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Abstract. We consider the repetition-free longest common subsequence
(RFLCS) problem, where the goal is to find a longest sequence that
appears as subsequence in two input strings and in which each character
appears at most once. Our approach is to transform a RFLCS instance
to an instance of the maximum independent set (MIS) problem which
is subsequently solved by a mixed integer linear programming solver.
To reduce the size of the underlying conflict graph of the MIS problem,
a relaxed decision diagram is utilized. An experimental evaluation on
two benchmark instance sets shows the advantages of the reduction of
the conflict graphs in terms of shorter total computation times and the
number of instances solved to proven optimality. A further advantage of
the created relaxed decision diagrams is that heuristic solutions can be
effectively derived. For some instances that could not be solved to proven
optimality, new state-of-the-art results were obtained in this way.

Keywords: Repetition-free longest common subsequence · Decision
diagram · Maximum independent set

1 Introduction

The longest common subsequence (LCS) problem asks for the longest string
which is a subsequence of a set of input strings. A subsequence is a string that
can be obtained from another string by possibly deleting characters. For instance
a longest common subsequence of the two input strings ABCDBA and ACBDBA is
ABDBA. The LCS problem has applications in bioinformatics, where strings often
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represent segments of RNA or DNA [13,16,18]. Other fields where the LCS prob-
lem appears are text editing [17], data compression, file comparison [2,19], and
the production of circuits in field programmable gate arrays [8]. If the number
of input strings m is constant, the problem is solvable by dynamic programming
(DP) in O(nm) time, where n is the length of the longest input string [13].
Otherwise, if the number of input strings is arbitrary, the problem is NP-hard.
An additional constraint which arises in the context of gene duplication in the
domain of genome rearrangement and which we consider in this work is that
each character may appear in a common subsequence (CS) at most once. This
problem, first introduced by Adi et al. [1] and denoted as the repetition-free LCS
(RFLCS) problem, is usually considered for two input strings and is even then
APX-hard [1].

This work builds upon the work of Blum et al. [6], where instances of the
RFLCS problem are transformed to instances of the maximum independent set
(MIS) problem. Hereby, an independent set of the underlying conflict graph of
the MIS problem corresponds to a repetition-free common subsequence (RFCS)
of the RFLCS instance. To solve the MIS problem the integer linear programming
(ILP) solver CPLEX is applied. The performance of the ILP solver depends to
a large extent on the size of the conflict graph. Therefore, in [6] the size of the
conflict graph is reduced by filtering redundant nodes based on lower and upper
bounds. This boosts the range of instances that can be solved to optimality as
well as the quality of heuristic solutions obtained for larger instances. In this
way, numerous new state-of-the-art results were obtained.

Contributions. To reduce the size of the conflict graph even further we compile a
relaxed multivalued decision diagram (MDD) for the RFLCS problem, yielding
a performance improvement of the subsequently applied ILP solver. In the last
decade, decision diagrams (DDs) have been recognized as a powerful tool for
combinatorial optimization problems; see [3] for a comprehensive survey. In par-
ticular, relaxed DDs may provide compact representations of discrete relaxations.
Besides allowing for new interference techniques in constraint programming and
novel branching schemes, they may also provide tight dual bounds. In case of
the RFLCS problem it is further possible to effectively derive heuristic solutions
directly from the relaxed MDD. This has the advantage that if the ILP solver
is not able to solve an instance to proven optimality within a given time limit
then the compiled relaxed MDD may be able to provide a tighter upper bound
as the ILP solver does and/or may be able to deliver a better heuristic solution.

After an overview of related work in Sect. 2 we give a formal problem defini-
tion in Sect. 3. The MIS problem and a corresponding ILP model are described
in Sect. 4. Decision diagrams for the RFLCS are introduced in Sect. 5, and Sect. 6
describes the incremental refinement of relaxed MDDs. Section 7 provides exper-
imental results, showing that the suggested approach yields to a performance
improvement in terms of average computation times, number of instances solved
to optimality, and average solution quality.
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2 Related Work

As already mentioned, the current work builds upon the approach of Blum
et al. [6]. Besides the RFLCS, Blum et al. also consider the longest arc-preserving
common subsequence (LAPCS) problem [15], where additional dependencies
among characters must be respected in a solution, as well as the longest com-
mon palindromic subsequence (LCPS) problem [11], where the resulting sequence
must also be a palindrome. All these LCS variants where solved by transforming
instances to instances of the MIS problem. Moreover, the equivalent maximum
clique problem of the complement of the conflict graph is solved heuristically by
the LSCC-BMS solver as well as exactly by the LMC solver. Both solvers are
currently among the leading solvers for the maximum clique problem.

In the literature LCS related problems with additional constraints are well
known for almost 40 years and research in that field is still active due the practical
relevance and computational difficulties. Besides RFLCS and the already men-
tioned LAPCS and LCPS problems other considered variants are, for instance,
the constrained longest common subsequence problem [20] or the generalized
constrained longest common subsequence problem [10]. For further problem vari-
ants we refer to survey papers such as [7].

The RFLCS problem in particular was tackled by several heuristic
approaches [1,4,9]. The so far best heuristic is a construct, merge, solve and
adapt (CMSA) metaheuristic combined with beam search as proposed by Blum
and Blesa [5]. The authors showed that this approach can outperform other
heuristics as well as the CPLEX solver applied to an ILP model of the RFCLS
problem.

