On the Modularity of Industrial SAT
Instances

Carlos Ansétegui Jordi Levy

Universitat de Lleida (DIEI, UdL)
Artificial Intelligence Research Institute (Il1A, CSIC)

Abstract. Learning, re-starting and other techniques of modern SATesslhave
been shown efficient when solving SAT instances from indalstipplication. The
ability to exploit the structure of these instances has lpgeposed as the respon-
sible of such success. Here we study the modularity of someesktinstances,
used in the latest SAT competitions. Using a simple label mafyan algorithm we
show that the community structure of most of these SAT instaceede identified
very efficiently. We also discuss how this structure may bel tsespeed up SAT
solvers.

Keywords. Satisfiability, graph theory, modularity

Introduction

In recent years, SAT solvers efficiency solving industmatances has undergone a great
advance, mainly motivated by the introduction of lazy dsttaictures, learning mecha-
nisms and activity-based heuristics [7,14]. This improgatis not shown when dealing
with randomly generated SAT instances. The reason for fffereince seems to be the
existence of a structure in industrial instances [21].

In parallel, there have been significant advances in our rstateding of complex
networks, a subject that has focused the attention of stafiphysicists. The introduc-
tion of these network analysis techniques will help us usi@derd the nature of SAT in-
stances, and will contribute to further improve the efficienf SAT solvers. Watts and
Strogatz [20] introduce the notion efmall word the first model of complex networks,
as an alternative to the classical random graph models.nya8 analyzes the small
word topology of many graphs associated with search prablerl. He also shows that
the cost of solving these search problems can haveaay-tailed distributionGomes
et al. [10,11] propose the use @ndomizationandrapid restarttechniques to prevent
solvers to fall on the long tail of such kinds of distributson

The notion of structure has been addressed in previous WOrk?2,9,13]. The clos-
est work to our contribution is [18], but it uses the notionneddularity in a different

Research partially founded by the CICyT research projett2010-20967-C04-01/03 and TIN2009-
14704-C03-01 .

Corresponding Author: Departament d’Informatica i Engimgdndustrial, Jaume Il 69, 25001 Lleida,
Spain; E-mail: carlos@diei.udl.cat

sense. Also, in [1] some techniques are proposed to reagbnmwiltiple knowledge
bases that overlap in content. In particular, they discuiagegjies to induce a partitioning
of the axioms, that will help to improve the efficiency of reamg. In [4], it is shown that
many SAT instances can be decomposed into connected contppard how to handle
them within a SAT solver. They also discuss how what theyamathponent structurean
be used to improve the performance of SAT solvers.

In this paper we propose the use of techniques for detedtexcpmmunity structure
of SAT instances. In particular, we apply the notionneddularity[15] to detect these
communities. We also discuss how existing conflict direcledse learning algorithms
and activity-based heuristics already take advantagegctly, of this community struc-
ture. Activity-based heuristics [14] rely on the idea ofigiy higher priority to the vari-
ables that are involved in (recent) conflicts. By focusingaosub-space, the covered
spaces tend to coalesce, and there are more opportunitiesé@dution since most of the
variables are common.

1. Preliminaries

Given a set of Boolean variables Jigeral is an expression of the form or . dlause
of length is a disjunction of literals, . We say that is theesif , noted , and that , if
contains the literal or . ANF formulaor SAT instancef length is a conjunction of
clauses, .

An (undirected) graph is a pair where is a set of vertices aatlsfees . This
definition generalizes the classical notion of graph , whésetaking if and otherwise.
The degree of a vertex is defined as . A bipartite graph is @ tuglere .

Given a SAT instance, we construct two graphs, following taadels. In the Vari-
able Incidence Graph model (VIG, for short), vertices repre variables, and edges rep-
resent the existence of a clause relating two variablesadse results into edges, one
for every pair of variables. Notice also that there can beentban one clause relating
two given variables. To preserve this information we putghbr weight on edges con-
necting variables related by more clauses. Moreover, te tiie same relevance to all
clauses, we ponderate the contribution of a clause to anleggén this way, the sum
of the weights of the edges generated by a clause is alwaysrotiee Clause-Variable
Incidence Graph model (CVIG, for short), vertices représéther variables or clauses,
and edges represent the occurrence of a variable in a cl@848einstances use to be
simplified: there are no two occurrences of a literal (beeaissequivalent to) nor two
occurrences of the same variable and opposite sign (bedaustautology). Therefore,
in the CVIG model, edges have weight one.

