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Abstract. In this paper we introduce FLM, a divergence measure to
compare a fuzzy and a crisp partition. This measure is an extension of
LM, the López de Mántaras distance. This extension allows to handle
domain objects having attributes with continuous values. This means
that for some domains the use of fuzzy sets may report better results
than the discretization that is the usual way to deal with continuous
values. We experimented with both FLM and LM in the context of the
lazy learning method called Lazy Induction of Descriptions useful for
classification tasks.
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sures, López de Mántaras distance.

1 Introduction

There are machine learning techniques such as clustering or inductive learning
methods, where the comparison of partitions plays an important role. In this
paper we introduce FLM, an extension of the López de Mántaras (LM) distance
to compare a fuzzy and a crisp partition. The LM distance was first introduced
in [1] as a new attribute selection measure for ID3-like inductive algorithms. ID3
[3] is a well-known inductive learning algorithm to induce classification rules in
the form of a decision tree. The LM measure is based on a distance between
partitions such that the selected attribute in a node induces the partition which
is closest to the correct partition of the subset of training examples corresponding
to this node.

The advantage of the LM distance, compared with other selection measures
such as the Quinlan’s gain (see [3]), is that LM is not biased towards selecting
attributes whith many values. The LM distance is defined using the measures of
information of the different partitions involved. Given two partitions P and Q
of a set X , the distance between them is computed as follows:

LM(P ,Q) = 2− I(P) + I(Q)

I(P ∩ Q)
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where I(P) and I(Q) measure the information contained in the partitions P and
Q respectively and I(P ∩ Q) is the mutual information of the two partitions.

In [4], a paradigm apparatus was introduced for the evaluation of clustering
comparison techniques and distinguish between the goodness of clusterings and
the similarity of clusterings by clarifying the degree to which different measures
confuse the two. This evaluation shows that LM is one of the measures that
exhibits the desired behaviour under each of the test scenarios.

In previous works (see for instance [5,6]) we used LM in the framework of a
lazy learning method called Lazy Induction of Descriptions (LID). LID [2] is a
method useful for classification tasks. Due to the characteristics of LM, LID can
only deal with domain objects having attributes with nominal values. However
knowledge representation of domain objects often involves the use of continuous
values. Techniques dealing with continuous values usually use the discretization,
consisting on building intervals of values that should be considered as equivalent.
There are two kinds of discretization: crisp and fuzzy. In crisp discretization
the range of the continuous value is split into several intervals. Elements of an
interval are considered as equivalent and each interval is handled as a discrete
value. In some domains, the crisp discretization shows some counter-intuitive
behavior around the thresholds of the intervals: values around the threshold of
two adjacent intervals are considered as different but may be they are not so. For
this reason, sometimes is interesting to build a fuzzy discretization from a crisp
one, as it is done for instance in [7]. In the context of Case-based Reasoning, the
use of fuzzy sets to discretize attributes with continuous values could make the
retrieval task more accurate.

The Rand index [8] is a common measure used to compare two clusterings.
The Rand index, as it was originally formulated, allows uniquely the evaluation
of crisp clustering partitions. In [9], Campello proposed a fuzzy extension of the
Rand Index for clustering and classification assessment. This index is defined
using basic concepts from fuzzy set theory. Hullermeier-Rifqi [10] introduced
another extension of the Rand index suitable for comparing two fuzzy partitions.
Since neither in [9] nor in [10] experimental results were conducted, in [11] we
experimentally compared the two fuzzy versions of the Rand Index. From these
experiments we saw that both measures had a high computational cost. In this
context it seems natural to try to introduce an extension of the LM distance for
dealing with fuzzy partitions.

In this paper we first introduce a fuzzy extension of the LM distance and we
prove some basic properties of this extension. Then we report some experimental
results comparing both LM and FLM when used by the LID method as measure
to compare partitions.

2 A Fuzzy Version of the López de Mántaras Distance

In this section, first we define a fuzzy extension of the LM distance, that we call
FLM. This measure allows to compare a fuzzy partition with respect to a crisp
partition. We also prove some basic formal properties of this measure.
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Definition 1 (Fuzzy n-partition, normal partition [12]). Given a finite
data set X = {x1, . . . , xk} and a positive integer 1 < n < k, a fuzzy n-partition
on X is any finite collection P = {P1, . . . , Pn} of fuzzy subsets on X such that:

1)
∑n

i=1 Pi(xh) = 1, 1 ≤ h ≤ k; 2) 0 <
∑k

h=1 Pi(xh) < k, 1 ≤ i ≤ n.