3 Problem Definition

The RFLCS problem considers a set of two input strings S = {s1, s2} over a
finite alphabet Σ. The goal is to find the longest subsequence which is common
for both input strings s1 and s2 such that there is no character which occurs
more than once. The character at position i is denoted by s[i]. A matching
m = (m1,m2) is a pair of positions s.t. s1[m1] = s2[m2] and the corresponding
character is denoted by c(m) = s1[m1]. Hence, the character c(m) of a matching
m is a possible candidate to appear in a common sequence (CS). A matching
m dominates a matching n, denoted as m � n, if m1 ≤ n1 ∧m2 ≤ n2, meaning
that in a possible CS c(m) may appear before c(n). Therefore, a CS can be
represented by a sequence of matchings (m1,m2, . . .) s.t. c(m1), c(m2), . . . maps
to the CS and each matching of the sequence dominates each subsequent match-
ing of the sequence. This observation is important since relaxed MDDs for the
RFLCS problem will encode such sequences of matchings. If for two matchings
m and n neither m � n nor n � m holds then c(m) and c(n) cannot appear
together in a CS which will be henceforth referred to as m and n are in conflict,
denoted as n�m. Figure 1a shows an example of a RFLCS instance with input
strings s1 = ABCDBA and s2 = ACBDBA and an optimal solution of ACDB. In this
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example, matching m1 dominates matching m2 and m3 whereas matching m2

is in conflict with matching m3.
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Fig. 1. (a) Example of a RFLCS instance with input strings s1 = ABCDBA and
s2 = ACBDBA. Gray circles correspond to the matchings M = {m1, . . . ,m10} of the
instance. (b) Corresponding MIS instance. (c) Exact MDD DM with mat(DM ) =
{m1, . . . ,m5,m10}. The state of each node u is partially indicated by m(u). (d)
Relaxed MDD where nodes associated with matching m4 in layer L3 are merged.
(e) MIS instance obtained from matchings mat(DM ).

4 Integer Linear Program and Independent Set Model

An instance of the RFLCS problem can be solved by transforming it into an
instance of the MIS problem. Thereby, each matching corresponds to a node of
the underlying conflict graph of the MIS problem. An edge is added between two
nodes if the corresponding matchings are in conflict or they refer to the same
character; see Fig. 1b for an example. A solution of the MIS instance corresponds
to a solution of the RFLCS instance and vice versa, since only matchings are
selected that are not in conflict with each other and can therefore appear in the
same CS and for each character there is at most one matching selected. The
resulting CS can be derived from the set of selected matchings by a topological
sort considering the domination relationship.

We solve the MIS instance by a corresponding ILP model. Let M be the set
of all matchings of the RFLCS instance and thus nodes of the MIS instance. We
use a binary decision variable xm for each matching m ∈ M indicating whether
the matching is selected (=1) for the solution or not (=0). The model is:

ILP(M ) = max
∑

xm ∈M

xm (1a)

s.t. xm + xn ≤ 1 m,n ∈ M : m � n (1b)
∑

xm ∈Ma

xm ≤ 1 a ∈ Σ (1c)

xm ∈ {0, 1} m ∈ M (1d)
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The number of selected matchings is maximized. Inequalities (1b) ensure that the
CS constraints are satisfied, i.e., no conflicting matchings are selected together.
The repetition-free (RF) constraint is realized by Inequalities (1c), where set
Ma = {m ∈ M | c(m) = a} contains all matchings corresponding to the same
character a ∈ Σ.

5 Decision Diagrams for the RFLCS Problem

We use a relaxed MDD to derive a reduced set of matchings M ′ ⊆ M to subse-
quently solve the model ILP(M ′). Our approach compiles relaxed MDDs in an
iterative way s.t. if set M ′ is derived from a relaxed MDD then another relaxed
MDD is compiled w.r.t. set M ′ to possible derive an even smaller set M ′′ ⊆ M ′.
This procedure is repeated until some termination criterion is fulfilled.

A MDD w.r.t. a set of matchings M is a directed acyclic multi-graph DM =
(V,A) with one root node r. All nodes are partitioned into at most |Σ| + 1
layers L1, . . . , L|Σ|+1, where Li, i > 0 contains only nodes that are reachable
from r over exactly i − 1 arcs and L1 is a singleton containing only r. An arc
α = (u, v) ∈ A(DM ) is always directed from a source node u in some layer Li

to a target node v in a subsequent layer Li+1. Each arc α is associated with a
matching mat(α) ∈ M that represents the assignment of character c(mat(α)) ∈
Σ to the i-th position of a CS. For convenience we write c(α) for c(mat(α)).
Any directed path ϕ = (α1, α2, . . .) originating from r identifies a sequence of
characters (c(α1), c(α2), . . .) and thus a (partial) solution. A node without any
further outgoing arcs is a sink node. An exact MDD encodes precisely the set of
all feasible solutions. Due to the NP-hardness of the RFLCS problem such exact
MDDs tend to have exponential size.

Therefore we consider more compact relaxed MDDs which encode supersets
of all feasible solutions. In such a relaxed MDD nodes of an exact MDD are
superimposed (merged) so that at each layer a maximum allowed number of
nodes, called width, is not exceeded. We do this merging in such a way that any
path from the root still represents a CS, but RF constraints may be violated.
The length of the longest path in such a relaxed MDD then represents an upper
bound to the length of a RFLCS.

