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A B S T R A C T

Optimizing drug dosages is essential for effective treatment. Clinical protocols may not suit all types of
patients evenly, due to many drug trials not being designed to account for all comorbities or clinically
relevant outcomes. Methodologies to optimize drug policies with observational data exist, but struggle due
to limited data completeness in clinical settings. Computational methods can help overcome these challenges
by leveraging field knowledge.

This paper proposes an Individualized Doser (IDoser), a core dosing model that links drug dose to relevant
covariates via a set of coefficients and includes a loss function to code needed assumptions and requirements.
Coordinate descent is used to obtain a fitted model with minimal loss. The loss function also measures
performance when validating the model with unseen data. We validated the proposed approach using the
case of follicle-stimulating hormone (FSH) dosing for controlled ovarian stimulation (COS).

When compared to clinical practice, IDoser achieved a net improvement of up to 31.97% in the validation
cases.

We present a simple but effective method to bridge the gap between current clinical dosing policies and
gold policies based on the true underlying and often unknown dose–response functions.
1. Introduction

Once a patient entrusts their health to a clinical professional for
treatment, they have every right to expect the highest standard of
care. Among the numerous essential steps involved in a particular
treatment, one critical aspect involves the accurate determination of
the appropriate dose for a prescribed medication. This dose will be
determined with an optimal outcome in mind, such as maintaining
the patient’s blood pressure within a balanced range or ensuring that
their temperature falls within specific values. Clinical professionals rely
on available knowledge of the underlying dose–response relationship
to determine the appropriate drug dose to achieve optimal outcomes.
However, this relationship is often not well-understood, which may
result in suboptimal dose selection, ultimately compromising clinical
care for the patient.

An example of this situation can be found in the empirical case
discussed in this research, which pertains to the challenge of deter-
mining the optimal first dose of follicle-stimulating hormone (FSH) for
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controlled ovarian stimulation (COS). COS is a key step in the treat-
ment of infertility. It is used to induce the ovary to develop multiple
follicles and eggs (oocytes) simultaneously. Once the follicles reach the
appropriate size, they are punctured and aspirated in a simple surgical
procedure, leading to the collection of mature oocytes. An appropriate
COS is critical to the success of in vitro fertilization (IVF), as the number
of mature oocytes retrieved is tightly associated with the chances of
achieving pregnancy safely. The desired outcome involves obtaining
a specific range of mature oocytes, typically between 10 to 15, as
supported by research (Polyzos & Sunkara, 2015; Steward et al., 2014).
Deviating from this range, whether too low or too high, is considered
undesirable. Specifically, retrieving a lower number of mature oocytes
reduces the chances of achieving a successful pregnancy, while a higher
number of mature oocytes increases the risk of ovarian hyperstimula-
tion syndrome (OHSS), a serious adverse complication resulting from
an exaggerated response to excess hormones.

Individuals with similar characteristics (sometimes even the same
individual at different points in time) can respond differently to the
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same treatment – a direct consequence of the lack of knowledge sur-
rounding the FSH dose–response relationship, as well as its interaction
with unknown factors.

Pharmacokinetic/pharmacodynamic (PK/PD) studies constitute an
important step in drug development. These studies inform the design
and execution of Randomized Controlled Trials (RCTs) in which the
drug is tested in clinical conditions. Clinical protocols are then derived
from these results to guide practice. Ultimately, results obtained from
this approach can vary from acceptable to almost optimal, depending
on the extent to which the PK/PD models align with the characteristics
of the target population and real-world clinical outcomes. While this
approach enables most patients to receive an appropriate drug dose,
dosing protocols or policies may not cater to all patients equally. This
primarily stems from the distribution of the target population and the
presence of accompanying comorbidities.

Clinicians often rely on their personal experience and available
published literature to compensate for these knowledge gaps. How-
ever, this approach may still be suboptimal. PK/PD models can be
adapted for real-world clinical use, but either imply the use of new
prospective data or very diverse observational datasets, which we
define as historical datasets derived from clinical practice. The first
option involves prospectively testing various dose concentrations on
the same individual a closely matched group of individuals. However,
intentionally deviating from the established clinical protocol to achieve
varied datasets is not ethically feasible both in routine care. The
second option remains difficult to define. While clinicians may adapt
protocols when deemed necessary, they typically adhere to established
guidelines, generating data with sparse diversity. This limitation cre-
ates a knowledge and intervention gap in addressing situations where
drug dosing policies remain sub-optimal. However, the methodologies
available to improve these policies are often not applicable due to the
inherent nature of clinical practice and the historical datasets derived
from it.

Our work strives to cover this gap, and the main contributions of
the presented research are:

• A straightforward methodology (IDoser) to improve individual-
ized drug dosing policies by using available observational datasets
and field knowledge while simultaneously incorporating require-
ments of the specific problem.

• An application in the FSH dosing use case that shows significant
improvements versus clinical practice and a literature benchmark.

• The validation, by achieving improvement versus clinical practice
and the literature benchmark, that introducing field knowledge in
the training process is key for the improvement of dosing policies.

• The possibility to customize the search for policy solutions de-
pending on each specific dosing problem.

• A potential applicability for multiple typologies of dosing prob-
lems due to the flexible capabilities of our proposed approach.

. Related work

The dose–response relationship describes an organism’s response
o a stimulus or stressor, typically a chemical or drug, in relation
o the magnitude of exposure or dose, administered either once or
ver a period of time. Dose–response curves (Hayes et al., 2020)
escribe these relationships. A comprehensive understanding of this
elationship is imperative for the development of dosing protocols and
olicies. Historically, curve functions have been employed to model this
henomenon (Calabrese, 2016; Sta et al., 2023).

Dose–response curves can exhibit diverse shapes, indicating the
omplex relationship between dose and response. One prominent the-
ry underlying dose–response curves is hormesis. According to horme-
is, substances may exhibit toxic effects at high doses, while lower
oses can have beneficial or stimulatory effects on biological systems.
onsequently, plotting the substance’s benefit yields a U-shaped curve,
2

whereby minimal doses lack efficacy, low to moderate doses exhibit a
positive effect, and higher doses become increasingly detrimental (Ab-
baraju et al., 2023; Calabrese & Baldwin, 2002; Mohseni Ahooyi &
Soroush, 2015).

Another important aspect of dose–response modeling is the thresh-
old model, which suggests the existence of a threshold dose below
which no clinically significant or detectable effect is observed. How-
ever, once the threshold is surpassed, the response increases proportion-
ally to the dose, which can manifest as a linear dose–response function.
Related to this model is the linear non-threshold model (LNT), com-
monly employed in radiation science and recently challenged, wherein
even low doses are presumed to be harmful (Sacks et al., 2016; Selby
& Calabrese, 2023).