A fuzzy n-partition on a set X is normal if and only if for each set Pi ∈ P, there
exists an element x ∈ X such that Pi(x) = 1. This element is called prototypical
w.r.t. the class Pi.

The number
∑k

h=1 Pi(xh) is the scalar cardinality of the fuzzy set Pi and it will
be denoted by |Pi|.
Definition 2 (Fuzzy LM). Let X = {x1, . . . , xk} be a given a data set, let
P = {P1, . . . , Pn} be a fuzzy n-partition of X, and Q = {Q1, . . . , Qm} a crisp
partition of X. The measure FLM(P ,Q) is computed as follows:

FLM(P ,Q) = 2− I(P) + I(Q)

I(P ∩ Q)
, where:

I(P) = −
n∑

i=1

pilog2pi,with pi =
|Pi|
k

; I(Q) = −
m∑

j=1

qj log2qj ,with qj =
|Qj |
k

;

I(P ∩Q) = −
n∑

i=1

m∑

j=1

rij log2rij ,with rij =
|Pi ∩Qj|

k
,

where Pi ∩Qj : X → [0, 1] is the fuzzy set defined as:

(Pi ∩Qj)(x) =

{
Pi(x), when x ∈ Qj,
0, otherwise.

So defined, when P and Q are both crisp partitions, FLM(P ,Q) is exactly
LM(P ,Q). Let us prove now some formal properties of FLM .

Proposition 1 (Basic facts). Let X, P, and Q be as in Definition 2. The
following conditions hold (1 ≤ i ≤ n, 1 ≤ j ≤ m):

1) pi, qj ∈ (0, 1),

2) rij ∈ [0, 1),

3)
∑m

j=1 rij = pi,

4)
∑n

i=1 rij = qj,

5)
∑n

i=1

∑m
j=1 rij = 1,

6)
∑n

i=1

∑m
j=1 pi.qj = 1.

Proof: 1) and 2) are clear by Definition 1.

3) Let 1 ≤ i ≤ n and 1 ≤ h ≤ k. Since Q is a crisp partition of X , Ql(xh) = 1
for some equivalence class Ql of the partition. Then we have:

m∑

j=1

(Pi ∩Qj)(xh) = (Pi ∩Ql)(xh) = Pi(xh) (1)
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and therefore, by (1) and by definition of rij ,

m∑

j=1

rij =
1

k

m∑

j=1

k∑

h=1

(Pi ∩Qj)(xh) =
1

k

k∑

h=1

m∑

j=1

(Pi ∩Qj)(xh) =
1

k

k∑

h=1

Pi(xh) = pi.

4) Let 1 ≤ j ≤ m and 1 ≤ h ≤ k. Since Q is a crisp partition of Xwe have:

n∑

i=1

(Pi ∩Qj)(xh) =

{∑n
i=1 Pi(xh), when Qj(xh) = 1;

0, otherwise.

Consequently, since P is a fuzzy n-partition of X ,
∑n

i=1 Pi(xh) = 1 and thus,

n∑

i=1

(Pi ∩Qj)(xh) = Qj(xh) (2)

and now, using (2), we obtain:

n∑

i=1

rij =
1

k

n∑

i=1

k∑

h=1

(Pi ∩Qj)(xh) =
1

k

k∑

h=1

n∑

i=1

(Pi ∩Qj)(xh) =
1

k

k∑

h=1

Qj(xh) = qj .

5)
∑n

i=1

∑m
j=1 rij =

∑n
i=1(

∑m
j=1 rij) =

∑n
i=1 pi = 1.

6)
∑n

i=1

∑m
j=1 pi · qj =

∑n
i=1(pi

∑m
j=1 qj) =

∑n
i=1 pi · 1 =

∑n
i=1 pi = 1. �

Proposition 2. Given a fuzzy n-partition P and a crisp m-partition Q on a
finite set X = {x1, . . . , xk}, it holds that LM(P ,Q) ∈ [0, 1].

Proof: First, let us see that I(P ∩ Q) ≥ I(P). By item 3) of Proposition 1, for
every 1 ≤ i ≤ n and 1 ≤ j ≤ m, rij ≤ pi, and since the logarithm function is
increasing, we have that log rij ≤ log pi. Therefore,

n∑

i=1

m∑

j=1

rij log2rij ≤
n∑

i=1

m∑

j=1

rij log2pi =

n∑

i=1

(

m∑

j=1

rij)log2pi =

n∑

i=1

pilog2pi.