Definition 1 (Variable Incidence Graph (VIG)) Given a SAT instance over the set of
variables , its variable incidence graph is a graph with setertices the set of Boolean
variables, and weight function:

Definition 2 (Clause-Variable Incidence Graph (CVIG)) Given a SAT instance over
the set of variables , its clause-variable incidence graph bipartite graph , with ver-
tices the set of variables and the set of clauses, and weightién:

2. Modularity in Large-Scale Graphs

To analyze the structure of a SAT instance we will use theonodif modularityintro-
duced by [16]. This property is defined for a graph and a spquditition of its vertices
into communitiesand measures the adequacy of the partition in the sensmtisitof
the edges are within a community and few of them connectoestof distinct commu-
nities. The modularity of a graph is then the maximal modtyldor all possible parti-
tions of its vertices. Obviously, measured this way, théatwould be obtained putting
all vertices in the same community. To avoid this problemywhi@an and Girvan define
modularity as the fraction of edges connecting verticehefdame community minus
the expected fraction of edges for a random graph with thesamber of vertices and
same degree.

Definition 3 (Modularity of a Graph) Given a graph and a partition of its vertices,
we define theimodularityas

We call the first term of this formula tHaner edges fractign for short, and the
second term thexpected inner edges fractiofor short. Then, .

The (optimal) modularityof a graph is the maximal modularity, for any possible
partition of its vertices.

Since the and the of a graph are both in the range , and, foratti¢éign given by a
single community, both have value , the optimal modularftgraph will be in the range
. Avalue of is considered as a high evidence of communityctire in a graph.

There has not been an agreement on the definition of moduflaribipartite graphs.
Here we will use the notion proposed by [2] that extends Newaral Girvan’s definition
by restricting the random graphs used in the computatiom®fiEFto be bipartite. In
this definition, communities may contain vertices of and of .

Definition 4 (Modularity of a Bipartite Graph) Given a graph and a partition of its
vertices, we define themodularityas

There exist a wide variety of algorithms for computing thedwlarity of a graph.
Moreover, there exist alternative notions and definitiohsodularity for analyzing the
community structure of a network. See [8] for a survey in teklfiThe decision version
of modularity maximization is NP-complete [5]. All the mddrity-based algorithms
proposed in the literature return an approximated lowentddor the modularity. They
include greedy methods, methods based on simulated angeali spectral analysis of
graphs, etc. Most of them have a complexity that make themieiqaate to study the
structure of an industrial SAT instance. There are two dllgars specially designed to

deal with large-scale networks: the greedy algorithms fodutarity optimization [15,6],
and a label propagation-based algorithm [17].

The first algorithm for modularity maximization is greedy methodf New-
man [15]. This algorithm starts by assigning every vertea thistinct community. Then,
it proceeds by joining the pair of communities that resui isigger increase of the mod-
ularity value. The algorithm finishes when no community jogiresults in an increase
of the modularity. In other words, it is a greedy gradieniggd optimization algorithm.
The algorithm may also return a dendogram of the successiséipns found. Obvi-
ously, the obtained partition may be a local maximum. In [@& tlata structures used in
this basic algorithm are optimized, using among other datiatsires for sparse matrices.
The complexity of this refined algorithm is , where is the dhept the dendogram (i.e.
the number of joining steps), the number of edges and the auwfvertices. They
argue that may be approximated by , assuming that the desitioigra balanced tree,
and the sizes of the communities are similar. However, thigt true for the graphs we
have analyzed, where the sizes of the communities are naddg@meous. This algorithm
has not been able to finish, for none of our SAT instances, avitlmn-time limit of one
hour.

An alternative algorithm is theabel Propagation Algorithnproposed by [17] (see
Figure 1). Initially, all vertices are assigned to a distiabel, e.g., its identifier. Then, the
algorithm proceeds by re-assigning to every vertex thd thla¢is more frequent among
its neighbors. The procedure ends when every vertex isreessig label that is maximal
among its neighbors. The order in which the vertices updhetie tabels in every iteration
is chosen randomly. In case of a tie between maximal lab@eswinning label is also
chosen randomly. The algorithm returns the partition defimethe vertices sharing the
same label. The label propagation algorithm has a nearrlc@maplexity. However, it
has been shown experimentally that the partitions it coegpbtaive a worse modularity
than the partitions computed by the Newman'’s greedy alyorit

Table 1. Computation of the modularity of the 2010 SAT Race instancesguthe Label Propagation Al-
gorithm. Time (in seconds) is the CPU time needed to propaghtdslgexcluding parsing the formula and
constructing the graph). is the modularity. is the number ofimainities, and the fraction of vertices in the
largest community. Iter is the number of iterations of the atbor.

