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Abstract—We propose a novel concise function representation
for graphical models, a central theoretical framework that
provides the basis for many reasoning tasks. We then show
how we exploit our concise representation based on deterministic
finite state automata within Bucket Elimination (BE), a general
approach based on the concept of variable elimination that ac-
commodates many inference and optimisation tasks such as most
probable explanation and constrained optimisation. We denote our
version of BE as FABE. By using our concise representation
within FABE, we dramatically improve the performance of BE
in terms of runtime and memory requirements. Results on
standard benchmarks obtained using an established experimen-
tal methodology show that FABE often outperforms the best
available approach (RBFAOO), leading to significant runtime
improvements (up to 2 orders of magnitude in our tests).

Index Terms—graphical models, most probable explanation,
constrained optimisation, deterministic finite state automata

I. INTRODUCTION

Graphical models are a central theoretical framework that
provides the basis for many reasoning tasks with probabilistic
or deterministic information [1] in real-world scenarios such
as sensor networks [2] and gene networks reconstruction
[3]. These models employ graphs to concisely represent the
structure of the problem and the relations among variables [4]
to solve fundamental tasks such as providing a plausible
explanation given the observed evidence, namely most probable
explanation (MPE), or minimise the sum of a given set of
objective functions, namely constrained optimisation.

One of the most important algorithms for exactly solving
these reasoning tasks on graphical models is Bucket Elimination
(BE) proposed by Dechter [5], [1], a general approach based on
the concept of variable elimination that accommodates many
inference and optimisation tasks. BE is also a fundamental
component—Mini-Bucket Elimination (MBE), the approximate
version of BE [6], is used to compute the initial heuristic
that guides the search—of all the algorithms by Marinescu
et al. [7], [8], [9], [10] that represent the state of the art for
exact MPE inference. On the other hand, BE is characterised
by memory requirements that grow exponentially with respect
to the induced width of the primal graph associated to the
graphical model [1], severely hindering its applicability to
large exact reasoning tasks. As a consequence, several works
have tried to mitigate this drawback [6], [11], but none of these
approaches really managed to overcome such a limitation. The

main reason for such memory requirements is the fact that
the functions employed during BE’s execution are usually
represented as tables, whose size is the product of the domains
of the variables in the scope, regardless of the actual values of
such functions. This can lead to storing many repeated values
in the same table, causing a potential waste of computational
resources.1

Against this background, in this paper we propose a novel
function representation specifically devised for exact MPE
inference and constrained optimisation that, instead of the
traditional mapping variable assignment → value, adopts
a radical new approach that maps each value v to the
minimal finite state automaton [12] representing all the variable
assignments that are associated to v. We then exploit our
representation within FABE, our version of BE that exactly
solves the considered tasks. By representing each value only
once, and by exploiting the well-known capabilities of automata
of compactly representing sets of strings (with a reduction
that can be up to exponential with respect to a full table),
we dramatically improve the performance of BE in terms of
runtime and memory requirements. In more detail, this paper
advances the state of the art in the following ways:

• We propose a novel function representation for exact MPE
inference and constrained optimisation based on finite state
automata, which we exploit within FABE.

• Results on standard benchmark datasets show that FABE
often outperforms the best available exact approach
(RBFAOO), with improvements of up to 2 orders of
magnitude in our tests.

• Results also show that FABE outperforms the structured
message passing (SMP) approach by Gogate and Domin-
gos [13], in virtue of the capability of automata of natively
representing non-binary variables present in the considered
benchmarks (in contrast with SMP).

• Our concise function representation can be directly em-
ployed within MBE to approximately solve the above-
mentioned reasoning tasks. In virtue of this fact, our work
paves the way for a significantly better version of MBE as
a key component of AND/OR search algorithms, in which
the computation of the initial heuristic can represent a
bottleneck, as discussed by Kishimoto et al. [10].

1This is also true for all the above-mentioned AND/OR search algorithms,
which also adopt a tabular function representation.
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The rest of this paper is structured as follows. Section II
provides the necessary background on graphical models and
deterministic finite state automata. Section III discusses related
work and positions our approach wrt existing literature. Sec-
tion IV presents our function representation and how we exploit
it within FABE. Section V presents our experimental evaluation
on standard benchmark datasets, in which we compare FABE
against state of the art algorithms for exact inference on
graphical models. Section VI concludes the paper and outlines
future research directions.

II. BACKGROUND

A. Graphical Models

Graphical models (e.g., Bayesian Networks [14], Markov
Random Fields [15], or Cost Networks [1]) capture the
factorisation structure of a distribution over a set of n variables.

A graphical model is a tuple M = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of values.
F = {ψα : α ∈ F} is a set of discrete local functions defined
on subsets of variables, where F ⊆ 2V is a set of variable
subsets. We use α ⊆ V and Xα ⊆ X to indicate the scope
of function ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}. The
function scopes yield a primal graph G whose vertices are
the variables and whose edges connect any two variables that
appear in the scope of the same function.

An important inference task that appears in many real-world
applications is MPE. MPE finds a complete assignment to
the variables that has the highest probability (i.e., a mode of
the joint probability), namely: x∗ = arg maxx

∏
α∈F ψα(Xα).

The task is NP-hard to solve [14].
Another important task over deterministic graphical models

(e.g., Cost Networks) is the optimisation task of finding
an assignment or a configuration to all the variables that
minimises the sum of the local functions, namely: x∗ =
arg minx

∑
α∈F ψα(Xα). This is the task that has to be solved

in Weighted Constraint Satisfaction Problems (WCSPs). The
task is NP-hard to solve [1].

Algorithm 1 Bucket Elimination [1]

Input: A graphical model M = 〈X,D,F〉, an ordering d.
Output: A max probability (resp. min cost) assignment.

1: Partition functions into buckets according to d.
2: Define ψi as the ⊗ of bucketi associated with Xi.
3: for p← n down to 1 do
4: for ψp and messages h1, h2, . . . , hj in bucketp do
5: hp ← ⇓Xp

(ψp ⊗
⊗j

i=1 hi).
6: Place hp into the largest index variable in its scope.
7: Assign maximising (resp. minimising) values in ordering
d, consulting functions in each bucket.

8: return Optimal solution value and assignment.

To solve the above-mentioned tasks we consider the BE
algorithm as discussed by Dechter [1] (Algorithm 1). BE is a
general algorithm that can accommodate several exact inference
and optimisation tasks over graphical models. In this paper

we focus on the version that can optimally solve the above-
mentioned MPE and optimisation tasks. BE operates on the
basis of a variable ordering d, which is used to partition the set
of functions into sets called buckets, each associated with one
variable of the graphical model. Each function is placed in the
bucket associated with the last bucket that is associated with a
variable in its scope. Then, buckets are processed from last to
first by means of two fundamental operations, i.e., combination
(⊗ ∈ {

∏
,
∑
}) and projection (⇓ ∈ {max,min}). All the

functions in bucketp, i.e., the current bucket, are composed
with the ⊗ operation, and the result is the input of a ⇓ operation.
Such an operation removes Xp from the scope, producing a
new function hp that does not involve Xp, which is then placed
in the last bucket that is associated with a variable appearing
in the scope of the new function. To solve the MPE (resp.
optimisation) task, ⊗ =

∏
(resp.

