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Abstract. Learning, re-starting and other techniques of modern SAT solvers have
been shown efficient when solving SAT instances from industrial application. The
ability to exploit the structure of these instances has beenproposed as the respon-
sible of such success. Here we study the modularity of some of these instances,
used in the latest SAT competitions. Using a simple label propagation algorithm we
show that the community structure of most of these SAT instancescan be identified
very efficiently. We also discuss how this structure may be used to speed up SAT
solvers.
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Introduction

In recent years, SAT solvers efficiency solving industrial instances has undergone a great
advance, mainly motivated by the introduction of lazy data-structures, learning mecha-
nisms and activity-based heuristics [7,14]. This improvement is not shown when dealing
with randomly generated SAT instances. The reason for this difference seems to be the
existence of a structure in industrial instances [21].

In parallel, there have been significant advances in our understanding of complex
networks, a subject that has focused the attention of statistical physicists. The introduc-
tion of these network analysis techniques will help us understand the nature of SAT in-
stances, and will contribute to further improve the efficiency of SAT solvers. Watts and
Strogatz [20] introduce the notion ofsmall word, the first model of complex networks,
as an alternative to the classical random graph models. Walsh [19] analyzes the small
word topology of many graphs associated with search problems in AI. He also shows that
the cost of solving these search problems can have aheavy-tailed distribution. Gomes
et al. [10,11] propose the use ofrandomizationandrapid restart techniques to prevent
solvers to fall on the long tail of such kinds of distributions.

The notion of structure has been addressed in previous work [10,12,9,13]. The clos-
est work to our contribution is [18], but it uses the notion ofmodularity in a different
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sense. Also, in [1] some techniques are proposed to reason with multiple knowledge
bases that overlap in content. In particular, they discuss strategies to induce a partitioning
of the axioms, that will help to improve the efficiency of reasoning. In [4], it is shown that
many SAT instances can be decomposed into connected components, and how to handle
them within a SAT solver. They also discuss how what they callcomponent structurecan
be used to improve the performance of SAT solvers.

In this paper we propose the use of techniques for detecting thecommunity structure
of SAT instances. In particular, we apply the notion ofmodularity [15] to detect these
communities. We also discuss how existing conflict directedclause learning algorithms
and activity-based heuristics already take advantage,indirectly, of this community struc-
ture. Activity-based heuristics [14] rely on the idea of giving higher priority to the vari-
ables that are involved in (recent) conflicts. By focusing ona sub-space, the covered
spaces tend to coalesce, and there are more opportunities for resolution since most of the
variables are common.

1. Preliminaries

Given a set of Boolean variables , aliteral is an expression of the form or . Aclause
of length is a disjunction of literals, . We say that is the size of , noted , and that , if
contains the literal or . ACNF formulaor SAT instanceof length is a conjunction of
clauses, .

An (undirected) graph is a pair where is a set of vertices and satisfies . This
definition generalizes the classical notion of graph , where, by taking if and otherwise.
The degree of a vertex is defined as . A bipartite graph is a tuple where .

Given a SAT instance, we construct two graphs, following twomodels. In the Vari-
able Incidence Graph model (VIG, for short), vertices represent variables, and edges rep-
resent the existence of a clause relating two variables. A clause results into edges, one
for every pair of variables. Notice also that there can be more than one clause relating
two given variables. To preserve this information we put a higher weight on edges con-
necting variables related by more clauses. Moreover, to give the same relevance to all
clauses, we ponderate the contribution of a clause to an edgeby . In this way, the sum
of the weights of the edges generated by a clause is always one. In the Clause-Variable
Incidence Graph model (CVIG, for short), vertices represent either variables or clauses,
and edges represent the occurrence of a variable in a clause.SAT instances use to be
simplified: there are no two occurrences of a literal (because is equivalent to ) nor two
occurrences of the same variable and opposite sign (becauseis a tautology). Therefore,
in the CVIG model, edges have weight one.

Definition 1 (Variable Incidence Graph (VIG)) Given a SAT instance over the set of
variables , its variable incidence graph is a graph with set of vertices the set of Boolean
variables, and weight function:

Definition 2 (Clause-Variable Incidence Graph (CVIG)) Given a SAT instance over
the set of variables , its clause-variable incidence graph is a bipartite graph , with ver-
tices the set of variables and the set of clauses, and weight function:



2. Modularity in Large-Scale Graphs

To analyze the structure of a SAT instance we will use the notion of modularity intro-
duced by [16]. This property is defined for a graph and a specific partition of its vertices
into communities, and measures the adequacy of the partition in the sense thatmost of
the edges are within a community and few of them connect vertices of distinct commu-
nities. The modularity of a graph is then the maximal modularity for all possible parti-
tions of its vertices. Obviously, measured this way, the optimal would be obtained putting
all vertices in the same community. To avoid this problem, Newman and Girvan define
modularity as the fraction of edges connecting vertices of the same community minus
the expected fraction of edges for a random graph with the same number of vertices and
same degree.

