a = |V ∩ Y |, b = |V ∩ Z|, c = |W ∩ Y |, d = |W ∩ Z|. When we consider
fuzzy partitions, the sets above are fuzzy sets. Let Pi(x) ∈ [0, 1] be the degree
of membership of the object x ∈ X to the set Pi. Campello defines the fuzzy
binary relations V,W, Y and Z on the set C by using the following expressions
involving a t-norm ⊗ and a t-conorm ⊕:

V (x, x′) =
⊕k

i=1(Pi(x)⊗ Pi(x′)), W (x, x′) =
⊕

1≤i 6=j≤k(Pi(x)⊗ Pj(x′)),
Y (x, x′) =

⊕h
i=1(Qi(x)⊗Qi(x′)), Z(x, x′) =

⊕
1≤i 6=j≤h(Qi(x)⊗Qj(x′)).

As it is usually done, Campello takes the intersection of fuzzy binary relations as
the t-norm of the membership degrees of the pairs, and he uses the sigma-count
principle for defining the fuzzy set cardinality (see [6]). Thus, the coefficients a,
b, c, d are obtained as follows:

a = |V
⋂

Y | =
∑

(x,x′)∈C(V (x, x′)⊗ Y (x, x′))
b = |V

⋂
Z| =

∑
(x,x′)∈C(V (x, x′)⊗ Z(x, x′))

c = |W
⋂

Y | =
∑

(x,x′)∈C(W (x, x′)⊗ Y (x, x′))
d = |W

⋂
Z| =

∑
(x,x′)∈C(W (x, x′)⊗ Z(x, x′))

Then, the fuzzy version of the Rand index is also defined by the equation
(1) giving a measure of the similarity between two partitions. Since LID uses a
normalized distance measure, we have to take 1−R(P,Q). The Campello’s fuzzy
formulation of the Rand index is appropriated to compare a crisp partition with
a fuzzy partition. Notice that the correct partition in classification problems is
commonly crisp, therefore the use of the distance associated to the Rand index
of Campello inside LID is justified. We will denote as CI such distance.

3.2 The Hüllermeier-Rifqi’s fuzzy Rand index

When CI is used to compare two fuzzy partitions, it presents an important prob-
lem since the property of reflexivity is not satisfied. For this reason Hüllermeier
and Rifqi proposed in [8] a different fuzzy version for the Rand index which
allows the comparison of two fuzzy partitions and that satisfies all the desirable
metric properties. Let us recall their definition.
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Given a fuzzy partition P = {P1, P2, . . . , Pk}, each object x is characterized
by its membership vector P(x) = (P1(x), P2(x), ..., Pk(x)) ∈ [0, 1]k where Pi(x)
is the membership degree of x to the cluster Pi. Given two objects x and x′ and
two fuzzy partitions P and Q, the degree of concordance of both objects in these
partitions is defined by means the expression 1−|EP(x, x′)−EQ(x, x′)| where EP
is the fuzzy equivalence relation on X defined by EP(x, x′) := 1−‖P(x)−P(x′)‖
being ‖.‖ a distance on [0, 1]k yielding values in [0, 1]. Thus, two objects are
equivalent to a degree 1 when both have the same membership degrees in all
the sets of the partition. This fuzzy equivalence is used to define the notion of
concordance as a fuzzy binary relation, which generalizes the crisp binary relation
(induced by a crisp partition) defined on the set C of unordered pairs of objects
of X using the notions of paired and unpaired. Then, a distance measure on fuzzy
partitions using the degree of discordance is defined as |EP(x, x′) − EQ(x, x′)|.
Thus given a data set X of n elements, and two fuzzy partitions P and Q on
X, the distance between both partitions is the normalized sum of degrees of
discordance:

d(P,Q) =

∑
(x,x′)∈C |EP(x, x′)− EQ(x, x′)|

n(n− 1)/2
. (2)

Since the Rand index measures similarity, by using the expression 1−d(P,Q)
we can asses the similarity of two fuzzy partitions P and Q. In [8] the authors
prove that this similarity is a generalization of the Rand index, and they prove
also that the distance (2) is a pseudometric, i.e., it satisfies the properties of
reflexivity, symmetry, and the triangular inequality. Let us recall that a fuzzy
partition P = {P1, . . . , Pk} is called normal if a) for each x ∈ X, P1(x) + · · ·+
Pk(x) = 1, and b) it has a prototypical element, i.e., for every Pi ∈ P, there exists
an x ∈ X such that Pi(x) = 1. In their paper Hüllermeier and Rifqi also show
that for normal partitions, and taking the equivalence relation on X defined by

EP(x, x′) = 1− 1
2

k∑
i=1

|Pi(x)− Pi(x′)|, (3)

the distance defined by the equation (2) is a metric, i.e., it also satisfies the
property of separation (d(P,Q) = 0 implies P = Q). We have taken this metric
as measure of the distance in our experiments. From now on, we will call HR
the distance proposed by Hüllermeier and Rifqi using (3).

4 Experiments

We conducted several experiments on four data sets coming from the UCI Repos-
itory [4] using the fuzzy versions of the Rand index inside LID. We used four data
sets: iris, heart-statlog, glass and thyroids. For the evaluation of the crisp Rand
index we taken the discretization intervals provided by Weka [13], and the same
thresholds have been used for defining fuzzy sets. Thus, for instance, for the Iris
data set, Weka gets the following intervals:
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– Attribute Petalwidth: (∞, 0.8], (0.8, 1.75], (1.75,∞)
– Attribute Petallength: (∞, 2.45], (2.45, 4.75], (4.75,∞)
– Attribute Sepalwidth: (∞, 2.95], (2.95, 3.35], (3.35,∞)
– Attribute Sepallength: (∞, 5.55], (5.55, 6.15], (6.15,∞)

We performed three kinds of experiments: 1) using the crisp Rand index
(with the discretization proposed by Weka); 2) using the fuzzyfication proposed
by Campello (CI); and 3) using the fuzzyfication proposed by Hüllermeier-Rifqi
(HR). The experiments with the crisp Rand index are considered as the baseline
of the LID performance. In the fuzzy experiments, to calculate the values δi (see
Sec. 3) we experimented with p = 0.05, 0.10, 0.15, 0.20. Moreover when using the
Campello’s fuzzyfication we also need to choose a t-norm and a t-conorm. In our
experiments we taken the Minimum and the Maximum, respectively.