The concept of saturation also plays a role in dose–response curves.
Saturation occurs when a drug or substance achieves its maximum
response at a specific dose, beyond which further dose increments do
not elicit any additional effects. This saturation phenomenon can be
represented by a sigmoidal dose–response curve, wherein the effect
initially demonstrates rapid growth with increasing dose but eventually
levels off as the substance reaches its maximum impact. Many biolog-
ical response curves can be accurately approximated by a sigmoidal
shape due to the involvement of saturation processes, such as the
occupation of all available specific receptors for the substance. The Hill
equation (Hill, 1910), a non-linear logistic function comprising four
parameters, is frequently employed to fit these relationships (Gadagkar
& Call, 2015).

In addition to saturation, sigmoid functions are also character-
ized by monotonicity. Positive monotonicity refers to the phenomenon
where, as the dose increases, the corresponding outcome either in-
creases or remains the same, but never decreases. This characteristic
implies a consistent upward trend in the relationship between dose and
response. FSH dose–response is no exception, as both literature and
clinical experience indicate that a sigmoid function may be a good fit
for its relationship with outcomes, including the number of retrieved
oocytes. This is clearly reflected in the results of the pharmacomet-
rics studies by Arce et al. (2016) and Porchet et al. (1994), where
sigmoid functions of the type E-max were used to fit the PD portion
and adequately described the study data. Abd-Elaziz et al. (2017) did
not explicitly use a sigmoid function to fit PD data but did report a
positive relationship between FSH serum levels and follicular growth.
Therefore, we infer that the dose–response relationship between FSH
and the number of retrieved oocytes is at least positive and monotonic.

Model-Informed Precision Dosing or MIPD (Darwich et al., 2017;
Del Valle-Moreno et al., 2023; Keizer et al., 2018; Poweleit et al.,
2023) constitutes a good approach to individualize dose protocols,
and its ideal form passes through obtaining well-fitted dose–response
models based on PK/PD of the studied drug. Drugs approved for clinical
use habitually have a published PK/PD model derived from phase III
clinical trials.

Nevertheless, these models are often not applicable to all patients.
Primarily, phase III PK/PD studies tend to exclude biomarkers known
to affect the drug, although it is relatively common for individuals
to have multiple comorbidities (Gonzalez et al., 2017). Second, trials
often tend to include specific patient populations, excluding certain
subgroups. For example, in the FSH dosing case, patients over 40 years
of age and/or with irregular menstrual cycles, which are commonly
encountered in IVF centers, have been previously excluded from stud-
ies (Barakhoeva et al., 2019; Bosch et al., 2019; Nyboe Andersen et al.,
2017), even if these subpopulations are commonly found among IVF
patients. Thirdly, assuming that the target population parameters have
the same distributions as the study sample is often incorrect due to
factors such as socioeconomic status, genetic and ethnic variations,
and geographical differences (Keizer et al., 2018). Finally, PK/PD mod-
els may be fitted for outcomes that are not directly related to the
clinical objective or do not consider key biomarkers known to affect
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individual dose–response variability. This is the case for FSH dose in
COS (Abd-Elaziz et al., 2017; Arce et al., 2016; Porchet et al., 1994).

When the developed model is not applicable to all subpopula-
tions equally, the use of non-linear mixed methods (Del Valle-Moreno
et al., 2023; Sheiner & Ludden, 1992; Sheiner & Steimer, 2000), phys-
iologically based PK models (PBPK) (Jones et al., 2015), Bayesian
methods (Darwich et al., 2017; Del Valle-Moreno et al., 2023; Hamberg
et al., 2015; Sheiner & Beal, 1982), and PK/PD methods combined with
machine learning (ML) (McComb & Ramanathan, 2020; Poweleit et al.,
2023) can be applied to ameliorate the prediction. However, all of these
approaches require an available covariate-linked PK/PD model as a
starting point. While a PK/PD model can be developed, this approach
is both computationally and labor-intensive and often requires data on
drug blood concentrations after treatment (Koch et al., 2020; McComb
et al., 2022). These requirements are often not met in clinical practice.

Whenever PK/PD methods are not applicable, ML approaches that
rely on the concept of causal inference have been proposed. Causal
analysis aims to infer the causal effect of a specific treatment or action
under certain conditions for a particular outcome (Pearl, 2010). Its
capability to model the causal relationship between treatment and
outcome, and to condition it on a set of covariates, is of great relevance
for approximating individualized dose–response functions.

ML and causal inference methodologies are being combined for
single observational data, as presented by Bica and Jordon (2020). For
binary treatments, the propensity score (probability of an individual
receiving a certain treatment) has been used to adjust for treatment
selection bias. For multiple or continuous treatments, this concept is
translated to the generalized propensity score (GPS) (Hirano & Imbens,
2005; Imbens, 2000). This score is used to weigh samples while esti-
mating the outcome value. However, propensity score models must be
precisely determined and can be numerically unstable due to extreme
propensity weights (Bica et al., 2021; Peng et al., 2023).

Recent methods to ameliorate this problem include kernel functions
to estimate the GPS (Colangelo & Lee, 2020; Kallus & Zhou, 2018) and
Doubly Robust (DR) ML (Chernozhukov et al., 2018; Hoffmann, 2023)
to estimate outcome values or use of bayesian procedures (Forastiere
et al., 2022). Additionally, some studies employ the discretization of
the treatment space (Cai et al., 2020; Schwab et al., 2019), or use
generative adversarial methods (Bica & Jordon, 2020). While effec-
tive in estimating dose–response relationships, these approaches rely
on two key assumptions that are essential for every causal inference
analysis (Pearl et al., 2016):

• Positivity or overlap: every individual has non-zero probability of
receiving every treatment option.

• Unconfoundedness: all treatment and outcome-affecting variables
are accounted for.

In clinical settings, fulfilling these assumptions can be highly chal-
enging. Clinicians largely adhere to clinically accepted dosing policies
nd tend to administer similar doses to patients with comparable
haracteristics. This practice limits the positivity assumption, as it
requently results in groups of patients with no available data in cer-
ain dose ranges. Furthermore, adjusting for all confounding variables
niformly across all cases may not always be possible. Clinicians may
ave personal and practice preferences for different biomarkers or may
ary the extent of diagnostic tests based on factors such as expertise,
inancial considerations, or patient requests. Consequently, complying
ith the unconfoundedness assumption also constitutes a challenge.