Definition 3 (Modularity of a Graph) Given a graph and a partition of its vertices,
we define theirmodularityas

We call the first term of this formula theinner edges fraction, for short, and the
second term theexpected inner edges fraction, for short. Then, .

The (optimal) modularityof a graph is the maximal modularity, for any possible
partition of its vertices.

Since the and the of a graph are both in the range , and, for the partition given by a
single community, both have value , the optimal modularity of graph will be in the range
. A value of is considered as a high evidence of community structure in a graph.

There has not been an agreement on the definition of modularity for bipartite graphs.
Here we will use the notion proposed by [2] that extends Newman and Girvan’s definition
by restricting the random graphs used in the computation of the IEFto be bipartite. In
this definition, communities may contain vertices of and of .

Definition 4 (Modularity of a Bipartite Graph) Given a graph and a partition of its
vertices, we define theirmodularityas

There exist a wide variety of algorithms for computing the modularity of a graph.
Moreover, there exist alternative notions and definitions of modularity for analyzing the
community structure of a network. See [8] for a survey in the field. The decision version
of modularity maximization is NP-complete [5]. All the modularity-based algorithms
proposed in the literature return an approximated lower bound for the modularity. They
include greedy methods, methods based on simulated annealing, on spectral analysis of
graphs, etc. Most of them have a complexity that make them inadequate to study the
structure of an industrial SAT instance. There are two algorithms specially designed to



deal with large-scale networks: the greedy algorithms for modularity optimization [15,6],
and a label propagation-based algorithm [17].

The first algorithm for modularity maximization is agreedy methodof New-
man [15]. This algorithm starts by assigning every vertex toa distinct community. Then,
it proceeds by joining the pair of communities that result ina bigger increase of the mod-
ularity value. The algorithm finishes when no community joining results in an increase
of the modularity. In other words, it is a greedy gradient-guided optimization algorithm.
The algorithm may also return a dendogram of the successive partitions found. Obvi-
ously, the obtained partition may be a local maximum. In [6] the data structures used in
this basic algorithm are optimized, using among other data structures for sparse matrices.
The complexity of this refined algorithm is , where is the depth of the dendogram (i.e.
the number of joining steps), the number of edges and the number of vertices. They
argue that may be approximated by , assuming that the dendogram is a balanced tree,
and the sizes of the communities are similar. However, this is not true for the graphs we
have analyzed, where the sizes of the communities are not homogeneous. This algorithm
has not been able to finish, for none of our SAT instances, witha run-time limit of one
hour.

An alternative algorithm is theLabel Propagation Algorithmproposed by [17] (see
Figure 1). Initially, all vertices are assigned to a distinct label, e.g., its identifier. Then, the
algorithm proceeds by re-assigning to every vertex the label that is more frequent among
its neighbors. The procedure ends when every vertex is assigned a label that is maximal
among its neighbors. The order in which the vertices update their labels in every iteration
is chosen randomly. In case of a tie between maximal labels, the winning label is also
chosen randomly. The algorithm returns the partition defined by the vertices sharing the
same label. The label propagation algorithm has a near linear complexity. However, it
has been shown experimentally that the partitions it computes have a worse modularity
than the partitions computed by the Newman’s greedy algorithm.

Table 1. Computation of the modularity of the 2010 SAT Race instances, using the Label Propagation Al-
gorithm. Time (in seconds) is the CPU time needed to propagate labels (excluding parsing the formula and
constructing the graph). is the modularity. is the number of communities, and the fraction of vertices in the
largest community. Iter is the number of iterations of the algorithm.

3. Modularity of SAT Instances

We have computed the modularity of the SAT instances used in the 2010 SAT Race Fi-
nals (seehttp://baldur.iti.uka.de/sat-race-2010/). They are 100 in-
stances grouped into 16 families. These families are also classified as cryptography, hard-
ware verification, software verification and mixed, according to their application area.
All instances areindustrial, in the sense that their solubility has an industrial or practical
application. However, they are expected to show a distinct nature.