Consequently, I(P ∩ Q) ≥ I(P). Secondly, we show that I(P ∩ Q) ≥ I(Q). By
item 4) of Proposition 1 we have that, for every 1 ≤ i ≤ n and 1 ≤ j ≤ m,
rij ≤ qj , and thus log rij ≤ log qj . Therefore,

n∑

i=1

m∑

j=1

rij log2rij =

m∑

j=1

n∑

i=1

rij log2rij ≤
m∑

j=1

n∑

i=1

rij log2qj =

=
m∑

j=1

(
n∑

i=1

rij)log2qj =
n∑

i=1

qj log2qj .
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Consequently, we also have I(P ∩Q) ≥ I(Q). Thus, 2 · I(P ∩Q) ≥ I(P) + I(Q),
and then:

LM(P ,Q) = 2− I(P) + I(Q)

I(P ∩ Q)
≥ 0.

Finally, we need to prove that

I(P) + I(Q)

I(P ∩ Q)
≥ 1.

It will be sufficient to prove that I(P ∩ Q) ≤ I(P) + I(Q). Indeed, by using
the definitions, items 3) and 4) of Proposition 1, and some properties of the
logarithm function, we have:

I(P ∩ Q)− I(P)− I(Q) = −
n∑

i=1

m∑

j=1

rij log2rij +
n∑

i=1

pilog2pi +
m∑

j=1

qj log2qj =

n∑

i=1

m∑

j=1

rij log2
1

rij
+

n∑

i=1

(
m∑

j=1

rij)log2pi +
m∑

j=1

(
n∑

i=1

rij)log2qj =
n∑

i=1

m∑

j=1

rij log2
piqj
rij

.

Now we use the well known fact that lnx ≤ x − 1. For base 2 we have log2x =
lnx
ln2 ≤ x−1

ln2 . Now, using this fact and items 5) and 6) of Proposition 1, we have:

n∑

i=1

m∑

j=1

rij log2
pi · qj
rij

≤ 1

ln2
·

n∑

i=1

m∑

j=1

rij(
pi · qj
rij

− 1) =
1

ln2
·

n∑

i=1

m∑

j=1

(pi · qj − rij) =

=
1

ln2
(

n∑

i=1

m∑

j=1

pi · qj −
n∑

i=1

m∑

j=1

rij) =
1

ln2
· (1− 1) =

1

ln2
· 0 = 0.

�

3 Experiments

The experimentation with the extended version of the LM distance has been
carried out by including it into a lazy learning method called Lazy Induction of
Descriptions (LID in short). In this section we explain LID in some detail and
then we report the experiments and the results obtained with both crisp and
fuzzy versions of LM.

LID is a lazy learning method for classification tasks. LID determines which
are the most relevant attributes of a problem (i.e., a case to be classified) and
searches in a case base for cases sharing these relevant attributes. The problem is
classified when LID finds a set of relevant attributes shared by a subset of cases
all of them belonging to the same class. We call the description formed by these
relevant features similitude term and the set of cases satisfying the similitude
term discriminatory set.
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Function LID (p, Di, SDi, C)
  if stopping-condition (SDi) then return class (SDi)
       else  fd := Select-attribute (p, SDi, C)
               Di+1 := Add-attribute (fd, Di)
               SDi+1 := Discriminatory-set (Di+1, SDi)
               LID (p, Di+1, SDi+1, C)
  end-if
end-function

Fig. 1. The LID algorithm. On the right there is the intuitive idea of LID.

Given a problem for solving p, the LID algorithm (Fig. 1) initializes D0 as a
description with no attributes, the discriminatory set SD0 , as the set of cases
satisfying D0, i.e., all the available cases, and C as the set of solution classes
into which the known cases are classified. Let Di be the current similitude term
and SDi be the set of all the cases satisfying Di. When the stopping condition
of LID is not satisfied, the next step is to select an attribute for specializing Di.
The specialization of Di is achieved by adding attributes to it. Given a set F
of attributes candidate to specialize Di, the next step of the algorithm is the
selection of an attribute f ∈ F . Selecting the most discriminatory attribute in
F is heuristically done using a measure Δ to compare each partition Pf induced
by an attribute f with the correct partition Pc. The correct partition is the one
having as many sets as solution classes. Each attribute f ∈ F induces in the
discriminatory set a partition Pf with as many sets as the number of different
values that f takes in the cases.