To compile a MDD, a DP formulation of the considered problem is usually
the starting point [14]. Each node u ∈ V (DM ) is associated to a state of the DP
formulation. For the RFLCS problem, the DP formulation is defined as follows.
Consider for a matching m ∈ M the set DM (m) = {m′ ∈ M \ {m} | m � m′}
of possible successor matchings of m that may appear in the same CS after m.
Note that set DM (m) can be efficiently pre-computed for each m ∈ M . Then a
state (m(u), P (u), S(u)) associated to node u consists of

– a matching m(u) whose successor matchings DM (m(u)) represent the
remaining matchings to consider further,

– set P (u) ⊆ Σ containing all letters that may still be appended to the CS,
– set S(u) ⊆ Σ containing all letters that appear on some paths from r to u.
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The root state is (mr, Σ, ∅) with the artificial matching mr = (−1,−1), and
all characters may be appended to it. Note that DM (mr) = M . An arc
α = (u, v) corresponds to a transition from state (m(u), P (u), S(u)) to state
(m(v), P (v), S(v)) that is achieved by appending character c(α) to the CS w.r.t.
to the remaining matchings DM (m(u)). Instead of considering all matchings
from DM (m(u)) as possible outgoing transitions, we consider only matchings
that can appear directly after m(u) in a longest CS, i.e., matchings from the
subset ND(u) = {m′ ∈ DM (m(u)) | �m′′ ∈ DM (m(u)) \ {m′} : c(m′′) �∈
S(u)∧m′′ � m′} which are not dominated by any other matching in DM (m(u)).
The transition function to obtain the successor state (m(v), P (v), S(v)) by con-
sidering matching mat(α) ∈ DM (u) is defined as

τ((m(u), P (u), S(u)),mat(α)) ={
(mat(α), P (u) \ {c(α)}, S(u) ∪ {c(α)}) if c(α) ∈ P (u) ∧ mat(α) ∈ ND(u)

0̂ otherwise

(2)

where 0̂ represents the infeasible state. Note that no node 0̂ is created in DM

and the respective arcs are also skipped.
Moreover, a state (m(u), P (u), S(u)) may be replaced by a strengthened state

(m(u), P ′(u), S(u)), where P ′(u) = {a ∈ P (u) | ∃m′ ∈ DM (m(u)) : a =
c(m′)} ⊂ P (u) without excluding any feasible solutions.

So far, we considered exact MDDs. For relaxed MDDs we have to define
a state merger which computes the state of merged nodes. To still encode all
feasible CSs in the relaxed MDD, only nodes of the same layer and with the
same associated matching are merged. Let U be a subset of nodes s.t. all nodes
are associated to matching n, i.e. ∀u ∈ U : m(u) = n, then an appropriate
state merger is ⊕(U) =

(
n,

⋃
u∈U P (u),

⋃
u∈U S(u)

)
. Since we restrict the state

merger to nodes with the same associated matching, the possibilities to reduce
the size of the relaxed MDD are also limited. However, since |M | is at most the
product |s1| |s2| of the lengths of the two input strings s1 and s2, the size of each
layer is still polynomially bounded by O(|s1| |s2|).

Let mat(DM ) = {m(u) | u ∈ V (DM ) \ {r}} ⊆ M be the set of matchings
derived from DM . To see that mat(DM ) is indeed a feasible set of matchings to
solve the model ILP(mat(DM )) from Sect. 4, remember that each path from r
in DM encodes a feasible CS. Hence, each such path can also be described as a
sequence of matchings from M . In particular this is true for the matchings of a
RFLCS, which must be therefore also contained in mat(DM ).

Problem Specific Upper Bounds. To reduce mat(DM ) further we filter arcs and
nodes based on sub-optimality. The idea is to compute for each node u an upper
bound Zub(u) on the number of characters that can appear in a common subse-
quence after the character c(m(u)) of matching m(u). Then we can prune each
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Algorithm 1. Incremental Refinement
1: Input: set of matchings M , lower bound lb, maximum width threshold W
2: sbest ← ε
3: construct initial relaxed decision diagram DM

4: repeat
5: filter-bottom-up(DM , max(lb, |sbest|))
6: srfcs ← derive-primal-solution(DM ) and update sbest if |sbest| < |srfcs|
7: until no new best solution sbest found
8: determine priority ranking a∗

1, . . . , a
∗
|Σ| of all characters

9: repeat
10: M ← mat(DM )
11: for i ← 1 to |Σ| + 1 do
12: refine(Li, a∗

1, . . . , a
∗
|Σ|, W )

13: filter arcs between Li and Li+1

14: end for
15: repeat
16: filter-bottom-up(DM , max(lb, |sbest|))
17: srfcs ← derive-primal-solution(DM ) and update sbest if |sbest| < |srfcs|
18: until no new best solution sbest found
19: until |M | < |mat(DM )|
20: return (DM , sbest)

node u in the relaxed MDD where Z lp(u) + Zub(u) < lb holds, where lb is a
known lower bound on the length of the RFLCS and Z lp(u) is the length of the
longest path from r to u. We compute the upper bound for each node u by

Zub(u) = min{|P (u)|,UBlcs(m(u)), max
α=(w,u)

{Zub(w) − 1}, Z lp↑(u)}. (3)

The first term takes the number of characters into account that can still be
appended to the CS after matching m(u). The second term UBlcs(m(u)) =
LCS(m1,m2) is based on DP and computes the length of the longest common
subsequence from matching m(u) onward. Note that this bound can be obtained
in constant time by using a data structure known as scoring matrix, which can
be computed during preprocessing for two input strings in O(|s1| |s2|) time [6].
The third term takes the upper bounds from the parent nodes of u into account.
Finally, the last term corresponds to the length of the longest path from u to
any sink node in the relaxed MDD. Note that this term is only available if the
whole relaxed MDD is already compiled.
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6 Incremental Refinement

Our approach to compile a relaxed MDD DM w.r.t. matching set M for the
RFLCS problem is based on the incremental refinement (IR) algorithm from
Cire and van Hoeve [12] for sequencing problems. Since DM considers the CS
constraints exactly and only relaxes the RF constraint, paths in DM originating
from r will correspond to CSs where characters may appear more than once. We
use the ideas from [12] to ensure at least for some characters that they occur at
most once at each path for refining DM . Cire and van Hoeve [12] showed that the
size of a given relaxed MDD will be at most doubled to establish this property
for one more character.