3. Modularity of SAT Instances

We have computed the modularity of the SAT instances usduei2®10 SAT Race Fi-
nals (seehttp://bal dur.iti.uka.de/sat-race-2010/). They are 100 in-
stances grouped into 16 families. These families are aéssified as cryptography, hard-
ware verification, software verification and mixed, accogdio their application area.
All instances aréndustrial, in the sense that their solubility has an industrial or ficat
application. However, they are expected to show a distiattine.

Our experiments have been run on a cluster with the followpegifications. Oper-
ating System: Rocks Cluster 4.0.0 Linux 2.6.9, ProcesskbiDAOpteron 248 Processor,
2 GHz, Memory: 1 GB, and Compiler GCC 3.4.3.

Input:
Output: a labelling for
for do label[] :=; freq[] := Oendfor
do
ord := shuffle()
changes = false
for :=0to do
= most_freq_label(ord[],neighbors(ord[]))
changes := changes freqg[ord[]]
label[ord[]] :=
freqlord[]] :=
endfor
while changes
return label

function most_freq_label()
:=label[]
for do
freq[] :=
Max := freq[] = freq[]
return random_choose(Max)

Figure 1. Label Propagation Algorithm. The function most_freq_laletlirns the label that is most frequent
among a set of vertices. In case of tie, it randomly chooses fifre anaximal labels.

We have observed that all instances of the same family hairiismodularity.
Therefore, in Table 1, we only show average values, beirigstendard deviation quite
small (smaller that 10% of the mean in almost all cases).

As one could expect, the time needed to compute the moduiatihe CVIG model
is bigger than the time for the VIG model, since CVIG grapheslzigger. However, the
number of iterations of the algorithm is also bigger in thelGVnhodel.

If we take as an evidence of community structure, we can coledhat most fami-
lies are modular in the VIG model, and that all but one are rfaydn the CVIG model.
Except for the bioinf family, the modularity is always bigga the CVIG model than
in the VIG model. In some families, like mizh, fuhs or nec, thedularity for VIG is
meaningless, whereas the CVIG graph shows a clear commstnitgture. It could be
concluded that the loss of information, during the protf the bipartite CVIG graph
into the set of variables, may destroy part of the modularcstire. However, this is not
completely true. Suppose that the instance has no modulatste at all, but all clauses
are binary. We can construct a partition as follows: putevariable into a distinct com-
munity, and every clause into the same community of one ofatgables. Using this
partition, half of the edges will be internal, i.e., will bearly zero, and . Therefore, we
have to take into account that using Barber’'s modularitynitédin for bipartite graphs, as
we do, if vertex degrees are small, modularity can be qugebmpared with Newman’s
modularity.

Table 2. Modularity of the graph generated by the formula containimg first 100 learned clauses, and all
learned clauses. In the first column we show the modularityebtiginal formula.

Table 3. Modularity of the learned clauses that have been contribist@rove the unsatisfiability of the orig-
inal formula. Like in Table 2 we show results for the first 108rteed clauses, and for all clauses.

Finally, we also report results on the number of communifjemd the fraction of
vertices belonging to the largest community (). If all comrmities have a similar size,
then . In some cases, like palacios and mizh, we have . Thisgiteat the community
structure corresponds to a big (or some) big central comtmegréurrounded by a multi-
tude of small communities. The existence of a big communmifglies an expected inner
fraction close to one, hence a modularity close to zero.

We have also conducted a study of the modularity of randomNB-EAT instances.
For the VIG model, we have observed that, with variables aladises (i.e. around the
phase transition point) the average modularity is , theagenumber of communities
and largest size fraction . Therefore, almost surely therilyn collapses into a single
community. For under-constrained problems with varialsled clauses, the average
modularity is . In this case there is a largest community waththe vertices, on aver-
age, although there are also additional communities. FOCMIG model, in the phase
transition point, we get, and . For variables and clausegete and .