∑
) and ⇓ = max (resp.

min) operators are used.
The computational complexity of the BE algorithm is

directly determined by the ordering d. Formally, BE’s time
and space complexity are O

(
r · kw∗(d)+1

)
and O

(
n · kw∗(d)

)
respectively, where k bounds the domain size, and w∗(d) is
the induced width of its primal graph along d [1].

B. Deterministic Finite State Automata

Let Σ denote a finite alphabet of characters and Σ∗ denote
the set of all strings over Σ. The size |Σ| of Σ is the number
of characters in Σ. A language over Σ is any subset of Σ∗.
A Deterministic Finite State Automaton (DFSA) [12] δ is
specified by a tuple 〈Q,Σ, t, s, F 〉, where Q is a finite set of
states, Σ is an input alphabet, t : Q× Σ→ 2Q is a transition
function, s ∈ Q is the start state and F ⊆ Q is a set of final
states. A string x over Σ is accepted (or recognised) by δ
if there is a labelled path from s to a final state in F such
that this path spells out the string x. Thus, the language Lδ
of a DFSA δ is the set of all strings that are spelled out by
paths from s to a final state in F . It is well known that a
general DFSA can accept an infinite language (i.e., a infinite
set of strings) [12]. In this paper we focus on Deterministic
Acyclic Finite State Automata (DAFSA), i.e., DFSA whose
corresponding graph is a directed acyclic graph. In contrast
with general DFSA, DAFSA only accept finite languages [16].

III. RELATED WORK

In recent years, a strand of literature has investigated the
use of different algorithms on AND/OR search spaces (i.e.,
branch-and-bound [8], best-first [7], recursive best-first [9] and
parallel recursive best-first [10]), progressively showing the
effectiveness of these approaches for exact MPE inference
and constrained optimisation. To the best of our knowledge,
all the above-mentioned approaches use the standard tabular
representation to store functions in memory. In the context of
constrained optimisation, the only notable approach that tries
to reduce the size of tables in memory is the one by Bistaffa
et al. [11], which avoids representing unfeasible assignments
for WCSPs.

The task of concisely representing functions for inference
has been treated in several works [13], [17] by means of Binary
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Decision Diagrams (BDDs) [18]. Gogate and Domingos [13]
proposed the use of Algebraic Decision Diagrams (ADDs) to
tackle redundancy as part of the so-called structured message
passing (SMP) algorithm. In [17] the authors proposed a
variable elimination algorithm based on Probabilistic Sentential
Decision Diagrams (PSDDs) [19]. While conceptually related
to DAFSA, BDDs can only represent Boolean functions. In
contrast, DAFSA can natively represent any non-Boolean
function and, thus, they are inherently more general than BDDs.
As a consequence, approaches employing BDDs require to
encode non-binary variables as multiple binary ones (e.g., by
means of one-hot encoding). In Section V we further investigate
the overhead due to the additional number of variables by
comparing our approach with SMP (i.e., the most closely
related among the above-cited works), showing that it has a
significant impact on the runtime.

Mateescu et al. [20] also investigated the use of Multi-
valued Decision Diagrams (MDDs) [21] within the above-
discussed AND/OR search scheme to overcome said limitation
of BDDs. While MDDs share similarities with DAFSA (i.e.,
both can be seen as decision diagrams with a branching factor
higher than 2), MDDs have never been applied within variable
elimination algorithms (such as BE) with the explicit objective
of reducing the redundancy inherent in the representation of
functions, as we do in this paper. Since several AND/OR search
algorithms have been developed over the years (see discussion
above), in Section V we only compare with the most recent
and best performing ones in such a strand of literature, namely
(SP)RBFAOO.2

Lifted probabilistic inference (LPI) [22] is also concerned
with reducing redundancy within probabilistic inference. Specif-
ically, LPI tackles redundancy between different factors,
whereas we tackle redundancy inside the same factor. Assessing
the effectiveness of the combined approach wrt to the separate
ones is a non-trivial research question, which will be considered
in future work.

IV. A NOVEL DAFSA-BASED VERSION OF BE

All the datasets commonly used as benchmarks for MPE
[10] and constrained optimisation [8] are characterised by a
very high redundancy, i.e., many different variable assignments
are associated to the same value in the local functions. Figure 1
shows that the value of redundancy for local functions (defined
as 1 − number of unique values

total number of values ) for all MPE and WCSP instances
is always above 80% (except for smaller grid instances).

Furthermore, in probabilistic graphical models, local func-
tions represent probabilities with values in the interval [0, 1],
which, in theory, contains infinite real values. In practice, such
values are represented by floating point numbers that can only
represent a finite amount of values. Thus, while a table ψ has
an arbitrarily large size that is the product of the domains of
the variables in its scope, in practice the maximum number of
unique values in ψ is bounded by a parameter that depends
on the numerical representation. These remarks motivate the
study of a novel concise representation that exploits such a

2Notice that we cannot directly compare FABE with the approach by
Mateescu et al. [20] also because its implementation is not publicly available.

redundancy to reduce the amount of computation. Notice that
state of the art approaches for exact inference [10] represent
functions as full tables, whose size is the product of the domains
of the variables in the scope.

In this paper we propose a way to represent functions by
means of DAFSA, as shown in the example in Figure 2. In
the traditional way of representing functions as tables, rows
are indexed using variable assignments as keys (Figure 2, left).
In contrast, here we propose a novel approach that uses values
as keys (Figure 2, right). Formally,

Definition 1. Given a function ψ that maps each possible
assignment of the variables in its scope to a value v ∈ R ∪
{∞},3 we denote as D(ψ) its corresponding representation
in terms of DAFSA. Formally, D(ψ) = {(v, δ)}, where v is
a value in ψ and δ is the minimal DAFSA that accepts all
the strings corresponding to the variable assignments that
were mapped to v in ψ. For the sake of simplicity, we do not
represent the scope of the function ψ in D(ψ), as we assume
it is equal to var(ψ). We label a transition that accepts all
the values of a variable’s domain as ∗. Notice that each δ is
acyclic because it accepts a finite language [16].