The algorithm applies repeatedly two major steps—filtering and refinement—
until some termination condition is fulfilled. Let a∗

1, a
∗
2, . . . , a

∗
|Σ| be a ranking of

the characters in Σ s.t. a∗
1 is the most important character to appear at most

once at each path in DM to get a strong relaxation. The following refinement step
is applied layer by layer starting with L1: For each character a∗ = a∗

1, a
∗
2, . . . , a

∗
|Σ|

we identify nodes u s.t. a∗ ∈ P (u) ∩ S(u) and split them into two new nodes
u1 and u2 where an incoming arc α = (v, u) is redirected to u1 if a∗ ∈ P (u) \
{c(α)} and to u2 otherwise. All outgoing arcs are replicated for both nodes
u1 and u2. We do this as long as the size of the layer is below a maximum
width threshold W . For more details and a correctness proof in the context of
sequencing problems see [12]. Due to the splitting of nodes the corresponding
states may be changed and some of the outgoing arcs from the current layer to the
next layer may become infeasible. Those arcs are filtered for each layer after the
refinement step finishes. Algorithm 1 shows this at lines 12 and 13. The algorithm
terminates if set mat(DM ) could not be further reduced by the previously applied
refinement/filtering round. The other main parts of the algorithm are:

Initial Relaxed MDD. The IR algorithm starts with an initial relaxed MDD.
Usually, this initial relaxed MDD is a naive one of width one, i.e., a relaxed
MDD with just a single node at each layer. However, in our case we want to
respect the CS constraints and only superimpose states that correspond to the
same matching. Therefore we compile the initial DM layer-by-layer in a top-
down approach. At each layer Li, i ≥ 1, we expand all nodes using the transition
function (2), thus creating for each feasible transition a corresponding node in
Li+1 and adding the corresponding arc if the node is not sub-optimal according
to Eq. 3. Then all nodes in Li+1 with the same corresponding matching are
merged. Since no feasible CS can be longer than the upper bound Zub(r), the
compilation of DM stops at the (Zub(r) + 1)-th layer.

Character Ranking for Refinement. To determine priorities for the characters we
use some structural information obtained from the initial MDD. For this purpose
let All↑(u) for each node u ∈ V (DM ) be the set of characters that appear on
all paths from node u to a sink node. Note that set All↑(u) can be efficiently
computed in a recursive way by a single bottom-up pass. If there exists a node
v with an incoming arc α = (u, v) s.t. c(α) ∈ All↑(v) holds, then each path
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originating from r and leading to any sink node will be infeasible if the path
traverses α since character c(α) will appear more than once in a corresponding
CS, i.e., the RF constraint will be violated. In [12] such arcs could be safely
removed without also removing any feasible solution from the relaxed MDD. In
our case this is not possible since solutions have arbitrary length and the path
from r to v could still correspond to a complete feasible solution. However, we
can use these violations to determine for which character it is most important to
appear on all paths at most once to get a strong relaxation. Hence, we count for
each character how often such a violation occurs in DM and sort the characters
according to non-increasing numbers of violations. Ties are resolved by preferring
characters that appear in more matchings.

Filtering and Deriving New Primal Solutions. Lines 4–7 and 15–18 perform the
following steps. First the function filter-bottom-up performs a single bottom up
pass where for each node u the length of the longest path Z lp↑(u) from u to any
sink node is computed and the upper bound Zub(u) is updated accordingly. If
Z lp(u) + Zub(u) < lb then node u and all incident arcs are removed from DM .

After filtering we try to derive from DM a new best heuristic solution. Since
each path in DM originating from r corresponds to a CS, we can derive a RFCS
by removing duplicate letters. This is done in two steps. First, a bottom-up pass
is performed where primal bounds are computed: For each node u ∈ DM we
recursively determine set B↑(u) = B↑(v)∪{c(α′)} where outgoing arc α′ = (u, v)
maximizes α′ = arg maxα=(u,v) |B↑(v) ∪ {c(α)}|. Ties are resolved by sticking
at the first arc that maximizes the expression. If u has no outgoing arcs then
B↑(u) = ∅. Note that |B↑(r)| is a valid primal bound on the RFLCS problem,
since only the union is taken to compute B↑(.). To improve this bound fur-
ther, the second step performs a top-down pass where set B↓(v) is recursively
computed for each node v using the information of the precisely computed set
B↑(v). Hence, B↓(v) = B↓(u)∪{c(α′)} where incoming arc α′ = (u, v) maximizes
α′ = arg maxα=(u,v) |B↓(u)∪{c(α)}∪B↑(v)| using |B↓(v)∪{c(α)}| as tie break-
ing criterion. A sink node v′ that maximizes |B↓(v′)| then provides the strongest
primal bound. A respective RFCS is derived by going from v′ backwards to r,
skipping any character that already occurred along the path.

If a new best heuristic solution could be obtained in this way then the filter-
bottom-up step is repeated and we try again to obtain a new best heuristic
solution.