Given a measure Δ and two attributes f and g inducing respectively parti-
tions Pf and Pg, we say that f is more discriminatory than g iff Δ(Pf ,Pc) <
Δ(Pg,Pc). This means that the partition Pf is closer to the correct partition
than the partition Pg. LID selects the most discriminatory attribute to specialize
Di. Let fd be the most discriminatory attribute in F . The specialization of Di

defines a new similitude term Di+1 by adding to Di the attribute fd. The new
similitude term Di+1 = Di∪{fd} is satisfied by a subset of cases in SDi , namely
SDi+1 . Next, LID is recursively called with SDi+1 and Di+1. The recursive call of
LID has SDi+1 instead of SDi because the cases that are not satisfied by Di+1 will
not satisfy any further specialization. Notice that the specialization reduces the
discriminatory set at each step, i.e., we get a sequence SDn ⊂ SDn−1 ⊂ . . . ⊂ SD0 .
LID has two stopping situations: 1) all the cases in the discriminatory set SDj

belong to the same solution class Ci, or 2) there is no attribute allowing the spe-
cialization of the similitude term. When the stopping condition 1) is satisfied,
p is classified as belonging to Ci. When the stopping condition 2) is satisfied,
SDj contains cases from several classes; in such situation the majority criteria
is applied, and p is classified in the class of the majority of cases in SDj .
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(define (object :id OBJ-50) 
     (Sepallength (define (fuzzy-value)
                (Value 7.0)
                     (Membership 0 0 1)))
     (Sepalwidth (define (fuzzy-value)
                  (Value 3.2)
                  (Membership 0 1 0)))
     (Petallength (define (fuzzy-value)
                  (Value 4.7)
                  (Membership 0 0.6087 0.3913)))
     (Petalwidth (define (fuzzy-value)
                  (Value 1.4)
                  (Membership  0 1 0))))

(define (object :id OBJ-50) 
     (Sepallength 7.0)
     (Sepalwidth 3.2)
     (Petallength 4.7)
     (Petalwidth 1.4))

Fig. 2. On the left there is a propositional representation of an object. On the right
there is the representation of the same object extended with the membership vector.

Conditions of the Experiments. We have conducted several experiments
on data sets coming from the UCI Repository [13] using LID with LM and
FLM as the Δ measure. We have used the following data sets: iris, bal, heart-
statlog, glass, wdbc, glass, and thyroids. For the evaluation we have taken the
discretization intervals provided by Weka [14]. Thus, for instance, for the Iris
data set, Weka gets the following intervals:

– Attribute Petalwidth: [0.00, 0.80], (0.80, 1.75], (1.75, 2.25]
– Attribute Petallength: [1.00, 2.45], (2.45, 4.75], (4.75, 6.90]
– Attribute Sepalwidth: [2.20, 2.95], (2.95, 3.35], (3.35, 4.40]
– Attribute Sepallength: [4.40, 5.55], (5.55, 6.15], (6.15, 7.90]

These intervals have been directly used by the LM distance. When using the
FLM measure we define fuzzy sets. Firstly, we will explain how to represent the
fuzzy cases handled by fuzzy LID. The left of Fig. 2 shows an example of an
object from the Iris data set represented as a set of pairs attribute-value. The
right of Fig. 2 shows the fuzzy representation of the same object. Notice that
the value of each attribute is an object that has in turn two attributes: Value
and Membership. The attribute Value takes the same value v that in the crisp
version (for instance, 7.0 in the attribute Sepallength). The attribute Membership
takes as value the membership vector associated to v, that is, a n-tuple μ, being
n the number of fuzzy sets associated to the continuous range of an attribute.
Each position i of μ represents the membership of the value v to the correspond-
ing fuzzy set Fi. In the next we will explain how to compute the membership
vector.

Given an attribute taking continuous values, let us suppose that the domain
expert has given α1, . . . , αn as the thresholds determining the discretization in-
tervals for that attribute. Let α0 and αn+1 be the minimum and maximum
respectively of the values that this attribute takes in its range. To each one
of the n+ 1 intervals [α0, α1], (α1, α2], . . . , (αn, αn+1] corresponds a trapezoidal
fuzzy set defined as follows, where 1 < i < n+ 1:
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�1 �2

F1 F2 F3

�1 �1 �2 �2

�1 + �1 -x

      2�1

F1(x) =
x � (�1 � �1)

      2�1

F2(x) =

�0
�3

Fig. 3. Trapezoidal fuzzy sets. The values α1 and α2 are given by the domain expert
as the thresholds of the discretization intervals for a given attribute.