Remark 1. Given that values are employed as keys in our
function representation, it is crucial to ensure the absence
of duplicates in such a set of keys, i.e., we must be able to
correctly determine whether two values v1 and v2 are equal.
While this is a trivial task in theory, in practice it can be very
tricky when v1 and v2 are floating point numbers representing
real values. Indeed, even if v1 and v2 are theoretically equal,
their floating point representations can differ due to numerical
errors implicit in floating point arithmetic, especially if v1 and
v2 are the result of a series of operations whose numerical
errors have accumulated. To mitigate this aspect, we use a
well-known technique for comparing floating point numbers
known as ε-comparison, i.e., v1 and v2 are considered equal
if they differ by a quantity smaller than a small ε. While there
exist more advanced techniques of tackling numerical issues
related to floating point numbers and their arithmetic [23],
they are well beyond the scope of this paper. This should not be
considered as an approximation, rather as a standard method
to avoid the propagation of numerical errors.

A crucial property of DAFSA is that one path can accept
multiple strings, or, in our case, represent multiple variable
assignments. In the example in Figure 2, the DAFSA cor-
responding to v3 contains only one path, but it represents
both 〈1, 0, 0〉 and 〈1, 1, 0〉. By exploiting this property, our
representation can reach a reduction in terms of memory that
is, in the best case, up to exponential wrt the traditional table
representation. We remark that memory is the main bottleneck
that limits the scalability of BE, hence reducing its memory
requirements is crucial, leading to significant improvements
as shown by our results in the experimental section. Finally,
our representation allows one to trivially avoid representing
unfeasible assignments, similarly to [11].

3We allow ∞ as a possible value, since it can used to represent variable
assignments that violate some hard constraint in WCSPs.
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Fig. 1: Redundancy in MPE and WCSPs instances. Best viewed in colours.

v2

v1

v3

ψ

0 0 ∗

1 1

0 1 0

1 ∗ 0

X1 X2 X4X1 X2 X4 ψ
0 0 0 v1
0 0 1 v1
0 1 0 v2
0 1 1 v1
1 0 0 v3
1 0 1 ∞
1 1 0 v3
1 1 1 ∞

Fig. 2: Standard table (left) and corresponding DAFSA-based representation (right). All variables are binary. Best viewed in colours.

Predicting the space complexity (e.g., the number of states)
of a minimal DAFSA accepting a given set of strings remains,
to the best of our knowledge, an open problem, since it depends
on the common prefixes/suffixes of the input set.

A minimal DAFSA can be efficiently constructed from a set
of assignments by using the algorithm described by Daciuk [16].
Since all the strings accepted by each DAFSA are of the same
length (equal to the cardinality of the scope of the function),
so are all the paths in the DAFSA. Thus, there is a mapping
between each edge at depth i in each path and the ith variable
in the scope (see Figure 2). Without loss of generality, our
representation always maintains the variables in the scope
ordered wrt their natural ordering.

Having discussed our representation, we now discuss our
DAFSA-based version of BE, and specifically its core opera-
tions ⊗ and ⇓.

A. A DAFSA-Based Version of ⊗
In order to better discuss our DAFSA-based version the ⊗

operation, let us first recall how this operation works for tradi-
tional tabular functions with an example (Figure 3). The result
of the ⊗ operation is a new function whose scope is the union
of the scopes of the input functions, and in which the value
of each variable assignment is the ⊗ ∈ {·,+} of the values of
the corresponding assignments (i.e., with the same assignments

of the corresponding variables) in the input functions. For
example, the assignment 〈X1 = 0, X2 = 1, X3 = 1, X4 = 0〉
in the result table corresponds to 〈X1 = 0, X2 = 1, X4 = 0〉
and 〈X3 = 1, X4 = 0〉 in the input tables, hence its value is
v2 ⊗ v3. The ⊗ operation is closely related to the inner join
operation of relational algebra [1].

To efficiently implement D(ψ1)⊗D(ψ2) we will make use
of the intersection operation on automata [12]. Intuitively, the
intersection of two automata accepting respectively L1 and
L2 is an automaton that accepts L1 ∩ L2, i.e., all the strings
appearing both in L1 and L2. In our case, we will exploit
the intersection operation to identify all the corresponding
variable assignments in D(ψ1) and D(ψ2). To make this
possible, we first have to make sure that both functions have the
same scope, so that corresponding levels in D(ψ1) and D(ψ2)
correspond to the same variables. We achieve this by means
of the ADDLEVELS operation. Figure 4 shows an example of
ADDLEVELS.

Definition 2. Given two functions D(ψ1) and D(ψ2), the
ADDLEVELS operation inserts (i) one or more levels labelled
with ∗ in each DAFSA and (ii) one or more variables in
the respective scopes, in a way that the resulting scope is
var(ψ1)∪ var(ψ2). Each level and variable is added so as to
maintain the scope ordered wrt the variable ordering.
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X1 X2 X4 ψ1

0 0 0 v1
0 0 1 v1
0 1 0 v2
0 1 1 v1
1 0 0 v3
1 0 1 ∞
1 1 0 v3
1 1 1 ∞

X1 X2 X3 X4 ψ1⊗2
0 0 0 0 v1 ⊗ v3
0 0 0 1 v1 ⊗ v7
0 0 1 0 v1 ⊗ v3
0 0 1 1 v1 ⊗ v1
0 1 0 0 v2 ⊗ v3
0 1 0 1 v1 ⊗ v7
0 1 1 0 v2 ⊗ v3

...
...

X3 X4 ψ2

0 0 v3
0 1 v7
1 0 v3
1 1 v1

⊗ =

Fig. 3: An example of the ⊗ operation.

v2

v1

v3

ψ1

0 0

1

∗

∗
∗

1

0 1 ∗ 0

1 ∗ ∗ 0

X1 X2 X+
3 X4

v3

v1

v7

ψ2

∗ ∗ 1 1

∗ ∗ ∗ 1

∗ ∗ 0 1

X+
1 X+

2 X3 X4

Fig. 4: The result of the ADDLEVELS operation on D(ψ1) and D(ψ2), where ψ1 and ψ2 are the tables in Figure 3. Added levels and
variables are denoted with dotted lines and + superscript.

Proposition 1. The operation of adding one level to a DAFSA
δ has a linear complexity wrt the number of paths in δ.
Within ADDLEVELS(D(ψ1), D(ψ2)) this operation has to be
executed a total of |D(ψ1)| · |var(ψ2) \ var(ψ1)|+ |D(ψ2)| ·
|var(ψ1) \ var(ψ2)| times, i.e., the number of values in each
function times the number of variables that have to be added to
the scope of each function to reach the scope of D(ψ1)⊗D(ψ2).

Our DAFSA-based ⊗ operation is implemented by Algo-
rithm 2. Intuitively, for each couple of values (vi, vj), where
vi and vj are values in D(ψ1) and D(ψ2) respectively, we
compute the variable assignments associated to their ⊗ by
computing the intersection δi ∩ δj between the corresponding
DAFSA δi and δj . The result is then associated to the value
vi ⊗ vj .