Main Procedure: Algorithm 2 shows the main procedure to solve an instance of
the RFLCS problem. As input the algorithm takes the set of input strings S, a
possibly known lower bound on the RFLCS length or zero, and the maximum
width threshold W for the relaxed MDDs. The original set of matchings M
reduced by performing iteratively the following steps. The first step processes
the input strings s1 and s2 by removing characters that have no associated
matching in M and characters that appear immediately one after the other in
the input strings. For example, if character a ∈ Σ appears in an input string at
both position i and i + 1 then a can be removed from i + 1 without removing
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Algorithm 2. Main Procedure for solving the RFLCS problem
1: Input: input strings S, lower bound lb, maximum width threshold W
2: sbest ← ε
3: derive original M w.r.t. S
4: repeat
5: process S w.r.t. M
6: M ← {m ∈ M | UBBLUM(m) ≥ max(lb, |sbest|)}
7: (DM , srfcs) ←IR(M, max(lb, |sbest|), W )
8: M ← mat(DM ) and update sbest if |srfcs| > |sbest|
9: return sbest if sbest = Z lp↑(r)

10: until no characters can be removed from input strings
11: silp ← solve ILP(M)
12: update sbest if |silp| > |sbest|
13: return sbest

any feasible solution. Furthermore, if the pattern abab with a, b ∈ Σ has been
discovered in one of the input strings then the last b can be removed from the
input string due to the RF constraint. Next, M is reduced by removing matchings
m ∈ M where the upper bound used in [6], denoted by UBBLUM(m) is lower
than our currently best primal bound. This upper bound is based on the first
two terms in Eq. (3), i.e., on the number of characters that can appear in a RFCS
that contains m ∈ M and on the length of the LCS that contains m. Note that
the difference to Eq. (3) is that UBBLUM(m) is an upper bound on the length
of a complete RFCS containing m wheres Eq. (3) describes an upper bound
on the remaining part from m onward. With this reduced set M we compile
a relaxed MDD DM . If the length of the hereby derived RFCS srfcs is equal
to the longest path in DM then srfcs is an optimal solution and the algorithm
terminates. Otherwise, if due to the reduced set mat(DM ) further characters
can be removed from s1 and s2 then we repeat the procedure until no further
characters can be removed. Note that since the size of the input strings are
reduced at each iteration also UBBLUM(m) changes, which may further reduce
set M . Finally the ILP model from Sect. 4 is solved for set M .

7 Experimental Results

To test and compare our approach we used two benchmark sets from [4]. The first
set, Set1, consists of 1680 randomly generated instances. For each combination
of the input string lengths n ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096} and the
alphabet sizes |Σ| ∈ {n

8 , n
4 , 3n

8 , n
2 , 5n

8 , 3n
4 , 7n

8 } there are 30 instances. The second
set, Set2, consists of 30 randomly generated instances for each combination of
the alphabet size |Σ| ∈ {4, 8, 16, 32, 64, 128, 256, 512} and the maximal repetition
of each character, reps ∈ {3, 4, 5, 6, 7, 8}. This set has a total of 1440 instances.

The algorithms were implemented using GNU C++ 5.4.1. All tests were
executed on a single core of an Intel Xeon E5649 with 2.53 GHz and 16 GB
RAM. The ILP model from Sect. 4 was solved with CPLEX 12.7 with a CPU-
time limit of 3600 s. For Algorithm2, henceforth denoted as MDD+CPLEX, the
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Fig. 2. Average reduction of match-
ings obtained from UB+CPLEX and
MDD+CPLEX with different maxi-
mum width thresholds W .

Fig. 3. Average difference between
the obtained reduction rates of
UB+CPLEX and MDD+CPLEX with
W = 5000.

maximum width threshold was set to W = 5000. This value was determined in
preliminary experiments s.t. set M could be reduced as much as possible and
as many instances as possible can be solved to optimality within the memory
limit of 16 GB. MDD+CPLEX is compared to the approach from Blum et al. [6],
henceforth denoted as UB+CPLEX, where the ILP(M ′) model is solved with the
reduced set of matchings M ′ = {m ∈ M | UBBLUM(m) < lb}. Both approaches
use the lengths of the currently best known solutions from the literature as initial
lower bound lb. Note that the compiled relaxed MDDs from Algorithm 1 are not
strictly limited to W since the initial relaxed MDD could already contain layers
that contain more nodes than W . However, such layers are not further refined
during the compilation.

The average reduction rate of matchings from M is shown in Fig. 2 for
12 instance classes by means of bar plots. The first bar corresponds always
to the UB+CPLEX approach whereas the next three bars corresponds to the
MDD+CPLEX approach with different values for W ∈ {1, 1000, 5000}. Note
that W = 1 means that only the initial relaxed MDD is compiled and no further
refinement will take place. As expected, the obtained reduction rate increases
with W . The boxplots in Fig. 3 report the average difference redMDD − redUB

between the average reduction rate redUB obtained from UB+CPLEX and
redMDD obtained from MDD+CPLEX in percentage points aggregated over the
ratio between n and |Σ| in case of Set1 and over |Σ| in case of Set2. On aver-
age the MDD+CPLEX approach is able to reduce the original set of matchings
by more than 25.79% and 41.28% as UB+CPLEX does, for Set1 and Set2,
respectively.
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Detailed aggregated results are presented in Tables 1 and 2 where the first
two columns show the instance characteristics and the third column shows the
average length of the so far best known solution from the literature. Columns obj
report for each tested approach the average length of the best obtained solutions.
In case of MDD+CLPEX these solutions are either those obtained from the ILP
model or the ones found during the compilation of the relaxed MDDs. In case of
UB+CPLEX a “-” symbol indicates that CPLEX was not able at all to derive
a primal solution within the time and memory limits. Average optimality gaps,
shown in columns gap, are calculated by 100% × (ub − obj)/ub where ub is for
each approach the best obtained upper bound. In case of MDD+CPLEX this is
either the upper bound obtained from the ILP model or the length of the longest
path from a compiled relaxed MDD. Columns tprep list average preprocessing
times in CPU seconds including the computation of the reduced set of matchings
M (see Algorithm 2, Line 10). Columns ttot list average total computation times
in CPU seconds until the algorithm terminates including tprep plus the time
CPLEX needs and columns #opt report the total numbers of instances solved
to optimality. In case of MDD+CPLEX the second number corresponds to the
number of instances where optimality could already be proven by the compiled
relaxed MDD at Line 9 in Algorithm 2. Hence, the number of times where it
was not required to solve the ILP model at all. Average reduction rates of the
original set of matchings are reported by columns red.