Table 1 shows the results of LID after seven trials of 10-fold cross-validation.
For each index, there are three columns C, I and M corresponding respectively to
the percentage of correct, incorrect and multiple answers. LID produces multiple
answers when the last similitude term cannot be further specialized and the cases
included in its associated discriminatory set belong to several solution classes. In
such situation, LID is not able to classify the new problem and, depending on the
domain, this can be interpreted as no solution. For this reason we counted them
separately. We chosen to show the results obtained taking p = 0.15 since this
is the value producing the least percentage of incorrect classifications. Results
obtained with the values 0.05 and 0.10 are not significantly different from those
with p = 0.15. Worst results are those obtained with p = 0.20. The parameter p is
a measure of the overlapping degree between two fuzzy sets. In our experiments,
the error percentage is not largely influenced by this degree.

It is difficult to extract a clear conclusion about which is the best method
since none of them is better than others in all the domains, however the fuzzy
versions of LID seems to be better than the crisp version. Our interpretation of
this is that the use of fuzzy sets probably supports a more finest classification
since, compared with the crisp version, the use of both CR and HR produce
a lower percentage of both incorrect and multiple classifications (this happens
for all domains except thyroids). Thus, when domains have classes with unclear
frontiers (i.e., it is difficult to find a discriminant description for them), the use of
fuzzy sets can correct these frontiers. Notice also that the percentage of multiple

Rand CI HR

Data C I M C I M C I M

iris 88.78 5.61 7.89 91.73 5.32 2.95 93.72 1.33 4.95
glass 35.46 9.50 55.04 9.56 6.26 84.18 30.63 13.97 55.40
thyroids 86.56 4.60 8.84 79.15 5.37 15.48 81.19 5.37 13.44
heart-statlog 65.40 16.19 18.41 54.55 14.97 30.48 56.40 16.67 26.93

Table 1. Percentage of correct classifications (C), incorrect classifications (I) and mul-
tiple classifications (M) of LID using the Rand index, CI and HR. Results are the mean
of 7 trials of 10-fold cross-validation and they correspond to p = 0.15.
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classifications produced by the Rand index is clearly lower than the one pro-
duced by both fuzzy versions (except for the iris domain). Since the percentage
of incorrect classifications is also higher for the Rand index, we conclude that
some of the objects that have not been classified using CI and HR (i.e., they
produced multiple classifications) have been incorrectly classified using the Rand
index. Therefore, the choice of a method has to be done taking into account the
characteristics of the application domain. Sometimes it is preferable do not have
answer in front of having an incorrect one; however, for some domains, to have
more than one answer could be a valuable clue for classifying an object (for
instance, when performing knowledge discovery).

Concerning the two fuzzy versions of LID, HR produces a lower percentage
of multiple classifications than CI (except for the iris domain), however the
percentage of incorrect classifications is higher in two of the domains (glass and
heart-statlog). This means that CI is “more sure” in the classification of cases
although a lot of times it cannot give a unique classification. Notice that for
the glass domain the percentage of incorrect classifications is the lowest one;
however the percentage of multiple classifications (i.e., no answer) is the highest
one. We also conducted some experiments with the bal data set, also from the
UCI repository, and the results of both HR and CI are not significantly different.
Both indexes produce a percentage of incorrect classifications (3.52%) clearly
lower than the produced by the Rand index (25.80%). Nevertheless, the Rand
index produces a higher percentage of correct answers than the fuzzy indexes
(65.53% in front of 60.54%).

Our conclusion is that the difference among the results using crisp and fuzzy
indexes is strongly influenced by domain characteristics. Therefore it is neces-
sary to perform an accurate analysis of the application domain (for instance,
separability of classes, range of the values, etc.) in order to clearly determine the
situations in which an index is better than others.

5 Conclusions and Future Work

We have introduced a new version of the method LID able to deal with fuzzy
cases. Thus, cases have attributes taking continuous values which have been
represented using fuzzy sets. In the current paper we experimented with LID
using two different fuzzyfications of the Rand index one proposed by Campello
and the other one proposed by Hüllermeier and Rifqi. From our experiments we
concluded that it is difficult to assess a clear judgement about which measure is
the best one in terms of classification accuracy. We performed experiments with
different overlapping degrees of the fuzzy sets representing the values of the
attributes, and we seen that this degrees do not significantly influence accuracy
results. Our main conclusion is that the choice among the measures has to be
made from an accurate analysis of the characteristics of the application domain.

All measures have a high computational cost, however we plan to experiment
with the fuzzy extension proposed by Campello in order to exploit two param-
eters of the method: the t-norm and the t-conorm. In the experiments we used
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respectively the Minimum and the Maximum. In the future we plan to experi-
ment with the t-norms of  Lukasiewicz and Product and their dual t-conorms.

We also plan to use the similitude term generated by LID as a partial de-
scription of the solution classes as we have already done for the crisp version
of LID. Now, this similitude term is fuzzy and this opens new opportunities to
describe classes. In particular, we are thinking on knowledge discovery processes
where the domain experts cannot define clearly the classes. In such domains, a
fuzzy description of the classes could be very useful.
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