Notice that we maintain only one entry for each value vi⊗vj
(see Remark 1 in this respect) by accumulating (i.e., taking
the union of) all the DAFSA that are associated to the same
value (Line 4). Union and intersection over DAFSA have
a time complexity of O(nm) [24], where n and m are the
number of states of the input automata. Depending on their
implementations, such operations may not directly produce a
minimal DAFSA. Nonetheless, DAFSA can be minimised in
linear time wrt the number of states with the algorithm by
Bubenzer [25].

B. A DAFSA-Based Version of ⇓
The ⇓ ∈ {max,min} operation effectively realises variable

elimination within the BE algorithm. Specifically, ⇓Xi
ψ

removes Xi from the scope of ψ, and, from all the rows

Algorithm 2 D(ψ1)⊗D(ψ2)

1: (D(ψ1)′, D(ψ2)′) = ADDLEVELS(D(ψ1), D(ψ2)).
2: for all (vi, δi) ∈ D(ψ1)′, (vj , δj) ∈ D(ψ2)′ do
3: if ∃(vi ⊗ vj , δk) ∈ D(ψ1)⊗D(ψ2) then
4: δk = δk ∪ (δi ∩ δj).
5: else
6: Add {(vi ⊗ vj , δi ∩ δj)} to D(ψ1)⊗D(ψ2).
7: return D(ψ1)⊗D(ψ2).

that possibly have equal variable assignments as a result of the
elimination of the column associated to Xi, it only maintains
the one with the max (in the case of MPE, or min in the case
of optimisation) value. Like ⊗, ⇓ is also related to a relational
algebra operation, i.e., the project operation. In terms of SQL,
⇓Xi

ψ is equivalent to SELECT var(ψ)\Xi,max(ψ(·)) FROM
ψ GROUP BY var(ψ) \Xi, in the case of max.

We realise the elimination of the column associated to Xi

with the REMOVELEVEL operation, which can be thought of
as the inverse of ADDLEVELS. REMOVELEVEL(D(ψ), Xi)
removes Xi from the scope of D(ψ) and collapses all the
edges at the level associated to Xi from all the DAFSA in
D(ψ).

Proposition 2. The operation of removing one level from a
DAFSA δ has a linear complexity wrt the number of paths in
δ. Within REMOVE LEVEL(D(ψ), Xi) this operation has to
be executed a total of |D(ψ)| times, i.e., once for each value
of ψ. Notice that removing a level from a DAFSA could result
in a non-deterministic automaton if the removal happens in
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protein 1duw 1hcz 1fny 2hft 1ad2 1atg 1qre 1qhv

FABE 21.36 10.33 6.60 322.33 25.28 3.28 3.47 16.54
RBFAOO > 2 h 749.39 > 2 h 1765.22 1654.75 1697.87 734.85 > 2 h

SMP > 2 h > 2 h 2036.29 6569.95 > 2 h 4098.89 1721.50 4376.94

pedigree 25 30 39 18 31 34 51 9

FABE 28.82 7.23 3.21 7.42 910.46 8.83 132.92 473.94
RBFAOO 6.32 61.34 22.46 20.11 > 2 h > 2 h > 2 h 100.19

SMP 197.89 40.86 17.06 40.89 5881.66 60.78 789.65 2040.32

grid 90-26-5 90-25-5 90-24-5 75-23-5 90-23-5 75-22-5 90-22-5 75-21-5

FABE 3192.15 > 2 h 5112.09 > 2 h 508.75 > 2 h 4883.60 > 2 h
RBFAOO 925.47 902.19 1758.19 791.70 158.17 816.87 20.37 4.71

SMP > 2 h > 2 h > 2 h > 2 h 2453.45 > 2 h > 2 h > 2 h

TABLE I: Runtime results (in seconds) on 8 largest MPE instances.

correspondence of a branching. Our implementation takes this
into account by employing a determinisation algorithm [12]. In
general, determinising an automaton could produce a growth
(up to exponential, in the worst case) of the number of states.

On the other hand, in all our experiments such a worst-case
never happens and the growth factor due to determinisation
is, on average, only around 10%. Our results confirm that
such a small growth does not affect the overall performance
of our approach, which is able to outperform the competitors
as described in Section V.

We then implement the maximisation (resp. minimisation) of
the values as follows. Without loss of generality, we assume that
the values v1, . . . , v|D(ψ)| are in decreasing (resp. increasing)
order. For each (vi, δi) ∈ D(ψ), we subtract from δi all δj
such that vj precedes vi in the above-mentioned ordering
(i.e., vj ≥ vi, resp. ≤). In this way, we remove all duplicate
variable assignments and we ensure that each assignment is only
associated to the maximum (resp. minimum) value, correctly
implementing the ⇓ operation. Subtraction over DAFSA has
a time complexity of O(nm) [24], where n and m are the
number of states of the input automata. Algorithm 3 details
our ⇓ implementation.

Algorithm 3 ⇓Xi
D(ψ)

1: D(ψ)′ = REMOVELEVEL(D(ψ), Xi).
2: for all (vi, δi) ∈ D(ψ)′ with decr. (resp. incr.) vi do
3: δi = δi \ δprec.
4: δprec = δprec ∪ δi.
5: return D(ψ)′.

Both our versions of ⊗ and ⇓ entirely operate on our concise
representation, never expanding any function to a full table. We
directly employ our ⊗ and ⇓ operations within Algorithm 1. We
call our DAFSA-based version of BE “Finite state Automata
Bucket Elimination” (FABE).

Since the results of our ⊗ and ⇓ operations are equivalent to
the original ones, it follows that, as BE, FABE is also an exact
algorithm. Finally, we remark that our ⊗ and ⇓ operations can
directly be used within the approximated version of BE, i.e.,
MBE [6].

V. EXPERIMENTAL EVALUATION

We empirically evaluate FABE by comparing it against the
RBFAOO algorithm [9]. We consider RBFAOO as a competitor
since it has been empirically shown that it is superior to other
sequential algorithms for exact MPE inference, namely AOBB
[8] and AOBF [7]. We cannot directly compare against the
parallel version of RBFAOO, i.e., SPRBFAOO [10], because
its implementation has not been made public. We discarded
the option of re-implementing SPRBFAOO, as it would have
probably led to an unfair comparison due to a sub-optimal
implementation. Nonetheless, since RBFAOO is also used
as baseline for speed-up calculation in [10], in Table III we
compare our values of speed-up with the ones reported for
SPRBFAOO by its authors. We also compare FABE against the
SMP approach by Gogate and Domingos [13] (see associated
discussion in Section III). Since SMP relies on ADDs (which
cannot represent non-binary variables natively), we encode non-
binary variables using one-hot encoding, following a standard
practice. We do not show results comparing FABE against the
standard version of BE with tabular functions [5], since the
latter runs out of memory on most of the instances due to its
exponential memory requirements.