Regarding the number of instances solved to proven optimality, note that
already UB+CPLEX was quite successful with a total of 90.26%. More pre-
cisely, 1489 out of 1680 instances from Set1 and 1327 out of 1440 instances
of Set2 could be solved to proven optimality by UB+CPLEX. Nevertheless,
MDD+CPLEX is able to solve significantly more instances to proven optimal-
ity: 1541 instances from Set1 and 1381 instances of Set2, and thus a total
of 93.65%. Moreover, in 90.90% of all instances it was not necessary to solve
the ILP model at all, since Algorithm 2 terminated early at Line 9. Hence, the
obtained upper bound from the compiled relaxed MDD was equal to the length
of the currently best found solution in these cases. Concerning the computa-
tion times, the UB+CPLEX approach was on average in only two cases faster
then the MDD+CPLEX approach regarding benchmark set Set1 and only in
one case regarding benchmark set Set2. Finally, the MDD+CPLEX approach is
able to obtain in 135 cases better results than the currently best-known-solutions
from the literature. For each considered problem class, MDD+CPLEX is able
to provide on average better results than UB+CPLEX.
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Table 1. Results on Set1 instances.

|Σ| n so far UB+CPLEX MDD+CPLEX

best. obj gap [%] t [s] #opt red [%] obj gap [%] tprep [s] ttot [s] #opt red [%]