Our experiments have been run on a cluster with the followingspecifications. Oper-
ating System: Rocks Cluster 4.0.0 Linux 2.6.9, Processor: AMD Opteron 248 Processor,
2 GHz, Memory: 1 GB, and Compiler GCC 3.4.3.



Input:
Output: a labelling for
for do label[] := ; freq[] := 0endfor
do

ord := shuffle()
changes := false
for :=0 to do

:= most_freq_label(ord[],neighbors(ord[]))
changes := changes freq[ord[]]
label[ord[]] :=
freq[ord[]] :=

endfor
while changes
return label

function most_freq_label()
:=label[]
for do

freq[] :=
Max := freq[] = freq[]

return random_choose(Max)

Figure 1. Label Propagation Algorithm. The function most_freq_label returns the label that is most frequent
among a set of vertices. In case of tie, it randomly chooses one of the maximal labels.

We have observed that all instances of the same family have a similar modularity.
Therefore, in Table 1, we only show average values, being their standard deviation quite
small (smaller that 10% of the mean in almost all cases).

As one could expect, the time needed to compute the modularity in the CVIG model
is bigger than the time for the VIG model, since CVIG graphs are bigger. However, the
number of iterations of the algorithm is also bigger in the CVIG model.

If we take as an evidence of community structure, we can conclude that most fami-
lies are modular in the VIG model, and that all but one are modular in the CVIG model.
Except for the bioinf family, the modularity is always bigger in the CVIG model than
in the VIG model. In some families, like mizh, fuhs or nec, themodularity for VIG is
meaningless, whereas the CVIG graph shows a clear communitystructure. It could be
concluded that the loss of information, during the projection of the bipartite CVIG graph
into the set of variables, may destroy part of the modular structure. However, this is not
completely true. Suppose that the instance has no modular structure at all, but all clauses
are binary. We can construct a partition as follows: put every variable into a distinct com-
munity, and every clause into the same community of one of itsvariables. Using this
partition, half of the edges will be internal, i.e. , will be nearly zero, and . Therefore, we
have to take into account that using Barber’s modularity definition for bipartite graphs, as
we do, if vertex degrees are small, modularity can be quite big compared with Newman’s
modularity.



Table 2. Modularity of the graph generated by the formula containing the first 100 learned clauses, and all
learned clauses. In the first column we show the modularity of the original formula.

Table 3. Modularity of the learned clauses that have been contributed to prove the unsatisfiability of the orig-
inal formula. Like in Table 2 we show results for the first 100 learned clauses, and for all clauses.

Finally, we also report results on the number of communities() and the fraction of
vertices belonging to the largest community (). If all communities have a similar size,
then . In some cases, like palacios and mizh, we have . This means that the community
structure corresponds to a big (or some) big central communities surrounded by a multi-
tude of small communities. The existence of a big community implies an expected inner
fraction close to one, hence a modularity close to zero.

We have also conducted a study of the modularity of random 3-CNF SAT instances.
For the VIG model, we have observed that, with variables and clauses (i.e. around the
phase transition point) the average modularity is , the average number of communities
and largest size fraction . Therefore, almost surely the algorithm collapses into a single
community. For under-constrained problems with variablesand clauses, the average
modularity is . In this case there is a largest community withof the vertices, on aver-
age, although there are also additional communities. For the CVIG model, in the phase
transition point, we get , and . For variables and clauses, weget , and .

Notice that in the CVIG model for random 3-CNF formulas, using the same argu-
ment as above, i.e. assigning a distinct community to each variable, and to each clause
the community of one of its variables, we get a graph partition with . Therefore, in these
examples the label propagation algorithm does not always compute the maximal mod-
ularity, and tends to collapse all communities into a singleone. However, analyzing the
results for each one of the formulas independently, we observe that in some of them the
algorithm is able to compute this maximal modularity. Therefore, it would make sense
to run the algorithm, with distinct seeds, and take the partition with maximal modularity.

4. Modularity of the Learned Clauses

Most modern SAT solvers, based on variants of the DPLL schema, transform the formula
during the proof or the satisfying assignment search. Therefore, the natural question is:
even if the original formula shows a community structure, could it be the case that this
structure is quickly destroyed during the search process? We think that the (indirect)
exploitation of the community structure is responsible forthe success of SAT solvers
based on learning and restarting techniques. Thus, the second question is: how is this
statement supported?