We evaluate all algorithms on standard benchmark datasets
for exact MPE inference [9], [10], i.e., protein, pedigree,
grid. In addition, we also consider standard WCSP benchmark
datasets [8], i.e., spot5, mastermind, iscas89.4 For
WCSPs we also compare FABE against toulbar2 [26], a
standard solver used for exact optimisation of cost networks.

Since both FABE and RBFAOO require to compute the same
variable ordering d before execution, we consider this as a
pre-processing phase and we do not include its runtime in the
reported results, also because it is negligible wrt the runtime
of the solution phase. For each problem instance, we compute

4Online at: www.ics.uci.edu/∼dechter/softwares/benchmarks.

MPE protein pedigree grid

i {2, 4} {6, 14} {6, 14}

WCSP spot5 mastermind iscas89

i {8, . . . , 18} {8, . . . , 18} {8, . . . , 18}

TABLE II: RBFAOO i parameters for each dataset.

www.ics.uci.edu/~dechter/softwares/benchmarks
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Dataset protein pedigree grid

Average Redundancy 96% 85% 64%
FABE speed-up wrt RBFAOO 58.6 (1%, 11%) 5.5 (0%, 32%) 0.1 (43%, 0%)

FABE speed-up wrt SMP 1006.5 (1%, 38%) 6.8 (0%, 5%) 4.0 (43%, 70%)
SPRBFAOO speed-up wrt RBFAOO ∼7 ∼7 ∼5

Dataset spot5 mastermind iscas89

Average Redundancy 85% 85% 87%
FABE speed-up wrt RBFAOO 36.9 (0%, 0%) 6.2 (0%, 0%) 0.4 (0%, 0%)

FABE speed-up wrt SMP 5.8 (0%, 0%) 2.5 (0%, 0%) 5.1 (0%, 0%)
FABE speed-up wrt toulbar2 10 615.5 (0%, 50%) 0.4 (0%, 0%) 0.1 (0%, 0%)

TABLE III: Average speed-up results for MPE (top) and WCSP (bottom) instances. For SPRBFAOO we report the same speed-up values
reported by the authors [10]. Values in parentheses indicate the percentages of instances unsolved by first and second algorithm.

d using a weighted MIN-FILL heuristic [1], and we use the
same d for both algorithms. We execute RBFAOO with the
parameters detailed in authors’ previous work [8], [9], [10],
including cache size and i parameter (see Table II).

Following [10], we set a time limit of 2 hours. We exclude
from our analysis all instances that could not be solved by
any algorithm in the considered time limit. FABE and SMP
are implemented in C++.5 We employ the implementations
of RBFAOO and toulbar2 provided by the authors. All
implementations have been compiled with the same options.
All experiments have been run on a cluster whose computing
nodes have 2.50GHz CPUs and 384 GBytes of RAM. As
for Remark 1, for FABE we consider ε= 10−10. Given the
large number of instances in MPE datasets, in Table I we only
report the runtimes on the 8 largest instances wrt the number
of variables. Full experimental results on MPE datasets are
reported in A. In Table III we report the aggregated results of
the speed-up achieved by FABE wrt other approaches. Each
speed-up is calculated only considering the instances where
both algorithms terminate within the time limit. Information
about unsolved instances is also reported in Table III.

Results confirm that FABE’s performance is correlated with
the value of redundancy. FABE obtains good performance
on the protein and pedigree datasets, achieving speed-
ups of ∼1–2 orders of magnitude, and solving a total of 34
instances that RBFAOO could not solve. As expected, RBFAOO
is superior on the grid dataset, which is characterised by low

5Our source code is available at https://github.com/filippobistaffa/FABE.

spot5 42b 505b 408b 29 503 54

FABE 0.26 0.26 0.29 0.09 0.05 0.07
RBFAOO 13.37 10.27 9.97 5.61 1.37 1.36

SMP 1.62 1.80 1.60 0.72 0.27 0.30
toulbar2 > 2 h > 2 h > 2 h 0.10 1957.80 0.09

mastermind 3-8-5 10-8-3 4-8-4 3-8-4 4-8-3 3-8-3

FABE 247.27 69.30 0.36 0.22 0.10 0.06
RBFAOO 4.93 3.01 2.96 1.96 0.85 0.68

SMP 659.42 185.45 0.95 0.43 0.29 0.11
toulbar2 0.18 0.09 0.09 0.12 0.05 0.06

iscas89 s1238 c880 s1196 s953 s1494 s1488

FABE 38.50 25.36 73.54 286.43 1.42 1.12
RBFAOO 1.47 1.17 0.61 0.54 0.41 0.39

SMP 229.64 146.43 410.96 1464.98 9.78 6.02
toulbar2 0.04 0.06 0.04 0.04 0.04 0.07

TABLE IV: Runtime results (in seconds) on WCSP instances.

redundancy. Results also show that, despite not employing
parallelism, FABE’s speed-up on the protein dataset is
much higher than the one reported for SPRBFAOO, while
it is comparable on the pedigree datasets.

As for WCSPs (Table IV), FABE outperforms both RBFAOO
and toulbar2 on the spot5 dataset. On the mastermind
dataset, FABE is comparable with toulbar2 (since both
compute solutions in tenths of seconds) but superior to RB-
FAOO, except for 3-8-5 and 10-8-3 instances. toulbar2
is superior on the iscas89 dataset.

Finally, FABE consistently outperforms SMP using one-
hot encoding, confirming that the use of additional encodings
(required by the presence of non-binary variables that cannot
be represented by ADDs) introduces a significant overhead
compared to our representation using DAFSA, which can
natively represent non-binary variables. Such an impact is more
pronounced on datasets with larger variable domains, which
require more binary variables to be represented by ADDs.
Indeed, FABE obtains a speed-up of 3 orders of magnitude on
the protein dataset, where variables reach a domain of 81.

VI. CONCLUSIONS

We proposed FABE, an algorithm for exact MPE inference
and constrained optimisation that exploits our concise function
representation based on DAFSA. Results achieved by com-
paring FABE with state of the art approaches following an
established experimental methodology confirm the efficacy of
our concise function representation.