In the specific case of selecting the starting FSH dose for COS,
wo studies have explored the use of nomograms (Ebid et al., 2021;
a Marca et al., 2012), while Howles et al. (2006) applied a model
ased on multivariate regression to optimize individualized FSH dos-
ng policies without relying on PK/PD or causal models. All three
tudies considered known relevant biomarkers, including patient age,
3

nti-Müllerian hormone (AMH) levels, antral follicle count (AFC), and
basal FSH levels. Subsequent RCTs evaluating the efficiency of these
models showed promising results, including a reduction in the oc-
currence of OHSS (Olivennes et al., 2015), and an increase in the
proportion of patients achieving optimal outcomes within the desired
range of oocytes (Allegra et al., 2017). Nevertheless, these models were
specifically developed for normo-ovulatory women under the age of
40 years, thereby excluding the most challenging patients in terms of
dose selection.

Fanton et al. (2022) adopted a more comprehensive approach by
computing individual FSH dose–response curves for all patient types.
This was achieved by applying k-nearest neighbors (KNN) to identify
the 100 most similar patients and fitting a constrained second-order
polynomial to the data, specifically focusing on the number of mature
oocytes retrieved and the administered FSH starting dose. Curves that
were largely flat were categorized as non-responsive to FSH and ac-
counted for 30% of the analyzed cases. For dose–response curves, the
optimal starting dose was determined based on the presence of a peak
in the mature oocyte curve. Using propensity score matching (PSM)
to pair similar patients receiving different doses, the authors found
that patients who received the optimal dose predicted by their model
achieved better results compared to those who did not. While the study
design is certainly interesting, the curves used to fit the dose–response
relationship may not fit well with established pharmacometrics of FSH.
Specifically, second-order polynomial curves do not adequately capture
positive monotonicity, which is a key characteristic of the relationship
between FSH and the number of mature oocytes retrieved.

3. Methods

3.1. The individualized dose improvement problem

To formalize the problem at hand, we introduced the Individualized
Dosage Improvement Problem (IDIP). In this problem, we consider a
large population of 𝑁 patients denoted as 𝑃 = {𝑝1,… , 𝑝𝑖,… , 𝑝𝑁}. The
bjective of the IDIP is to determine the optimal dosage of a given drug,
hich we refer to as the dose. A dose (𝑑𝑖) and its corresponding outcome
r response (𝑦𝑖) are recorded for each patient 𝑝𝑖 from population 𝑃 .
ach patient’s response (𝑦𝑖) is represented by a real number (𝑦𝑖 ∈ R),
hile the dose (𝑑𝑖) falls within the range 𝑑𝑖 ∈ [0,∞). We assume that

he response can be quantified by a single real number. Additionally,
e assume that the desired levels of response (𝑦∗𝑖 ) are known for each

ndividual, indicating the target or optimal outcomes for the patients.
Each patient 𝑝𝑖 ∈ 𝑃 is described by a set of 𝑘 characteristics 𝑥𝑖 =

𝑥1𝑖 ,… , 𝑥𝑘𝑖 ) ∈  = R𝑘. These characteristics can include patient age,
eight, height, and values of previous analysis, amongst others.

The individualized dosage policy, or IDP, 𝜋 ∶  → R is a function that
etermines the recommended dose 𝑑𝑖 based on the characteristics of the
atient (𝑥𝑖).

The objective was to find an IDP or 𝜋 with the minimum error or
oss possible, or 𝜋∗. Mathematically, this means identifying
∗ = argmin

𝜋
𝐿(𝜋), (1)

here 𝐿 is a collective loss function. Accordingly, the quality of the IDP
is inversely related to the value of 𝐿(𝜋). The collective loss 𝐿(𝜋) is

omputed as the average of individual losses (𝑙𝑖), one for each patient
𝑖. The individual loss of a dose for a patient 𝑙(𝑦𝑖, 𝑦∗𝑖 , 𝑑𝑖, 𝑑𝑖) is a measure
f how well a proposed dose (𝑑𝑖) would perform relative to the actual
ose (𝑑𝑖), its corresponding outcome 𝑦𝑖, and the desired objective (𝑦∗𝑖 ).
athematically, the Collective loss can be mathematically defined as

(𝜋) =
∑𝑁

𝑖=1 𝑙(𝑦𝑖, 𝑦
∗
𝑖 , 𝜋(𝑥𝑖), 𝑑𝑖)

𝑁
. (2)

In the IDIP, we are given data that describes the current dosing
practice for a particular drug. This data includes information for a
subset of patients from a complete population, denoted as 𝑁 . For each
patient that has been administered the drug (𝑝𝑖), where 𝑖 ranges from
1 to 𝑁 , we record



Expert Systems With Applications 238 (2024) 121796N. Correa et al.
Fig. 1. Principal components of IDoser. A loss function, which integrates domain knowledge, is used to optimize 𝛾 of the selected core model using historical clinical data. With
the optimized 𝛾, new patients get personalized doses.
• their characteristics (𝑥𝑖 ∈ );
• the dose of drug administered to the patient (𝑑𝑖 ∈ [0,∞));
• the resulting response value (𝑦𝑖 ∈ R).

The main challenge in the IDIP is how best to leverage the informa-
tion available from current dosing practices to develop a personalized
dosing policy with minimal loss or error in dose selection.

3.2. Proposed approach: Individualized doser (IDoser)

Our proposed approach hinges on two key assumptions:

1. Monotonicity of the dose–response relationship. We assume that
the dose–response relationship follows a monotonic relationship,
meaning that as the dose increases, the expected response either
increases or remains similar.

2. Knowledge of an optimal outcome (𝑦∗). We assume that there is
a known optimal outcome for the dosing problem, which can be
specified as either a range or a point.

These two assumptions are grounded in the characteristics and goals
of dosing problems. Monotonicity captures the key trend observed in
threshold and linear non-threshold models, as well as sigmoid func-
tions, which cover a wide range of dose–response relationships. On
the other hand, knowledge of the optimal outcome aligns with the
fundamental objective of dosing policies, which involves selecting the
correct dose to achieve a desired outcome.

Fig. 1 depicts the main architecture of IDoser, which is constructed
around two elements: (1) A Core dosing model that relates 𝑋 to 𝑑
through a set of coefficients that we describe as 𝛾, and is used to predict
𝑑; and (2) A loss function that evaluates the predicted 𝑑 depending on
𝑑 and 𝑦.

We will review both elements in the following subsections. Through-
out the manuscript, positive monotonicity is assumed as default. Never-
theless, when required, IDoser can be readily adapted to accommodate
a negative monotonicity assumption.

3.2.1. The core model
Given that our main interest lies in predicting the optimal dose for

each patient, a general and basic core model is represented as follows

𝑑 = 𝜋 (𝑥 ), (3)
4

𝑖 𝛾 𝑖
where 𝜋𝛾 describes a core model or dosing policy, which is associated
with a specific set of coefficients 𝛾. The core model can be specified in
its simplest linear form as

𝑑𝑖 = 𝜋𝛾 (𝑥𝑖) = 𝛾𝑇 ⋅ 𝑥𝑖, (4)

where 𝛾𝑇 denotes the transpose of the coefficient vector 𝛾 and ⋅ is the
scalar product. This is the simplest form that satisfies the assumption
of monotonicity and the requirement of relating the dose 𝑑𝑖 to the
covariates 𝑥𝑖 through the coefficients 𝛾. However, more complex forms
can also be used as per the specific needs of the modeling approach.