Let us try to answer the second question. If we do not exploit the community struc-
ture, in a pure DPLL schema, the best thing we can do is to assign the variables that occur
more often in small clauses. Then, every time we assign we canremove all clauses con-

Velev instances are huge. We have to compute their modularity in a computer with more memory. In the case
of the CVIG model, even this second computer is unable to computethe partition.



taining (because they become satisfied) and remove the literal from the clauses that con-
tain it, possibly creating unary clauses that force the assignment of a variable. However,
if most frequent variables belong to distinct communities,and most clauses are local to a
community, we will loose a lot of time deciding about variables that do not contribute to
falsify any clause. If we use learning, we can revert this situation. If most of the original
clauses are local, since learned clauses are obtained by resolution from them, with high
probability the learned clauses will be also local. When the solver learns after a conflict,
the solver has already decided the assignment for all these variables, among others. I.e.
the sequence of decision is something like

Deciding about the variables has been useless. Moreover, possibly we will repeat this
work for the opposite assignment of those variables, that being in other community, have
no influence in our conflict. However, now the solver can backtrack to the decision of
, not reconsidering . Moreover, we can restart the execution, and if we use an activity-
based heuristic, next time the solver will try to decide on the variables that have been
participating in recent conflicts, i.e. with higher probability on the variables . We think
that, this way, the solver centers its attention on the variables of a single community,
or a few communities. Obviously, we could exploit the community structure directly,
if previously we had computed a good partition. We can apply learning locally in each
community, and re-start the algorithm with a lot of supplementary clauses.

To test the thesis that a considerable part of learning is performed locally inside one
or a few communities, we generate formulas with the learned clauses and analyze their
modularity. We use the picosat SAT solver [3] (version 846),since it incorporates a con-
flict directed clause learning algorithm, activity-based heuristics, and restarting strate-
gies.

For the VIG model, we use the original formula to get a partition of the vertices,
i.e. of the variables, into communities. Then, we use modularity as aquality measureto
see how good is the same partition, applied to the graph obtained from the set of learned
clauses. Since both graphs (the original formula and the learned clauses) have the same
set of vertices (the set of variables), this can be done directly.

For the CVIG model we must take into account that the graph contains variables and
clauses as vertices. Therefore, the procedure is more complicated. We use the original
formula to get a partition. We remove from this partition allclauses, leaving the variables.
Then, we construct the CVIG graph for the set of learned clauses. The partition classifies
the variables of this second graph into communities, but notthe clauses. To do this,
we assign to each clause the community of variables where it has more of its variables
included. In other words, given the labels of the variables we apply a single iteration of
the label propagation algorithm to find the labels of the clauses.

We want to see how fast is the community structure degraded along the execution
process of a SAT solver. Therefore, we have repeated the experiment for just the first
100 learned clauses and for all the learned clauses. We also want to know the influence
of the quality of the learned clauses. Therefore, we also repeat the experiment for all
the learned clauses (Table 2), and only using the clauses that participate in the proof of

A clause is local, in the VIG model, if all its variables belongto the same community, and in the CVIG
model, if it is only connected to variables of the same community.



unsatisfiability (Table 3). Notice that Table 3 contains fewer entries than Table 2 because
we can only consider unsatisfiable instances. Notice also that picosat is not able to solve
all 2010 SAT Race instances, therefore Tables 2 and 3 containfewer instances than Ta-
ble 1. The analysis of the tables shows us that the CVIG model gives better results for the
original formula and the first 100 learned clauses, but equivalent results if we consider
all learned clauses. There are not significant differences if we use all learned clauses, or
just the clauses that participate in the refutation. Finally, there is a drop-off in the mod-
ularity (in the quality of the original partition) as we incorporate more learned clauses.
This means that, if we use explicitly the community structure to improve the efficiency
of a SAT solver, to overcome this problem, we would have to recompute the partition
after some number of variable assignments to adjust it to themodified formula.

It is worth to remark that, in Table 2, the average , for the VIGand the CVIG models
and the first 100 learned clauses, is respectively and .

5. Conclusions

The research community on complex networks has developed techniques of analysis and
algorithms that can be used by the SAT community to improve our knowledge about the
structure of industrial SAT instances, and, as result, to improve the efficiency of SAT
solvers.

In this paper we address the first systematic study of the community structure of
SAT instances, finding a clear evidence of such structure in most analyzed instances.
We discuss how this structure is already exploited by modernSAT solvers. In fact, some
features, like Moskewicz’s activity-based heuristics, were already designed thinking on
the existence of this kind of structure. Here we go a step further, and propose an algorithm
that is able to compute the communities of a SAT instance. It verifies the assumption
about the existence of this community structure. The algorithm can also be used directly
by SAT solvers to focus their search.
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