Future research directions include extending FABE to other
exact inference tasks and integrating FABE (in its already-
available Mini-Bucket version) to compute the initial heuristic
for AND/OR search algorithms, which, at the moment, use
the table-based implementation of BE. We deem this research
direction very relevant since the computation of the MBE
heuristic for AND/OR search algorithms can represent a
bottleneck for high values of i, forcing one to resort to values
of i that correspond to weaker heuristics, as acknowledged in
[10]. A faster version of MBE could represent an important
contribution for this family of algorithms.
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APPENDIX
FULL EXPERIMENTAL RESULTS ON MPE DATASETS

Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

pdb1duw 241 96.61% 21.36 > 2 h > 2 h
pdb1hcz 211 96.22% 10.33 749.39 > 2 h
pdb1fny 199 94.37% 6.60 > 2 h 2036.29
pdb2hft 190 96.31% 322.33 1765.22 6569.95
pdb1ad2 177 96.74% 25.28 1654.75 > 2 h
pdb1atg 175 95.47% 3.28 1697.87 4098.89
pdb1qre 175 95.43% 3.47 734.85 1721.50
pdb1qhv 173 95.86% 16.54 > 2 h 4376.94
pdb1pbv 170 96.50% 234.70 1543.11 > 2 h
pdb1g3p 165 96.04% 1.21 5080.64 580.33
pdb2fcb 158 95.49% 3.80 1677.44 6780.26
pdb1euo 157 96.75% 39.81 > 2 h 1374.51
pdb1fnl 157 95.79% 8.43 > 2 h > 2 h
pdb1kgd 156 96.43% 28.05 > 2 h > 2 h
pdb1di6 154 96.23% > 2 h 1802.38 > 2 h
pdb1kid 153 96.69% 4343.93 > 2 h > 2 h
pdb1huw 152 96.41% 155.20 4162.96 > 2 h
pdb1wba 151 96.79% 776.65 216.38 4376.27
pdb1lki 150 96.69% 594.44 3884.97 > 2 h
pdb1kao 148 96.70% > 2 h > 2 h > 2 h
pdb1f5f 147 96.36% 781.32 > 2 h > 2 h
pdb1a3c 144 97.05% 214.89 > 2 h > 2 h
pdb1alu 144 96.87% 5434.98 > 2 h > 2 h
pdb2fcr 143 96.03% 5.03 > 2 h > 2 h
pdb2e2c 142 96.40% 3.50 1125.04 6111.28
pdb2ilk 142 96.72% 5313.47 3924.98 > 2 h
pdb1esl 140 96.56% 3277.05 > 2 h > 2 h
pdb2i1b 140 96.56% 15.28 1979.26 > 2 h
pdb1cjw 139 95.85% 926.69 > 2 h > 2 h
pdb1e3b 139 96.79% 52.45 > 2 h > 2 h
pdb1ek0 139 96.83% 69.81 18.65 6451.68
pdb1amx 137 95.46% 26.24 > 2 h > 2 h
pdb1rl6 137 96.71% 39.74 34.01 4533.46
pdb1bv1 134 95.78% 4494.03 5492.51 > 2 h
pdb1b8e 133 96.00% 43.60 > 2 h > 2 h
pdb1j98 133 96.15% 36.24 > 2 h > 2 h
pdb1b2v 132 90.14% 0.54 0.22 45.15
pdb1qnt 132 96.35% 95.04 451.55 6957.60
pdb1dg6 131 96.05% 162.50 > 2 h > 2 h
pdb1bgc 130 96.29% 3625.70 1801.50 6944.96
pdb1dk8 130 96.36% 6.71 929.46 3595.40
pdb1dvo 127 96.97% 226.02 15.44 > 2 h
pdb1buu 126 96.51% 1.07 272.80 5946.49
pdb1exr 125 96.23% 15.22 4.57 6364.23
pdb1h6h 125 96.68% 467.49 187.14 > 2 h
pdb1cbs 123 96.71% 43.71 1446.61 > 2 h
pdb1dbu 123 96.95% 1819.33 3052.28 > 2 h
pdb1rcy 123 95.63% 1.30 1.59 1854.50
pdb1aly 122 95.71% 190.04 100.19 > 2 h
pdb1at0 122 96.18% 15.21 17.81 > 2 h
pdb1fjj 122 95.62% 1.17 135.94 768.07
pdb1i5g 122 96.05% 1.97 > 2 h 1745.44
pdb1j9b 122 96.92% 1909.25 4382.00 > 2 h
pdb2lhb 122 96.83% 15.06 28.80 > 2 h
pdb1bd8 121 96.75% 17.64 2017.61 > 2 h
pdb1ej8 121 96.38% 763.74 709.95 1244.13
pdb1tfe 121 96.55% 5116.41 6195.86 > 2 h
pdb1rsy 119 96.86% 126.50 1137.45 > 2 h
pdb1vls 119 96.26% 3.04 > 2 h 5484.35
pdb5nul 119 95.88% 18.25 > 2 h > 2 h

TABLE V: Runtime results on protein instances (1–60).

Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

pdb1dqg 118 96.41% 101.99 1895.29 > 2 h
pdb1e29 117 96.37% 1.92 23.98 2825.05
pdb1f1e 116 96.66% 576.79 1690.88 > 2 h
pdb1jb3 115 96.41% > 2 h 4293.90 > 2 h
pdb1lit 115 96.42% 9.60 1761.41 2865.14
pdb1c3m 113 95.43% 1.11 1848.27 870.53
pdb1f4p 112 95.93% 13.40 107.15 2184.30
pdb2eif 112 96.29% 54.54 60.41 > 2 h
pdb1bkb 111 97.34% 23.61 402.04 1534.33
pdb1tn3 111 96.15% 5.16 > 2 h > 2 h
pdb1doi 109 95.52% 90.39 801.83 > 2 h
pdb1hby 109 97.12% 527.68 1088.08 2731.80
pdb1buo 108 95.41% 2.01 199.56 > 2 h
pdb1c9x 108 96.61% 3.01 799.14 > 2 h
pdb1h9k 108 96.28% 16.88 1.24 445.85
pdb1fit 107 97.05% 127.17 80.24 > 2 h
pdb1ijt 107 96.73% > 2 h 18.79 > 2 h
pdb1msc 106 96.41% 2.32 18.38 > 2 h
pdb1qhq 106 94.48% 4.62 34.91 2543.03
pdb1qjp 106 96.90% 27.79 1499.44 > 2 h
pdb1a62 105 96.18% 6.46 1.74 6021.26
pdb1cuo 104 96.59% 2.84 13.42 2104.38
pdb1dfx 103 95.21% 3.46 13.11 815.00
pdb1ekg 103 96.12% 18.37 271.33 > 2 h
pdb1jse 103 96.34% 5.03 2006.30 > 2 h
pdb1neu 102 96.42% 0.57 14.83 282.35
pdb1rfs 102 94.73% 29.76 1.96 1737.63
pdb1jbe 101 96.05% 37.20 762.38 > 2 h
pdb1vpi 101 96.39% 2.87 99.93 692.77
pdb1whi 101 97.48% 1405.80 148.15 > 2 h
pdb3nul 101 96.62% 4.28 76.57 2670.80
pdb1dly 100 96.53% 2351.17 4806.69 > 2 h
pdb2tgi 100 94.97% 2.30 8.55 > 2 h
pdb1c52 99 97.17% 51.26 5.76 3547.11
pdb1sfp 99 95.48% 48.75 51.88 3984.85
pdb1c44 98 96.44% 9.25 3.69 > 2 h
pdb1b0b 97 95.74% 7.15 273.85 > 2 h
pdb1bkr 97 95.70% 31.93 > 2 h > 2 h
pdb1qto 97 96.12% 1.86 2.55 4201.69
pdb1thx 97 96.17% 285.03 1.61 > 2 h
pdb1tmy 97 96.57% 102.86 > 2 h > 2 h
pdb2hbg 97 96.62% 1.90 778.86 1704.06
pdb1cew 96 97.20% 3.26 426.06 3907.28
pdb1cot 96 96.47% 73.09 1738.82 > 2 h
pdb1jer 96 95.46% 2.95 13.11 1412.22
pdb2cy3 96 96.64% 0.35 1.69 304.60
pdb7fd1 96 95.10% 4.16 9.85 4736.83
pdb1a1x 95 96.43% 159.48 879.45 > 2 h
pdb1bea 95 96.83% 68.10 1352.07 877.64
pdb1bqk 94 96.80% 2.27 11.12 1031.58
pdb1npl 94 96.33% 0.84 0.84 1567.54
pdb2pii 94 97.06% 412.83 241.40 4279.84
pdb4rhn 94 96.41% 2.07 473.25 3103.93
pdb1cxc 93 97.11% 3.95 1.80 7118.94
pdb1rro 93 96.25% 20.87 405.46 > 2 h
pdb1aiu 92 95.99% 2.19 2.13 953.85
pdb1btn 92 96.88% 63.43 16.04 > 2 h
pdb1ew4 92 95.92% 28.44 > 2 h 3701.17
pdb1puc 92 97.36% 2.27 102.72 1537.91
pdb1skz 92 97.23% 8.44 50.14 > 2 h