3.2.2. Loss function
To achieve an improvement on any real dosing policy (𝜋), it is

crucial to be able to evaluate a hypothetical or counterfactual dose.
To incorporate field knowledge into the evaluation, we encode key
constraints knowledge into the loss function. Namely, we integrate our
two assumptions: positive monotonicity and the existence of a desired
outcome (𝑦∗). This can be easily introduced as follows:

𝑙(𝑦, 𝑦∗, 𝑑, 𝑑) =

⎧

⎪

⎨

⎪

⎩

−1 dose change is correct
+1 dose change is incorrect
0 no dose change

(5)

where a correct dose change is increasing 𝑑 (the dose) whenever 𝑦 (the
obtained response) is less than 𝑦∗ (the desired response), and decreasing
𝑑 (the dose) when 𝑦 (the obtained response) is greater than 𝑦∗ (the
desired response). Any change outside of these assumptions would be
incorrect (Fig. 2). No change in dose, namely when 𝑑 = 𝑑 is considered
neither good nor bad. Hence the loss value attributed is 0.

Given positive monotonicity, for any patient (𝑝𝑖) that has 𝑦𝑖 > 𝑦∗,
an increase in dose would move 𝑦𝑖 further from 𝑦∗, hence impairing
the outcome. In this situation, an improvement would be to reduce the
dose. In the situation where 𝑦𝑖 < 𝑦∗, the reverse is true.

The function that generates the loss evaluation can be adapted
as needed to accommodate negative monotonicity assumptions. Addi-
tional rules can be incorporated depending on the specific situation or
requirements. This flexibility allows for the customization of the loss
evaluation function to effectively handle various scenarios in different
contexts.

One example is to define changes in the right direction (to the
desired outcome) as beneficial while introducing limitations on the
magnitude of those dose changes. This type of limitation would ensure
that uncertainty is taken into account, as larger changes in dose imply
less confidence in predicting its effect. This approach would allow for a
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Fig. 2. Graphical representation of loss evaluation for cases (a) where 𝑦 (the obtained response) is less than 𝑦∗ (the optimal response), (b) where 𝑦 (the obtained response) is
greater than 𝑦∗ (the optimal response).
Fig. 3. Graphical representation of loss evaluation with additional rules considering a maximum change allowed (𝑐𝑚𝑎𝑥) and a minimum change threshold (𝑐𝑠𝑖𝑔𝑛), (a) for cases where
𝑦 (the obtained response) is less than 𝑦∗ (the desired outcome) and (b) and where 𝑦 (the obtained response) is greater than 𝑦∗ (the desired outcome).
more nuanced assessment of dose adjustments, taking into account the
level of confidence in predicting the response to dose changes.

Another rule that may be incorporated into the evaluation process
involves introducing a threshold to determine when to consider a
proposed dose (𝑑) different from the actual dose (𝑑).

These additional rules would consequently impact the allocation of
the loss value, as represented in Eq. (6) and in Fig. 3. We apply these
rules in our dosing case, as shown below, to enhance the evaluation
process and contribute to more informed and tailored dose decisions.
The use of these additional rules will be specific to the use case and
can enhance evaluation in different dosing scenarios.

𝑙(𝑦, 𝑦∗, 𝑑, 𝑑) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−1 dose change is correct and under a maximum
change allowed (𝑐𝑚𝑎𝑥)

+1 dose change is incorrect or in correct direction
but over 𝑐𝑚𝑎𝑥

0 no dose change or change under a minimum
change considered significant (𝑐𝑠𝑖𝑔𝑛)

(6)

3.2.3. Optimization of parameters
After defining the core model and the loss function according to the

use case, the next step is to determine the parameters of the model by
minimizing the loss function. Here, we propose the use of a coordinate
descent algorithm (Wright, 2015) to iteratively establish the set of
parameters that results in a minimum collective loss, denoted as 𝐿:

𝛾∗ = argmin𝐿(𝜋𝛾 ) =
∑𝑁

𝑖=1 𝑙(𝑦𝑖, 𝑦
∗, 𝜋𝛾 (𝑥𝑖), 𝑑𝑖) (7)
5

𝛾 𝑁
Once the coordinate descent algorithm reaches a minimum, the
resulting optimized parameters 𝛾∗ determine the optimized dosing
policy, namely 𝜋∗ = 𝜋𝛾∗ .

3.3. Use case

The use case applied in this study aims to determine the appropriate
dose of FSH for COS during IVF treatment.

The available observational dataset consists of a set of covariates
related to the ovarian reserve of patients, along with the dose of FSH
prescribed by clinicians and the corresponding outcome, measured in
the number of mature oocytes retrieved. The covariates captured in
the dataset include patient age at the time of treatment, body mass
index (BMI), AFC, AMH levels, and basal endogenous FSH levels.
These factors are essential for assessing ovarian reserve and guiding
the dose selection process. Two distinct databases were retrieved for
this study. The first was dedicated to developing the dosing models
and consists of first IVF cycle patients undergoing treatment between
January 2011 and December 2019. The second database, separated
temporally, was reserved only for validation of the resulting models and
included cases from January 2020 to September 2021. The separation
allowed an independent evaluation of the model’s performance on
unseen data. The development database was used to train and test
the dosing models through 5-fold cross-validation in order to analyze
the performance of multiple candidate models. Once analyzed and
selected for validation, the final models were trained with the full
development database. It is important to highlight that the validation
dataset consists of newer cases and exhibits a slight shift in the clinical
dosing policy compared to the development database. Specifically, the
maximum dose of FSH in the validation dataset is considerably lower



Expert Systems With Applications 238 (2024) 121796N. Correa et al.

m E

𝑑

c
a
(
p

r
p
l
a
p
o
p
c

p
o
a
t
u
t
w
I
t
p
w
t

l
c
h
h
l
h
t
e
e
g
C
h
d
a
w
o
c

Table 1
Summary of the characteristics and differences between the development and validation
databases, expressed as mean ± standard deviation (SD) and range [minimum-

aximum].
Development database Validation database
(n = 7768) (n = 273)

Age 37.09 ± 4.85 [18–51] 38.13 ± 4.10 [24–46]
BMI 23.75 ± 4.22 [14.53–45.18] 22.98 ± 4.02 [16.45–41]
AFC 11.92 ± .7.73 [0–81] 11.49 ± 9.15 [0-85]
AMH 2.38 ± 2.33 [0.01–32.95] 2.29 ± 2.5 [0.01–23.70]
basal FSH 7.47 ± 4.19 [0.1–94.00] 8.78 ± 6.72 [0.93–89.60]
FSH dose 246.96 ± 58.95 [100–600] 268.64 ± 54.73 [112.5–450]
MII 7.30 ± 5.26 [0–47] 6.55 ± 6.07 [0–36]

than the maximum value observed in the development database. This
difference can be attributed to the gradual implementation of more
conservative guidelines introduced by the European Society of Human
Reproduction and Embryology (ESHRE) (The ESHRE Guideline Group
on Ovarian Stimulation et al., 2020). Table 1 provides a summary of
the characteristics of the development and validation databases.