n/8 32 4.00 4.00 0.00 0.16 30 3.72 4.00 0.00 <0.01 <0.01 30/30 94.94

64 8.00 8.00 0.00 1.69 30 4.67 8.00 0.00 <0.01 <0.01 30/30 78.23

128 16.00 16.00 0.00 11.46 30 4.80 16.00 0.00 0.04 0.04 30/30 44.45

256 31.97 31.97 0.00 298.59 30 5.47 31.97 0.00 0.42 0.42 30/30 25.47

512 63.90 32.30 49.50 3615.63 0 8.16 62.80 1.82 60.82 3434.53 2/2 20.29

1024 116.30 0.00 100.00 3676.46 0 15.89 113.47 11.22 271.15 3946.52 0/0 23.34

2048 185.07 - - 0.48 0 22.45 186.23 16.29 1134.30 4135.18 0/0 28.49

4096 284.80 - - 2.04 0 28.71 292.03 11.05 4297.07 4297.07 0/0 36.59

n/4 32 7.83 7.83 0.00 0.03 30 22.13 7.83 0.00 <0.01 <0.01 30/30 79.54

64 14.67 14.67 0.00 0.21 30 21.08 14.67 0.00 <0.01 <0.01 30/30 84.06

128 25.93 25.93 0.00 4.82 30 21.76 25.93 0.00 0.47 0.47 30/30 87.34

256 43.97 43.97 0.00 22.93 30 33.17 43.97 0.00 4.61 4.61 30/30 90.67

512 68.57 68.57 0.00 389.04 30 39.54 68.57 0.00 28.43 38.93 30/28 91.01

1024 105.07 104.97 0.96 2064.94 21 48.42 105.07 0.00 122.81 188.27 30/24 91.56

2048 155.73 120.47 26.52 3314.28 4 56.72 156.87 0.37 576.39 1571.46 24/15 85.91

4096 227.23 12.77 95.05 3650.80 0 59.48 230.37 0.73 1996.26 4036.48 15/6 83.99

3n/8 32 8.77 8.77 0.00 0.02 30 30.44 8.77 0.00 <0.01 <0.01 30/30 78.03

64 15.53 15.53 0.00 0.06 30 32.30 15.53 0.00 <0.01 <0.01 30/30 81.16

128 24.90 24.90 0.00 0.70 30 36.58 24.90 0.00 0.06 0.06 30/30 86.44

256 39.97 39.97 0.00 1.52 30 55.50 39.97 0.00 0.50 0.50 30/30 89.20

512 59.97 59.97 0.00 17.62 30 57.92 59.97 0.00 4.26 4.26 30/30 91.16

1024 90.73 90.73 0.00 29.12 30 70.02 90.73 0.00 13.59 13.59 30/30 93.59

2048 131.13 131.17 0.05 476.47 29 72.92 131.17 0.00 50.39 50.39 30/30 94.79

4096 193.20 192.77 0.50 1030.16 25 78.79 193.37 0.00 163.90 163.99 30/29 96.65

n/2 32 8.87 8.87 0.00 0.01 30 37.51 8.87 0.00 <0.01 <0.01 30/30 75.08

64 14.80 14.80 0.00 0.02 30 46.60 14.80 0.00 <0.01 <0.01 30/30 81.22

128 22.93 22.93 0.00 0.08 30 52.04 22.93 0.00 0.01 0.01 30/30 82.57

256 35.20 35.20 0.00 0.46 30 60.22 35.20 0.00 0.07 0.07 30/30 87.37

512 53.13 53.13 0.00 2.72 30 69.40 53.13 0.00 0.92 0.92 30/30 90.49

1024 79.13 79.13 0.00 7.38 30 75.93 79.13 0.00 3.45 3.45 30/30 93.05

2048 115.70 115.70 0.00 21.32 30 80.40 115.70 0.00 19.65 19.65 30/30 94.59

4096 167.97 167.97 0.00 93.68 30 86.74 167.97 0.00 26.89 26.89 30/30 95.84

5n/8 32 8.60 8.60 0.00 0.01 30 46.29 8.60 0.00 <0.01 <0.01 30/30 72.45

64 13.30 13.30 0.00 0.01 30 52.75 13.30 0.00 <0.01 <0.01 30/30 78.35

128 21.20 21.20 0.00 0.03 30 59.95 21.20 0.00 <0.01 <0.01 30/30 83.47

256 32.53 32.53 0.00 0.11 30 67.54 32.53 0.00 0.02 0.02 30/30 86.36

512 47.83 47.83 0.00 0.61 30 74.69 47.83 0.00 0.10 0.10 30/30 88.68

1024 70.20 70.20 0.00 1.12 30 81.45 70.20 0.00 0.76 0.76 30/30 91.35

2048 103.97 103.97 0.00 4.66 30 84.96 103.97 0.00 3.27 3.27 30/30 93.98

4096 150.57 150.57 0.00 16.11 30 88.65 150.57 0.00 10.26 10.26 30/30 95.77

3n/4 32 8.17 8.17 0.00 0.01 30 47.56 8.17 0.00 <0.01 <0.01 30/30 71.83

64 12.53 12.53 0.00 0.01 30 53.92 12.53 0.00 <0.01 <0.01 30/30 71.72

128 19.70 19.70 0.00 0.02 30 65.68 19.70 0.00 <0.01 <0.01 30/30 79.50

256 29.97 29.97 0.00 0.04 30 72.89 29.97 0.00 0.01 0.01 30/30 84.41

512 44.57 44.57 0.00 0.26 30 77.45 44.57 0.00 0.03 0.03 30/30 88.28

1024 65.20 65.20 0.00 0.53 30 83.86 65.20 0.00 0.26 0.26 30/30 92.07

2048 94.67 94.67 0.00 1.45 30 88.57 94.67 0.00 0.51 0.51 30/30 94.18

4096 136.77 136.77 0.00 6.06 30 90.14 136.77 0.00 4.19 4.19 30/30 95.22

7n/8 32 7.67 7.67 0.00 0.01 30 47.37 7.67 0.00 <0.01 <0.01 30/30 64.92

64 11.57 11.57 0.00 0.01 30 56.15 11.57 0.00 <0.01 <0.01 30/30 73.63

128 18.40 18.40 0.00 0.02 30 63.40 18.40 0.00 <0.01 <0.01 30/30 76.54

256 27.80 27.80 0.00 0.03 30 74.05 27.80 0.00 0.01 0.01 30/30 84.25

512 40.60 40.60 0.00 0.09 30 80.25 40.60 0.00 0.03 0.03 30/30 87.14

1024 60.57 60.57 0.00 0.47 30 85.41 60.57 0.00 0.11 0.11 30/30 91.16

2048 88.00 88.00 0.00 2.54 30 85.93 88.00 0.00 0.63 0.63 30/30 91.89

4096 127.37 127.37 0.00 4.76 30 91.37 127.37 0.00 2.17 2.17 30/30 94.71



On the Use of Decision Diagrams for the RFLCS 147

Table 2. Results on Set2 instances.

|Σ| reps so far UB+CPLEX MDD+CPLEX

best obj gap [%] t [s] #opt red [%] obj gap [%] tprep [s] ttot [s] #opt red [%]