TABLE VI: Runtime results on protein instances (61–120).
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Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

pdb1t1d 92 97.21% 57.12 2076.69 > 2 h
pdb2rhe 92 95.42% 0.60 0.61 763.51
pdb3kvt 92 96.63% 13.17 > 2 h 2261.06
pdb3vub 92 96.84% 831.03 427.18 5546.07
pdb1cqy 91 95.64% 17.76 274.04 > 2 h
pdb1dzo 91 96.85% 106.69 4.04 4866.95
pdb1e85 91 97.08% 2.33 68.38 > 2 h
pdb1qad 91 96.20% 2.65 959.66 1759.49
pdb1wad 91 96.98% 1.29 2.32 5620.73
pdb3cyr 91 96.07% 0.48 1.07 481.62
pdb1acf 90 96.15% 0.68 122.87 243.67
pdb1ycc 89 96.74% 43.92 > 2 h > 2 h
pdb3c2c 89 96.79% 16.31 744.95 > 2 h
pdb1bxe 88 97.11% 6.89 17.90 6925.76
pdb1jhg 88 96.60% 14.11 9.27 6608.15
pdb1ncg 88 96.51% 2.44 2.88 3299.30
pdb1ris 88 97.20% 2223.82 22.10 > 2 h
pdb2rta 88 95.40% 0.49 2.72 786.18
pdb3ezm 88 95.64% 0.18 0.43 127.30
pdb1opc 87 96.94% 54.91 1041.76 > 2 h
pdb2tir 87 94.66% 0.76 203.02 1426.95
pdb1co6 86 97.14% 7.02 26.46 3056.25
pdb1gmx 86 95.44% 7.92 2.10 > 2 h
pdb1aac 85 96.83% 12.77 570.33 > 2 h
pdb1bm8 85 96.86% 13.02 53.87 > 2 h
pdb1i8o 85 95.90% 3.42 1.88 > 2 h
pdb1xer 85 96.06% 0.84 5.64 671.15
pdb2cdv 85 97.29% 1.62 17.63 1200.34
pdb1cpq 84 96.52% 0.46 5.44 465.32
pdb1hxi 84 95.73% 6.87 1.27 2066.29
pdb3cao 84 96.19% 0.51 0.87 770.46
pdb1dlw 83 95.35% 2.19 79.62 1009.88
pdb1g2r 83 97.16% 226.21 53.32 > 2 h
pdb1hbk 83 97.13% 53.65 19.57 > 2 h
pdb1qt9 83 93.84% 1.74 44.33 6303.49
pdb1plc 82 94.54% 0.29 0.56 102.99
pdb2hts 81 96.84% 47.36 867.50 2014.12
pdb1noa 80 94.44% 0.15 0.25 56.19
pdb1svy 80 96.57% 16.15 1164.53 3128.25
pdb1who 80 95.66% 1.16 3.18 1477.93
pdb2mcm 80 91.85% 0.06 0.09 4.67
pdb2pvb 80 96.94% 13.68 3838.69 6442.13
pdb1mho 79 96.43% 274.90 6.05 > 2 h
pdb1cyo 78 96.83% 6.26 129.71 1381.34
pdb2cbp 77 96.60% 1.99 0.35 4771.07
pdb1aba 76 96.29% 3.01 2.67 4263.71
pdb1gvp 76 96.19% 1.98 1.26 1357.80
pdb1tig 76 97.38% 551.97 5.26 > 2 h
pdb1cei 75 96.02% 3446.15 1.46 5754.94
pdb1fna 75 96.46% 0.15 0.17 64.35
pdb1g9o 75 96.89% 111.88 1800.09 6492.00
pdb1bxv 74 95.32% 4.76 0.82 2164.16
pdb1cxy 69 95.41% 0.61 4.34 2510.95
pdb1h98 68 96.16% 0.95 4.76 > 2 h
pdb1ig5 68 95.97% 348.94 178.90 > 2 h
pdb1i27 67 97.34% 122.06 8.36 5017.91
pdb1iqz 67 94.68% 1.30 0.89 211.61
pdb1cc8 66 96.64% 25.51 19.05 1962.13
pdb1fk5 66 96.98% 0.40 2.37 166.39
pdb1gdv 66 95.77% 3.89 0.94 3287.50

TABLE VII: Runtime results on protein instances (121–180).

Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

pdb1tif 66 97.22% 15.04 7.17 > 2 h
pdb1en2 65 96.31% 0.74 0.76 459.84
pdb1rzl 65 96.57% 4.62 1.13 2076.39
pdb1utg 65 96.05% 0.89 0.82 2607.19
pdb1bt0 64 96.40% 189.50 164.53 3695.00
pdb1h75 64 96.35% 6.20 3.36 > 2 h
pdb1kp6 64 95.38% 0.69 3.15 3525.51
pdb1ntn 64 93.78% 0.22 0.48 111.24
pdb3il8 64 96.77% 2.66 1.73 > 2 h
pdb1hyp 63 95.38% 0.43 0.22 524.05
pdb1vfy 63 96.55% 1.43 1.40 1601.58
pdb1ail 62 97.29% 26.49 2.22 > 2 h
pdb451c 62 96.91% 294.31 1.16 > 2 h
pdb1ctj 61 95.40% 4.37 0.41 1908.81
pdb1b0y 60 96.11% 43.14 583.95 > 2 h
pdb1hoe 60 95.83% 0.10 0.17 45.79
pdb1f94 58 96.24% 2.65 0.98 305.53
pdb1hpi 57 96.10% 0.58 4.04 268.80
pdb1k51 57 96.20% 0.14 0.41 100.65
pdb3ebx 57 97.09% 0.41 0.97 747.96
pdb1a8o 56 97.10% 4.11 2.68 3267.70
pdb1hg7 56 95.86% 0.34 0.78 397.53
pdb1ypc 56 96.97% 135.69 1.66 > 2 h
pdb1fas 55 97.61% 2.87 3.78 1528.03
pdb1g2b 55 96.98% 20.44 1.55 1430.55
pdb1aho 54 96.11% 0.21 0.46 146.97
pdb1hh5 54 96.27% 1.35 1.18 2529.51
pdb1mjc 54 93.72% 0.17 1.70 42.96
pdb1r69 54 97.10% 326.78 3.04 4953.95
pdb1a7w 53 96.91% 1.25 1.55 3961.89
pdb2sn3 53 96.45% 0.13 0.49 130.13
pdb1df4 51 95.95% 0.32 0.34 516.97
pdb1fxd 51 94.64% 0.08 0.21 22.52
pdb1b7d 50 96.95% 0.42 17.85 2361.41
pdb1kth 50 96.77% 0.41 2.85 510.41
pdb1nkd 50 96.85% 1.92 10.92 > 2 h
pdb2igd 50 95.64% 0.21 0.61 496.56
pdb1be7 48 96.40% 76.01 0.81 > 2 h
pdb2ovo 48 95.46% 0.16 0.42 47.69
pdb1c75 47 96.08% 0.94 0.56 340.63
pdb1ctf 47 96.48% 0.96 1.09 2158.53
pdb1mof 46 96.50% 0.20 0.52 1824.54
pdb1g6x 44 96.35% 0.82 0.43 3554.66
pdb1rb9 42 95.30% 0.19 0.31 185.82
pdb2fdn 42 92.84% 0.04 0.05 3.79
pdb1bhp 39 97.67% 1.25 1.85 > 2 h
pdb1j8e 39 96.67% 0.08 0.14 14.32
pdb2erl 34 94.41% 0.05 0.11 5.17
pdb1ajj 32 95.46% 0.06 0.18 53.52
pdb1piq 29 96.92% 0.20 1.01 2401.71
pdb1aie 26 97.37% 3.88 0.52 > 2 h
pdb1rh4 21 96.87% 0.12 0.96 341.66
pdb1pef 17 96.26% 0.08 0.15 104.86
pdb1akg 14 81.02% 0.01 0.00 0.04
pdb1pen 13 86.52% 0.01 0.01 0.12
pdb1not 11 90.15% 0.01 0.01 0.79
pdb1etm 10 86.59% 0.01 0.00 0.08
pdb1etl 9 81.65% 0.00 0.00 0.07
pdb1etn 9 82.81% 0.01 0.00 0.07
pdb1xy2 7 93.29% 0.01 0.01 0.22

TABLE VIII: Runtime results on protein instances (181–240).
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Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

pedigree25 1289 79.06% 28.82 6.32 197.89
pedigree30 1289 81.97% 7.23 61.34 40.86
pedigree39 1272 78.40% 3.21 22.46 17.06
pedigree18 1184 82.65% 7.42 20.11 40.89
pedigree31 1183 87.43% 910.46 > 2 h 5881.66
pedigree34 1160 80.74% 8.83 > 2 h 60.78
pedigree51 1152 82.00% 132.92 > 2 h 789.65
pedigree9 1118 87.06% 473.94 100.19 2040.32
pedigree13 1077 78.10% 519.08 > 2 h 2011.26
pedigree7 1068 79.03% 21.79 323.77 136.11
pedigree41 1062 85.49% 24.06 > 2 h 151.40
pedigree37 1032 79.69% 6.73 146.23 27.91
pedigree40 1030 90.36% 808.10 > 2 h 3683.38
pedigree44 811 84.81% 75.90 765.39 1316.35
pedigree33 798 79.90% 2.45 19.47 12.62
pedigree19 793 90.66% 148.93 > 2 h 1398.50
pedigree38 724 90.25% 37.96 7.88 453.58
pedigree50 514 93.64% 4.03 17.26 48.83
pedigree42 448 90.69% 976.28 610.55 4779.61
pedigree20 437 88.34% 369.82 632.75 > 2 h
pedigree23 402 86.17% 86.27 150.26 320.63
pedigree1 334 86.28% 2.77 0.36 16.40

TABLE IX: Runtime results on pedigree instances.

Instance Variables Redundancy
Runtime (seconds)

FABE RBFAOO SMP

90-26-5 676 77.03% 3192.15 925.47 > 2 h
90-25-5 625 77.11% > 2 h 902.19 > 2 h
90-24-5 576 79.86% 5112.09 1758.19 > 2 h
75-23-5 529 66.62% > 2 h 791.70 > 2 h
90-23-5 529 77.43% 508.75 158.17 2453.45
75-22-5 484 64.76% > 2 h 816.87 > 2 h
90-22-5 484 77.72% 4883.60 20.37 > 2 h
75-21-5 441 65.70% > 2 h 4.71 > 2 h
90-21-5 441 76.00% 142.23 8.22 802.17
50-20-5 400 41.22% > 2 h 163.44 > 2 h
75-20-5 400 64.99% 831.80 19.01 3711.20
90-20-5 400 77.71% 267.50 10.27 946.07
50-19-5 361 41.78% > 2 h 153.02 > 2 h
75-19-5 361 64.50% > 2 h 10.74 > 2 h
50-18-5 324 41.10% > 2 h 73.03 > 2 h
75-18-5 324 66.24% 845.21 9.96 4300.02
50-17-5 289 41.41% > 2 h 7.76 > 2 h
75-17-5 289 65.70% 1525.23 3.21 > 2 h
50-16-5 256 42.40% > 2 h 3.10 > 2 h
75-16-5 256 65.30% 6452.75 1.88 > 2 h
50-15-5 225 43.34% 1335.12 2.71 4098.00
50-14-5 196 40.54% 1442.72 1.13 > 2 h
50-12-5 144 37.24% 749.27 0.84 1289.04

TABLE X: Runtime results on grid instances.
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