Based on available literature, we confirmed that both assumptions
required for our proposed approach are valid. While some evidence
in cows (Karl et al., 2021) may challenge our first assumption, posi-
tive monotonicity, studies in human consistently demonstrate that an
increase in FSH dose does not result in a decrease in the number of
oocytes retrieved under the same conditions (same patient, same men-
strual cycle) (Abd-Elaziz et al., 2017; Arce et al., 2016; Lensen et al.,
2018; Porchet et al., 1994). In human, any negative effects of higher
doses of FSH primarily relate to oocytes quality rather than quan-
tity (Luo et al., 2022). Therefore, the positive monotonicity assumption
holds true, indicating that increasing the FSH dose leads to an equal
or greater number of retrieved oocytes. Nevertheless, oocyte quality
should not be disregarded, as it is also a crucial factor for cycle success.
Both quality and quantity of oocytes are important, as only retrieved
and fertilized oocytes have the potential to develop into blastocysts,
embryos with the highest chance of success (Maggiulli et al., 2020;
Vaiarelli et al., 2020). Therefore, it is necessary to strike a balance, by
defining an optimal number of oocytes for optimizing cycle outcomes.
Regarding our second assumption, known optimal outcome, clinicians
aim to select the first dose of FSH that will result in an optimal number
of mature oocytes. However, there may be some variation in the spe-
cific definition of what constitutes an optimal number in literature (hui
Chen et al., 2017; Ji et al., 2013; Polyzos & Sunkara, 2015; Steward
et al., 2014; Sunkara et al., 2011). For our study, we defined optimal
outcome between 10 (𝑦∗𝑚𝑖𝑛) and 15 (𝑦∗𝑚𝑎𝑥) mature oocytes, following the
recommendations by Steward et al. (2014) and Sunkara et al. (2011).
While the desired optimal outcome range applies to every patient, some
patients with a reduced ovarian reserve may not be able to reach this
range. For these patients, the dose will be adjusted as needed to bring
them as close as possible to the optimal range. It should be noted that
the dose (𝑑𝑖) has a minimum value set by definition, which is at least
0 (𝑑𝑖 ∈ [0,∞)). But this minimum, depending on the specific case can
be higher than 0. Additionally, there is a maximum limitation on the
dose, which can further impact the dosing options available to patients.
In this specific use case, we set the minimum dose (𝑑𝑚𝑖𝑛) at 100 IU of
FSH, and explored doses ranging from 300 to 450 IU for the maximum
dose (𝑑𝑚𝑎𝑥).

3.3.1. IDoser for FSH dosing
The core model and the loss function are two essential elements for

the application of our proposed IDoser. In this study, the selected core
dosing model for FSH assumes a linear dose–response relationship and
is defined as

𝑦𝑖 = 𝑦0 + (𝛽𝑇 ⋅ 𝑥𝑖)𝑑, (8)

where 𝛽 is a set of coefficients related to a set of 𝑥𝑖 of equal length,
𝑇 represents the transposition of the vector 𝛽, ⋅ indicates the scalar
6

p

product, and 𝑦0 is the value of 𝑦 when the dose (𝑑) is 0. To derive the
recommended dose (𝑑𝑖) based on a desired outcome (𝑦∗), we rearrange
q. (8) as follows:

�̂� =
𝑦∗ − 𝑦0
𝛽𝑇 ⋅ 𝑥𝑖

. (9)

This can be further generalized to the following dosing model:

𝑑𝑖 =
𝜅

𝛽𝑇 ⋅ 𝑥𝑖
. (10)

In this equation, 𝜅 is composed by the difference between 𝑦∗ and 𝑦0
omponent from Eq. (9). Parameters 𝜅 and 𝛽 will form now 𝛾, denoted
s 𝛾 = (𝜅, 𝛽). By incorporating parameters 𝜅 and 𝛽, the dosing model
Eq. (10)) allows the estimation of the optimal dose (𝑑𝑖) based on
atient characteristics (𝑥𝑖) and the desired outcome (𝑦∗).

In addition to the basic rules described, the loss function incorpo-
ates additional rules to ensure an improved yet conservative dosing
olicy. These rules aim to discourage highly variable doses that may
ead to greater uncertainty in achieving the expected outcome. These
dditional rules contribute to the conservative nature of the dosing
olicy. Limitations on dose changes were defined based on the desired
utcome range for each specific patient. Following the definitions
rovided by Polyzos and Sunkara (2015), we established the following
ategories:

• An outcome below than 4 mature oocytes was considered too low;
• An outcome between 4 and 9 mature oocytes was considered

sub-optimal;
• An outcome between 10 and 15 mature oocytes was considered

optimal;
• An outcome greater than 15 mature oocytes was considered too

high.

Considering clinical implications and expert insights, the dosing
olicy incorporates different allowable dose modifications depending
n the outcome range. Accordingly, patients with outcomes categorized
s too-low or too-high are allowed higher dose modifications compared
o those with sub-optimal outcomes. Specifically, dose modifications of
p to 150 IU were allowed for patients with outcomes categorized as
oo-high or too-low, while a maximum dose modification of up to 75 IU
as allowed for patients with sub-optimal outcomes. Changes up to 25

U were not considered significant modifications. We established these
hresholds based on the collective knowledge and expertise of multiple
rofessionals in the field who regularly perform this task. Thresholds
ere determined through interviews and joint deliberation to ensure

hat clinical impacts were appropriately addressed.
Differential clinical impacts exist between outcomes that are too

ow and those that are too high. Too few mature oocytes can result in
ycle cancellation, leading to no chance of pregnancy for patients, and
igher economic and psychosocial burden. Conversely, an excessively
igh number of oocytes carry an increased risk of OHSS, which, if
eft untreated, can have detrimental consequences on the patient’s
ealth. Currently, there are well-established pharmacological interven-
ions that all but eliminate the clinical manifestation of OHSS (Castillo
t al., 2020; Najdecki et al., 2022). However, OHSS risk management
ntails the need to delay embryo transfer, which in turn results in a
reater investment of time and money to achieve a safe pregnancy.
onsidering the detrimental consequences associated with both too-
igh and too-low outcomes, it is crucial to avoid these extremes in the
osing policy. By incorporating these considerations, the dosing policy
ims to strike a balance between achieving an optimal outcome range
hilst mitigating the risks and challenges associated with insufficient
r excessive outcomes. The objective is to optimize the chances of suc-
essful treatment while prioritizing patient well-being and minimizing

otential complications.
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3.4. Evaluation methodology