Notice that in the CVIG model for random 3-CNF formulas, gsthe same argu-
ment as above, i.e. assigning a distinct community to eadhbla, and to each clause
the community of one of its variables, we get a graph partitiith . Therefore, in these
examples the label propagation algorithm does not alwaggpate the maximal mod-
ularity, and tends to collapse all communities into a siragle. However, analyzing the
results for each one of the formulas independently, we @bdbat in some of them the
algorithm is able to compute this maximal modularity. THiere, it would make sense
to run the algorithm, with distinct seeds, and take the pantivith maximal modularity.

4. Modularity of the Learned Clauses

Most modern SAT solvers, based on variants of the DPLL schearasform the formula
during the proof or the satisfying assignment search. Taergthe natural question is:
even if the original formula shows a community structureyldat be the case that this
structure is quickly destroyed during the search process?hitik that the (indirect)
exploitation of the community structure is responsible tfeg success of SAT solvers
based on learning and restarting techniques. Thus, thexdepgestion is: how is this
statement supported?

Let us try to answer the second question. If we do not exgleittommunity struc-
ture, in a pure DPLL schema, the best thing we can do is torm#iségvariables that occur
more often in small clauses. Then, every time we assign weeraove all clauses con-

Velev instances are huge. We have to compute their modulariigomputer with more memory. In the case
of the CVIG model, even this second computer is unable to contpatpartition.

taining (because they become satisfied) and remove tha liirm the clauses that con-
tain it, possibly creating unary clauses that force thegassent of a variable. However,
if most frequent variables belong to distinct communitees] most clauses are local to a
community, we will loose a lot of time deciding about variabthat do not contribute to
falsify any clause. If we use learning, we can revert thigagion. If most of the original
clauses are local, since learned clauses are obtainedddyties from them, with high
probability the learned clauses will be also local. When thees learns after a conflict,
the solver has already decided the assignment for all thesables, among others. l.e.
the sequence of decision is something like

Deciding about the variables has been useless. Moreovesihip we will repeat this
work for the opposite assignment of those variables, thagie other community, have
no influence in our conflict. However, now the solver can baak to the decision of
, hot reconsidering . Moreover, we can restart the execuéind if we use an activity-
based heuristic, next time the solver will try to decide oa Hariables that have been
participating in recent conflicts, i.e. with higher prolabion the variables . We think
that, this way, the solver centers its attention on the e of a single community,
or a few communities. Obviously, we could exploit the comitustructure directly,
if previously we had computed a good partition. We can appéyring locally in each
community, and re-start the algorithm with a lot of suppletaey clauses.

To test the thesis that a considerable part of learning fpeed locally inside one
or a few communities, we generate formulas with the leart@ases and analyze their
modularity. We use the picosat SAT solver [3] (version 848)ce it incorporates a con-
flict directed clause learning algorithm, activity-basezlitistics, and restarting strate-
gies.

For the VIG model, we use the original formula to get a pantitof the vertices,
i.e. of the variables, into communities. Then, we use madylas aquality measureo
see how good is the same patrtition, applied to the graphrastdiom the set of learned
clauses. Since both graphs (the original formula and theéebclauses) have the same
set of vertices (the set of variables), this can be donefttijrec

For the CVIG model we must take into account that the graptedaesivariables and
clauses as vertices. Therefore, the procedure is more amted. We use the original
formula to get a partition. We remove from this partitioncdluses, leaving the variables.
Then, we construct the CVIG graph for the set of learned elauBhe partition classifies
the variables of this second graph into communities, butthetclauses. To do this,
we assign to each clause the community of variables whesintore of its variables
included. In other words, given the labels of the variablesapply a single iteration of
the label propagation algorithm to find the labels of the stsu

We want to see how fast is the community structure degradewyahe execution
process of a SAT solver. Therefore, we have repeated theimar@ for just the first
100 learned clauses and for all the learned clauses. We alsbtarknow the influence
of the quality of the learned clauses. Therefore, we alseatthe experiment for all
the learned clauses (Table 2), and only using the clausepdhiicipate in the proof of

A clause is local, in the VIG model, if all its variables belottgthe same community, and in the CVIG
model, if it is only connected to variables of the same community.

unsatisfiability (Table 3). Notice that Table 3 containsdewntries than Table 2 because
we can only consider unsatisfiable instances. Notice algibosat is not able to solve
all 2010 SAT Race instances, therefore Tables 2 and 3 cofgair instances than Ta-
ble 1. The analysis of the tables shows us that the CVIG mades @petter results for the
original formula and the first 100 learned clauses, but edeint results if we consider
all learned clauses. There are not significant differerfoss use all learned clauses, or
just the clauses that participate in the refutation. Fingtlere is a drop-off in the mod-
ularity (in the quality of the original partition) as we ingmrate more learned clauses.
This means that, if we use explicitly the community struetto improve the efficiency
of a SAT solver, to overcome this problem, we would have t@mgoute the partition
after some number of variable assignments to adjust it tonibeified formula.