F1(x) =

⎧
⎨

⎩

1 when α0 ≤ x ≤ α1 − δ1
α1+δ1−x

2δ1
when α1 − δ1 < x < α1 + δ1

0 when α1 + δ1 ≤ x

Fi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 when x ≤ αi−1 − δi−1
x−(αi−1−δi−1)

2δi−1
when αi−1 − δi−1 < x < αi−1 + δi−1

1 when αi−1 + δi−1 ≤ x ≤ αi − δi
αi+δi−x

2δi
when αi − δi < x < αi + δi

0 when αi + δi ≤ x

Fn+1(x) =

⎧
⎨

⎩

0 when x ≤ αn − δn
x−(αn−δn)

2δn
when αn − δn < x < αn + δn

1 when αn + δn ≤ x ≤ αn+1

The parameters δi are computed as follows: δi = p · |αi −αi−1|, where the factor
p corresponds to a percentage that we can adjust. Figure 3 shows the trapezoidal
fuzzy sets defined when n = 2. For instance, for the Iris data set the values of
αi for the Petallength attribute are: α0 = 1, α1 = 2.45, α2 = 4.75, α3 = 6.9.
The value 4.7 taken by the object obj-50 in the attribute Petallength (Fig. 2) has
associated the membership vector (0, 0.6087, 0.3913), meaning that such value
belongs to a degree 0 to the fuzzy set F1 corresponding to the interval [1, 2.45],
to a degree 0.6087 to the fuzzy set F2 corresponding to (2.45, 4.75], and to a
degree 0.3913 to the fuzzy set F3 corresponding to (4.75, 6.9].

In the fuzzy version of LID, the correct partition is the same than in the
crisp case since each object belongs to a unique solution class. However, when
the partitions induced by each attribute are fuzzy, an object can belong (to a
certain degree) to more than one partition set. Thus the algorithm of the fuzzy
LID is the same explained before but using the particular representation for the
fuzzy cases and FLM as the Δ measure. In the fuzzy experiments, to calculate
the values δi we have experimented with p = 0.05 and 0.10.
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Table 1. The left part shows the percentage of correct classifications of LID using LM
and FLM. The right part shows the percentage of incorrect classifications of LID using
LM and FLM. Results are the mean of 7 trials of 10-fold cross-validation and they
correspond to p = 0.10.

Dataset LM FLM significant LM FLM significant

bal 70.8387 66.6465 yes 28.9769 25.5450 yes
glass 78.2703 63.3519 yes 21.7297 34.5825 yes
heart-statlog 66.5608 76.0317 yes 33.4381 20.0529 yes
iris 93.8155 95.7143 yes 6.1845 3.8095 yes
thyroids 95.4660 94.3692 no 4.5340 4.8268 yes

Results. Table 1 shows the results of LID after seven trials of 10-fold cross-
validation taking p = 0.10. Experiments show that the fuzzy version of LID gives
good predictive results and in some domains (heart statlog and iris) outperforms
the crisp version. LID can produce two kinds of outputs: the classification in one
(correct or incorrect) class or a multiple classification. Multiple classification
means that LID has not been capable to classify the input object in only one
class. The utility of a multiple classification depends on the application domain,
so it is the expert who decides what is better to force the method to give a
classification (even incorrect) or to accept a ‘no classification”. The percentage
of correct classifications is similar in p = 0.05 and in p = 0.10 but with p = 0.10,
LID gives lower percentage of incorrect solutions and also a higher percentage of
multiple solutions than with p = 0.05.

4 Conclusions and Future Work

So far we have defined a fuzzy version of the LM distance, called FLM, in order
to compare a fuzzy and a crisp partition. Further research will be devoted to
explore different definitions based in different t-norms to extend the LM distance
for comparing two fuzzy partitions. In this paper we have proved only some
basic facts about the FLM measure, a systematic study of its formal properties
is needed and it will be our immediate research objective.

In [15] the notion of “measure of the degree of fuzziness” or “entropy” of a
fuzzy set was introduced using no probabilistic concepts. Based on this definition,
some classes of divergence measures between fuzzy partitions were presented in
[16]. Since the LM distance is an information theoretic approach to the compari-
son of crisp partitions, it could be interesting to study the relationship of our
fuzzy measure with all these divergence measures. In the future we would also
like to conduct more experiments to compare the Rand index and its two fuzzy
extensions introduced in [9] and [10] with the LM distance and the measure
FLM.

Acknowledgments. This research is partially funded by the Spanish MICINN
projects Next-CBR (TIN 2009-13692-C03-01), MTM2011-25747, ARINF



90 E. Armengol, P. Dellunde, and À. Garćıa-Cerdaña
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10. Hüllermeier, E., Rifqi, M.: A fuzzy variant of the Rand index for comparing clus-
tering structures. In: Proceedings of IFSA/EUSFLAT Conference, pp. 1294–1298
(2009)

11. Armengol, E., Garćıa-Cerdaña, À.: Lazy Induction of Descriptions Using Two
Fuzzy Versions of the Rand Index. In: Hüllermeier, E., Kruse, R., Hoffmann, F.
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