3.4.1. Literature benchmark
We identified a relevant implementation in the study conducted

by La Marca et al. (2012), which was later tested in an RCT (Allegra
et al., 2017). This work uses a core model that shares similarities
with our research, specifically ensuring positive monotonicity. Addi-
tionally, our second assumption, regarding a known optimal outcome,
was addressed in the paper by fixing 𝑦∗ to 9 oocytes for all patients,
implicitly considering 𝑦0 as 0. We have therefore chosen to use this
implementation as the literature benchmark for our study, henceforth
referring to it as the La Marca model or LM.

The covariates considered in the La Marca study included age, AMH,
and basal FSH levels. The dosing model was derived by performing a
linear regression of the following equation:
𝑦𝑖
𝑑𝑖

= 𝛽𝑇 ⋅ 𝑥𝑖, (11)

where the coefficients included in 𝛽 were estimated to construct the
dosing model and were made available in their study. The resulting
dosing model constructed can be expressed as

𝑑𝑖 =
𝑦∗

𝛽𝑇 ⋅ 𝑥𝑖
, (12)

which is similar to our own proposed core model represented in
Eq. (10).

In the subsequent RCT, Allegra et al. (2017) found that a signif-
icantly higher proportion of patients achieved an optimal outcome,
defined as the retrieval of 8 to 14 oocytes, even though the mean
number of oocytes did not show a significant change.

Using the published 𝛽 values and Eq. (12), we established the LM
model or policy, which we applied to the validation cases alongside our
proposed approach. This allowed us to compare the performance of the
LM model, an existing solution, with our novel approach.

3.4.2. Optimization exploration
We explored several approaches for optimizing the LM model, as

described in Appendix A. These approaches were compared to both
clinical practice and the unmodified LM model in Appendix B. The
final model was obtained by incorporating two additional covariates
from our dataset, namely AFC and BMI. The variable basal FSH was
committed from our final model. All parameters of 𝛾 were optimized,
leading to the development of the proposed IDoser.

3.4.3. Model comparison and statistic tests
We used two methods to compare the optimized models with the

LM model and clinical practice. The first method involved analyzing
and plotting collective loss 𝐿 across all 𝑑𝑚𝑎𝑥 within the allowed range.
This first analysis provided insights into the quality of the IDoser and
LM models. This extra comparison introduced an oracle decision policy
or model that always makes the correct dose recommendations: if a
dose change is required, it is always made in the right direction and
within the adequate range. The oracle model represents the ideal policy
according to our loss function as it captures all the correct dose changes
for the test patients. The 𝐿 value for the oracle indicates the maximum
improvement possible in the validation dataset.

To test if any of the methods were statistically different from
clinical practice or from each other, the loss values from each group
were compared using the method recommended by García and Herrera
(2008) and García et al. (2010), which is an extension of the study
by Demšar (2006). Specifically, Iman–Davenport’s corrected Friedmann
test (Iman & Davenport, 1980) was employed, as the normality test did
not meet the assumptions. When significant results were achieved, a
post hoc test was conducted to determine which groups were different.
The p-values were adjusted using Finner’s correction, as per (García
et al., 2010). The statistical methods were performed using the 𝑠𝑐𝑚𝑎𝑚𝑝
package in R. A p-value of less than 0.05 was considered significant.
7

Fig. 4. Collective loss (𝐿) across different 𝑑𝑚𝑎𝑥 values for La Marca, the oracle model,
and the proposed IDoser when applied to the validation dataset. The dashed line
represents the 𝐿 value for the clinical practice dosing method.

Table 2
Results of Iman–Davenport’s corrected Friedman’s rank sum test for all methods tested
across the 4 selected values for 𝑑𝑚𝑎𝑥.
𝑑𝑚𝑎𝑥 300 350 400 450

p-value 0.002657* 4.977e−11* 5.373e−14* 8.36e−14*

* P-values less than 0.05 were considered statistically significant.

4. Results

To compare our proposed model, IDoser, with the LM model and
clinical practice we plotted the collective loss 𝐿 for each model when
applied to our validation dataset across all values of 𝑑𝑚𝑎𝑥 explored. In
the case of clinical practice, the 𝐿 value was always 0. The obtained
𝐿 values obtained were plotted in Fig. 4, alongside the 𝐿 value of
the oracle model, which always makes dose recommendations in the
correct direction and within the appropriate range.

As seen in Fig. 4, compared to the LM model, IDoser consistently
showed lower 𝐿 values, also crossing 0, which represents the values
for clinical practice. It is evident that the oracle model performs even
better, as its 𝐿 values were lower than both IDoser and the LM model.
Given that the oracle model sets the benchmark for optimal perfor-
mance, it is clear that there is still room for improvement in dosing
policies.

The results of Iman–Davenport’s corrected Friedman, as shown in
Table 2, indicate a significant difference in loss values among the
different models across all selected points of 𝑑𝑚𝑎𝑥.

Furthermore, post hoc test results, as shown in Table 3, demonstrate
a significant improvement of our IDoser model compared to the LM
model across all explored 𝑑𝑚𝑎𝑥 points. This finding also holds true when
comparing IDoser to clinical practice, except in the case of 𝑑𝑚𝑎𝑥 = 300.
Here, while an improvement was observed, it was not found to be
significant. Specific loss values (𝐿) and adjusted p-values are shown
in Tables 4 to 7 in Appendix A.

Finally, given that each appropriate dose adjustment is designated
an individual loss of −1, while any incorrect dose change is assigned a
value of +1, and no modification receives a value of 0, the calculation
of the collective loss 𝐿, when multiplied by 100, will yield the percent-
age of net error reduction. Conversely, when the sign is reversed, the
resultant figure can be defined as the net improvement of the dosing
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Table 3
Results of one vs. one comparison across all 𝑑𝑚𝑎𝑥 values, ordered from worst (left) to
best (right) method. These results were extracted from the post hoc test. P-values were
adjusted by Finner’s methodology.
𝑑𝑚𝑎𝑥 Ordered results by significant differences

300 La Marca ≺ Clinical practice ∼ IDoser
350 Clinical practice ≺ La Marca ≺ IDoser

400 La Marca ∼ Clinical practice ≺ IDoser450

Fig. 5. Distribution of cases requiring an increase (red) or decrease (blue) in dose in
the validation dataset with 𝑑𝑚𝑎𝑥 = 450 is allowed.

policy in accordance with our defined loss rules. As such, it can be said
that IDoser achieves a net improvement of 5.62% when 𝑑𝑚𝑎𝑥 = 300, and
up to 31.97% if 𝑑𝑚𝑎𝑥 = 350.