Itis worth to remark that, in Table 2, the average , for the V@l the CVIG models
and the first 100 learned clauses, is respectively and .

5. Conclusions

The research community on complex networks has developbditpies of analysis and
algorithms that can be used by the SAT community to improvekaowledge about the
structure of industrial SAT instances, and, as result, torave the efficiency of SAT
solvers.

In this paper we address the first systematic study of the agmtynstructure of
SAT instances, finding a clear evidence of such structureastranalyzed instances.
We discuss how this structure is already exploited by mo&éfh solvers. In fact, some
features, like Moskewicz’s activity-based heuristicsrevalready designed thinking on
the existence of this kind of structure. Here we go a stepéurand propose an algorithm
that is able to compute the communities of a SAT instanceetfiifies the assumption
about the existence of this community structure. The algarican also be used directly
by SAT solvers to focus their search.

References

[1] E.Amirand S. A. Mcllraith. Partition-based logical ressng for first-order and propositional theories.
Artif. Intell., 162(1-2):49-88, 2005.

[2] M. J. Barber. Modularity and community detection in bifi@rnetworks.Phys. Rev. E76(6):066102,
2007.

[3] A.Biere. Picosat essential§SAT 4(2-4):75-97, 2008.

[4] A. Biere and C. Sinz. Decomposing sat problems into coratecomponentsJSAT 2(1-4):201-208,
2006.

[5] U.Brandes, D. Delling, M. Gaertler, R. Gorke, M. HoeférNikoloski, and D. Wagner. On modularity
— NP-completeness and beyond. Technical report, Facultyfofrhatics, Universitat Karlsruhe (TH),
Tech. Rep. a 2006-19, 2006.

[6] A.Clauset, M. E. J. Newman, and C. Moore. Finding commurtitycgure in very large network&hys.
Rev. E 70(6):066111, 2004.

[71 N. Eén and N. Soérensson. An extensible sat-solver6tinint. Conf. on Theory and Applications of
Satisfiability Testing (SAT'03pages 502-518, 2003.

[8] S. Fortunato. Community detection in grapfhysics Report186(3-5):75 — 174, 2010.

[9] I. P.Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morph{dgmbining structure and randomness. In
AAAI/IAAI pages 654—660, 1999.

(20]
(11]

(12]
(13]

[14]
[15]
[16]
(17]
(18]

[19]
(20]

(21]

C. P. Gomes and B. Selman. Problem structure in the presefrgerturbations. IRAAI/IAAI pages
221-226, 1997.

C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combireteearch through randomization. In
Proc. of the 15th Nat. Conf. on Artificial Intelligence (AA38), pages 431-437, 1998.

T. Hogg. Refining the phase transition in combinatorégreh.Artif. Intell., 81(1-2):127-154, 1996.

M. Jarvisalo and |. Niemela. The effect of structuralrmiing on the efficiency of clause learning sat
solving: An experimental studyl. Algorithms 63:90-113, January 2008.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SalM. Chaff: Engineering an efficient sat
solver. InDAC, pages 530-535, 2001.

M. E. J. Newman. Fast algorithm for detecting communityaiire in networks. Phys. Rev. E
69(6):066133, 2004.

M. E. J. Newman and M. Girvan. Finding and evaluating comitywstructure in networksPhys. Rev.
E, 69(2):026113, 2004.

U. N. Raghavan, R. Albert, and S. Kumara. Near linear tilgerithm to detect community structures
in large-scale network$?hys. Rev. E76(3):036106, Sep 2007.

A. Slater. Modelling more realistic sat problems. Anstralian Joint Conference on Artificial Intelli-
gence pages 591-602, 2002.

T. Walsh. Search in a small world. [4CAl, pages 1172-1177, 1999.

D. J. Watts and S. H. Strogatz. Collective dynamics of ¥warld’ networks. Nature 393(6684):440—
442, June 1998.

R. Williams, C. P. Gomes, and B. Selman. Backdoors to typiaae complexity. IHJCAI, pages
1173-1178, 2003.