4 3 3.47 3.47 0.00 <0.01 30 34.16 3.47 0.00 <0.01 <0.01 30/30 65.78

4 3.77 3.77 0.00 <0.01 30 32.24 3.77 0.00 <0.01 <0.01 30/30 76.59

5 3.83 3.83 0.00 <0.01 30 35.31 3.83 0.00 <0.01 <0.01 30/30 81.44

6 3.90 3.90 0.00 0.01 30 25.62 3.90 0.00 <0.01 <0.01 30/30 85.92

7 3.97 3.97 0.00 0.02 30 18.34 3.97 0.00 <0.01 <0.01 30/30 88.59

8 3.97 3.97 0.00 0.02 30 19.01 3.97 0.00 <0.01 <0.01 30/30 89.54

8 3 6.23 6.23 0.00 <0.01 30 38.40 6.23 0.00 <0.01 <0.01 30/30 66.94

4 6.87 6.87 0.00 0.01 30 34.77 6.87 0.00 <0.01 <0.01 30/30 71.70

5 7.40 7.40 0.00 0.02 30 33.12 7.40 0.00 <0.01 <0.01 30/30 80.10

6 7.53 7.53 0.00 0.02 30 25.51 7.53 0.00 <0.01 <0.01 30/30 79.22

7 7.70 7.70 0.00 0.03 30 21.51 7.70 0.00 <0.01 <0.01 30/30 80.36

8 7.77 7.77 0.00 0.07 30 19.09 7.77 0.00 <0.01 <0.01 30/30 80.65

16 3 9.70 9.70 0.00 0.01 30 43.91 9.70 0.00 <0.01 <0.01 30/30 71.78

4 11.57 11.57 0.00 0.02 30 42.73 11.57 0.00 <0.01 <0.01 30/30 79.44

5 12.93 12.93 0.00 0.04 30 28.84 12.93 0.00 <0.01 <0.01 30/30 79.97

6 14.00 14.00 0.00 0.12 30 23.82 14.00 0.00 <0.01 <0.01 30/30 83.96

7 14.93 14.93 0.00 0.29 30 21.32 14.93 0.00 0.01 0.01 30/30 84.81

8 14.80 14.80 0.00 0.46 30 19.26 14.80 0.00 0.01 0.01 30/30 86.09

32 3 16.13 16.13 0.00 0.02 30 57.94 16.13 0.00 <0.01 <0.01 30/30 78.26

4 19.00 19.00 0.00 0.05 30 48.26 19.00 0.00 <0.01 <0.01 30/30 81.46

5 21.63 21.63 0.00 0.52 30 33.72 21.63 0.00 0.04 0.04 30/30 85.76

6 23.73 23.73 0.00 1.39 30 25.52 23.73 0.00 0.10 0.10 30/30 85.91

7 25.57 25.57 0.00 3.65 30 21.18 25.57 0.00 0.61 0.61 30/30 89.21

8 27.50 27.50 0.00 5.19 30 18.22 27.50 0.00 0.99 0.99 30/30 88.80

64 3 25.43 25.43 0.00 0.04 30 65.65 25.43 0.00 <0.01 <0.01 30/30 82.34

4 30.37 30.37 0.00 0.22 30 57.79 30.37 0.00 0.04 0.04 30/30 86.45

5 34.93 34.93 0.00 3.36 30 44.23 34.93 0.00 0.74 0.74 30/30 86.26

6 39.13 39.13 0.00 12.93 30 37.10 39.13 0.00 2.03 2.03 30/30 90.35

7 43.63 43.63 0.00 28.43 30 29.84 43.63 0.00 7.51 7.92 30/29 89.54

8 45.53 45.53 0.00 84.45 30 24.83 45.53 0.00 14.14 27.62 30/25 84.73

128 3 36.77 36.77 0.00 0.25 30 70.96 36.77 0.00 0.02 0.02 30/30 85.18

4 45.03 45.03 0.00 3.20 30 60.94 45.03 0.00 0.37 0.37 30/30 87.78

5 53.43 53.43 0.00 13.48 30 54.18 53.43 0.00 3.30 3.30 30/30 90.42

6 61.53 61.53 0.00 47.21 30 48.04 61.53 0.00 8.17 8.17 30/30 92.79

7 68.47 68.47 0.00 337.66 30 39.01 68.47 0.00 29.22 36.33 30/28 91.40

8 74.60 74.43 1.43 1941.38 20 33.90 74.60 0.11 74.85 1010.01 28/12 68.99

256 3 55.03 55.03 0.00 0.66 30 77.45 55.03 0.00 0.07 0.07 30/30 89.31

4 68.93 68.93 0.00 4.99 30 74.05 68.93 0.00 1.82 1.82 30/30 92.27

5 81.43 81.43 0.00 41.75 30 63.63 81.43 0.00 12.95 12.95 30/30 93.83

6 93.60 93.60 0.00 406.78 30 56.99 93.60 0.00 45.63 48.11 30/28 93.00

7 104.50 104.40 0.80 1764.49 24 52.06 104.50 0.00 129.27 369.43 30/20 87.91

8 115.07 110.77 8.91 3562.90 1 43.12 115.03 2.70 375.68 3167.78 10/2 62.22

512 3 81.63 81.63 0.00 0.83 30 86.31 81.63 0.00 0.58 0.58 30/30 92.84

4 101.13 101.13 0.00 10.56 30 80.23 101.13 0.00 9.01 9.01 30/30 93.71

5 121.03 121.03 0.00 162.42 30 72.44 121.03 0.00 37.06 37.06 30/30 95.16

6 138.40 137.13 1.81 2040.66 21 62.80 138.60 0.00 143.51 148.66 30/27 94.86

7 155.17 126.53 23.97 3570.00 1 55.24 156.00 0.70 679.41 2115.36 20/10 82.00

8 173.07 19.67 90.03 3633.19 0 47.95 174.23 3.25 1221.36 4499.14 3/1 64.24
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8 Conclusions

In this work we approached the RFLCS problem by transforming an instance
into a maximum independent set (MIS) problem instance as this is done by Blum
et al. [6]. The MIS problem is subsequently solved by the ILP solver CPLEX. Our
major contribution is to heavily reduce the conflict graph of the MIS problem by
means of relaxed MDDs. This has multiple advantages: (1) reducing the conflict
graph leads to an improved performance of CPLEX s.t. more instances could
be solved faster to proven optimality, (2) the compiled relaxed MDDs present
a discrete relaxation of the RFLCS problem meaning that upper bounds can
be additionally derived and (3) it is also possible to quickly derive heuristic
solutions from the MDDs. In many cases it was not necessary anymore to solve
the ILP for the MIS problem since the upper bound from the MDD corresponded
to the length of the derived heuristic solution and thus optimality was already
proven. Overall, for many benchmark instances new state-of-the-art results could
be obtained.

In the literature there are works where relaxed decision diagrams are success-
fully embedded into a branch-and-bound algorithm s.t. branching is done over
nodes in the relaxed decision diagram. Since relaxed MDDs provide also strong
upper bonds for the RFLCS problem it may be promising future work to develop
such a branch-and-bound algorithm for the RFLCS problem to solve even larger
instances to optimality. Moreover, it seems promising to apply relaxed decision
diagrams also on other LCS-related problems.
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