5. Discussion

The proposed IDoser model demonstrated a significant improve-
ment compared to the LM model across all investigated 𝑑𝑚𝑎𝑥 values,
as well as in the comparison to baseline clinical practice, with the
exception of 𝑑𝑚𝑎𝑥 = 300. Here, there is limited potential for further
improvement in the dosing policy compared to other 𝑑𝑚𝑎𝑥 values, as
highlighted by Fig. 4. This is primarily attributed to the limited number
of cases that could be improved and the inability of IDoser to identify a
correct dose change for all of them. This is evident from the distribution
of cases that can be improved, which were mainly concentrated in
the low or suboptimal ranges of the outcome axis (number of mature
oocytes), as shown in (Fig. 5).

These cases would require a significant increase in medication.
However many low-responder patients have already received 300 IU
of FSH from their clinicians, which is the most commonly used value
for 𝑑𝑚𝑎𝑥, supported by the recent ESHRE guidelines for ovarian stim-
ulation (The ESHRE Guideline Group on Ovarian Stimulation et al.,
2020).

Fig. 6 illustrated that there are still some cases in the validation
database that clinicians dosed over 300 IU. This suggests that clini-
cians ultimately prioritize individual patient characteristics rather than
relying solely on population tendencies, especially if they believe that
certain patients may benefit from exceeding the broadly recommended
𝑑𝑚𝑎𝑥. Given that the IDoser model has been optimized to automatically
adhere to a more conservative dosing policy (with an optimized 𝑑𝑚𝑎𝑥
of 333 IU), it can be used safely with an open 𝑑 in order to identify
8

𝑚𝑎𝑥
Fig. 6. Distribution of doses for the La Marca model (blue), clinical practice (red), and
IDoser (green) in the validation dataset with 𝑑𝑚𝑎𝑥 = 450.

which patients that may benefit from an FSH dose over 300 IU of FSH.
Fig. 6 provides a visual representation of how IDoser adjusts and shifts
the dose distribution compared to clinical practice. In contrast, the LM
model tends to distribute doses more evenly, with more cases receiving
decreased doses and doses over 300 concentrated around the 450 IU
mark (𝑑𝑚𝑎𝑥 value implemented in Fig. 6).

These antagonistic tendencies can also be observed in Figs. 7(a)
to 7(d) that depict the distribution of dose changes distributed across
outcome categories for both IDoser and the LM model with 𝑑𝑚𝑎𝑥 of 300
and 450. IDoser (Figs. 7(a) and 7(c)) tends to rescue more cases that fall
under our defined 𝑦∗𝑚𝑖𝑛 range, where we find the majority of cases that
can be improved. Notably, there are very few patients above 𝑦∗𝑚𝑎𝑥 whose
dose is increased and some patients whose dose is not decreased. This
may be attributed to an under-representation of this subset of patients
in our dataset and constitutes a limitation of the resulting model. On
the other hand, with the LM model (Figs. 7(b) and 7(d)) more patients
in need of a dose reduction receive it. However, many patients in need
of a dose increase are instead given a reduced dose. Accordingly, our
loss function ultimately penalizes the LM model.

The decreasing tendency of the LM model may be attributed to the
use of a 𝑦∗ value of 9, which is lower than our defined 𝑦∗𝑚𝑖𝑛 of 10.
While this may explain the dose reductions for some patients in our
database, it does not account for the relevant dose reductions observed
in patients with very low outcomes (Figs. 7(b) and 7(d)). Another factor
contributing to the lower performance of the LM model may be its
limited scope, as it was originally developed for normo-ovulatory pa-
tients under 40 years, thus excluding a significant portion of the patient
population who have different characteristics and ovarian reserve. In
contrast, our database encompassed a wider range of patients, including
all patients eligible for IVF treatment.

Also notable is the vantage obtained with IDoser while not using a
single point for 𝑦∗ but a range of desired outcomes. This makes a model
less prone to change doses in the desired interval, as shown in Figs. 7(a)
to 7(d).

Finally, it is important to acknowledge that our loss function penal-
izes dose changes that are considered too large, even if they are made in
the correct direction. Despite our efforts to optimize the model to avoid
excessive changes, there are cases where significant changes in dose are
still recommended. Yet, this may suggest that some patients genuinely
require such dose modifications. Nevertheless, the true clinical utility
of IDoser can only be demonstrated through a prospective RCT, which
would offer further evidence to guide clinical decision-making and
aid in validating the generalizability of IDoser across different patient
populations and clinical settings.
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Fig. 7. Dose changes for (a) the IDoser model 𝑑𝑚𝑎𝑥 = 300; (b) the La Marca model 𝑑𝑚𝑎𝑥 = 300; (c) IDoser model with 𝑑𝑚𝑎𝑥 = 450; and (d) the La Marca model with 𝑑𝑚𝑎𝑥 = 450.
6. Conclusions

The implementation of the proposed approach, IDoser, in the FSH
dosing case, demonstrated a significant improvement in dosing ac-
curacy compared to clinical practice and a literature benchmark. By
leveraging field knowledge and optimizing dosing policies, IDoser of-
fers a practical solution to enhance patient care, that can be applied to
similar dosing problems across different domains. The simplicity and
effectiveness of IDoser also make it a valuable tool in situations where
the available historical datasets are not amenable to more complex
methodologies, such as causal inference and double machine learning.

Observational datasets available from clinical practice often have
limited variability, which affects the generalizability and reliability of
the algorithms that they are used to train. Clinical datasets may not
capture all relevant confounding and often follow consistent biomarker
selection protocols across different cases. This may be influenced by
various factors, including the level of clinical experience, financial
considerations, or even specific requests made by patients. Accord-
ingly, algorithms trained solely on these datasets may not align with
field knowledge or logical reasoning. Incorporating rules applied by
clinicians based on their experience into a core model and a loss
function is a valuable approach to developing dosing models. This
approach allows for versatility and adaptability to different dosing
settings, accommodating factors such as negative monotonicity or the
use of different core functions. These concepts are partially inspired by
PK/PD models, where physiological and pharmacological assumptions
guide the modeling process. These principles are translated into our
methodology by incorporating a core model that adheres to the mono-
tonic assumption. Additionally, our approach includes specific rules
within the loss function that penalize any dose change that deviates
from the expected direction, maintaining the integrity of the dosing
policy and optimizing the desired outcomes for patients.
9

While IDoser has proven effective in optimizing dosing policies, fur-
ther improvements may provide more comprehensive dosing solutions.
In this study, we explore a core function derived from a linear dose–
response. In the future, other core models that align more closely with
physiological dose–response relationships, such as sigmoid functions
may be explored. Moreover, as IDoser is only applicable to single-dose
dosing cases, further incorporation of dose adjustments over time for
individual patients may be an important consideration for addressing
different clinical scenarios. Finally, the implementation of individual
values for the desired outcome (𝑦∗) or the use of alternative opti-
mization methodologies beyond coordinated descent can be explored,
allowing for a more tailored and accurate approach to dosing.

Ultimately, IDoser achieved an optimized dosing policy in a time-
efficient manner, but it can also be implemented conservatively to
validate drug doses ‘‘in silico’’. This is especially important, given that
RCTs entail a significant investment both in time and money. Being
able to demonstrate some expected improvement non-interventionally
ensures a faster acceptance of the route of an RCT.

IDoser utilizes field knowledge and optimization techniques to im-
prove dosing policies. Notably, IDoser may also be implemented in a
conservative manner to validate drug doses through simulation (‘‘in
silico’’). This is especially important, given that RCTs entail significant
investments in time and resources. IDoser may thus provide a faster and
more cost-effective strategy to evaluate the effectiveness and safety of
dosing policies without the need for drug administration and patient
involvement. Ultimately, the value of IDoser lies in its versatility,
making it a valuable tool with the potential to enhance patient care,
whilst also facilitating more informed discussions amongst stakeholders
and supporting the decision-making process prior to embarking on
RCTs.
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Table 4
Posthoc test of differences in individual losses between explored methods and clinical baseline capping 𝑑𝑚𝑎𝑥 at 300.

Clinical
practice

La Marca IDoser 𝜅 IDoser all
variables

IDoser + AFC
+ BMI

IDoser without
FSH

Collective loss 0 0.1423221 0.01872659 −0.04494382 −0.03745318 −0.05617978
Clinical practice
La Marca 0.02998277*
IDoser 𝜅 0.85500958 0.043379244*
IDoser all variables 0.54500150 0.004820011* 0.50871801
IDoser+AFC+BMI 0.66092247 0.005758714* 0.55620182 0.818820510
IDoser without FSH 0.54500150 0.004820011* 0.50871801 0.953885933 0.804125364

* p-values adjusted using Finner method when under 0.05.
Table 5

Posthoc test of differences in individual losses between explored methods and clinical baseline capping 𝑑𝑚𝑎𝑥 at 350.

Clinical
practice

La Marca IDoser 𝜅 IDoser all
variables

IDoser + AFC
+ BMI

IDoser without
FSH

Collective loss 0 −0.1301115 −0.2490706 −0.3048327 −0.2973978 −0.3197026
Clinical practice
La Marca 3.402732e−02*
IDoser 𝜅 3.243974e−06* 0.017203405*
IDoser all variables 9.522397e−08* 0.001441322* 5.058417e−01
IDoser+AFC+BMI 3.703982e−07* 0.004658995* 7.258543e−01 7.258543e−01
IDoser without FSH 9.522397e−08* 0.001441322* 5.058417e−01 9.724247e−01 7.258543e−01

* p-values adjusted using Finner method when under 0.05.
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Appendix A. Optimization exploration

Given that by our definition 𝑦∗𝑚𝑖𝑛 and 𝑦∗𝑚𝑎𝑥 are slightly higher (10
to 15), we primarily used their 𝛽 coefficients and optimized only 𝜅.
Next, our workflow was designed to explore the optimization of all
coefficients in 𝛾 and the addition/omission of covariates. Specifically:

1. Optimization of only 𝜅
2. Optimization of all 𝛾
3. Addition of AFC and BMI covariates, available in our database
4. Omission of basal FSH covariate

This resulted in 4 new optimized dosing models to be compared to
the benchmark and the clinical dosing policy recorded in our database,
which we will refer to from now on as baseline. Once 𝛾 values were
obtained for all 4 models, a secondary optimization was run to automat-
ically find an upper bound to dose or 𝑑∗𝑚𝑎𝑥, as a further measure for a
safe and conservative model. Every model was trained with all available
data depending on the covariates included but validated always on the
same database where all covariates were filled in to avoid possible
biases on the population. The benchmark and our 4 iterations were
validated across 4 possible 𝑑𝑚𝑎𝑥: 300, 350, 400, and 450. For each limit,
validation cases with 𝑑 up to that value were admitted, and every model
was allowed to dose up to a maximum of the same value. Then, every
individual loss was evaluated. It is worth noting here that our models
were limiting themselves with their optimized value of 𝑑∗𝑚𝑎𝑥 whenever
this value was lower than any of 4 𝑑𝑚𝑎𝑥 explored.

In the end, only the best of all 4 iterations was selected as our final
doser.

Appendix B. Statistics results

See Tables 4–7.
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Table 6
Posthoc test of differences in individual losses between explored methods and clinical baseline capping 𝑑𝑚𝑎𝑥 at 400.

Clinical
practice

La Marca IDoser 𝜅 IDoser all
variables

IDoser + AFC
+ BMI

IDoser without
FSH

Collective loss 0 0.07777778 −0.2444444 −0.3 −0.2925926 −0.314814
Clinical practice
La Marca 9.062553e−01
IDoser 𝜅 1.439933e−05* 8.548517e−06*
IDoser all variables 5.412448e−07* 5.412448e−07* 5.366142e−01
IDoser+AFC+BMI 1.790016e−06* 1.046312e−06* 7.413683e−01 7.582353e−01
IDoser without FSH 5.412448e−07* 5.412448e−07* 5.366142e−01 9.816485e−01 7.582353e−01

* p-values adjusted using Finner method when under 0.05.
Table 7
Posthoc test of differences in individual losses between explored methods and clinical baseline capping 𝑑𝑚𝑎𝑥 at 450.

Clinical
practice

La Marca IDoser 𝜅 IDoser all
variables

IDoser + AFC
+ BMI

IDoser without
FSH

Collective loss 0 0.08791209 −0.2307692 −0.2857143 −0.2783883 −0.3003663
Clinical practice
La Marca 7.585558e−01
IDoser 𝜅 3.540466e−05* 5.550225e−06*
IDoser all variables 1.245251e−06* 3.574535e−07* 5.473513e−01
IDoser+AFC+BMI 5.470478e−06* 1.245251e−06* 7.585558e−01 7.585558e−01
IDoser without FSH 1.245251e−06* 3.574535e−07* 5.473513e−01 9.726274e−01 7.585558e−01

* p-values adjusted using Finner method when under 0.05.
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