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Abstract. In this paper we present completeness results of several fuzzy
logics trying to capture different notions of necessity (in the sense of
Possibility theory) for Gödel logic formulas. In a first attempt, based on
different characterizations of necessity measures on fuzzy sets, a group of
logics, with Kripke style semantics, are built over a restricted language,
indeed a two level language composed of non-modal and modal formulas,
the latter moreover not allowing for nested applications of the modal
operator N . Besides, a full fuzzy modal logic for graded necessity over
Gödel logic is also introduced together with an algebraic semantics, the
class of NG-algebras.

1 Introduction

The most general notion of uncertainty is captured by monotone set functions
with two natural boundary conditions. In the literature, these functions have
received several names, like Sugeno measures [24] or plausibility measures [20].
Many popular uncertainty measures, like probabilities, upper and lower prob-
abilities, Dempster-Shafer plausibility and belief functions, or possibility and
necessity measures, can be therefore seen as particular classes of Sugeno mea-
sures.

In this paper, we specially focus on possibilistic models of uncertainty. A pos-
sibility measure on a complete Boolean algebra of events U = (U,∧,∨,¬, 0U , 1U)
is a Sugeno measure μ∗ satisfiying the following ∨-decomposition property for
any countable set of indices I

μ∗(∨i∈I ui) = sup
i∈I

μ∗(ui),

while a necessity measure is a Sugeno measure μ∗ satisfying the ∧-decomposition
property

μ∗(∧i∈I ui) = inf
i∈I

μ∗(ui).

Possibility and necessity are dual classes of measures, in the sense that if μ∗

is a possibility measure, then the mapping μ∗(u) = 1 − μ∗(¬u) is a necessity
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measure, and vice versa. If U is the power set of a set X , then any dual pair of
measures (μ∗, μ∗) on U is induced by a normalized possibility distribution, i.e. a
mapping π : X → [0, 1] such that, supx∈X π(x) = 1, and, for any A ⊆ X ,

μ∗(A) = sup{π(x) | x ∈ A} and μ∗(A) = inf{1 − π(x) | x �∈ A}.

Appropriate extensions of uncertainty measures on algebras of events more
general than Boolean algebras need to be considered in order to represent and
reason about the uncertainty of non-classical events. For instance, the notion of
(finitely additive) probability has been generalized in the setting of MV-algebras
by means of the notion of state [22]. In particular, the well-known Zadeh’s notion
of probability for fuzzy sets (as the expected value of the membership function)
defines a state over an MV-algebra of fuzzy sets. States on MV-algebras have
been used in [12] to provide a logical framework for reasoning about the prob-
ability of (finitely-valued) fuzzy events. Another generalization of the notion of
probability measure has been recently studied in depth by defining probabilistic
states over Gödel algebras [1].

On the other hand, extensions of the notions of possibility and necessity mea-
sures for fuzzy sets have been proposed under different forms and used in different
logical systems extending the well-known Dubois-Lang-Prade’s possibilistic logic
to fuzzy events, see e.g. [7,9,16,3,2,4]. All the notions of necessity for fuzzy sets
considered in the literature turn out to be of the form

N(A) = infx∈U π(x) ⇒ A(x) (*)

where A is a fuzzy set in some domain U , π : U → [0, 1] is a possibility dis-
tribution on U and ⇒ is some suitable many-valued implication function. In
particular, the following notions of necessity have been discussed:

(1) x⇒KD y = max(1 − x, y) (Kleene-Dienes);
(2) x⇒RG y = 1 if x ≤ y, and x⇒RG y = 1−x otherwise (reciprocal of Gödel);
(3) x⇒�L y = min(1, 1 − x+ y) (�Lukasiewicz).

All these definitions actually extend the above definition over classical sets or
events.

In the literature different logical formalizations to reason about such exten-
sions of the necessity of fuzzy events can be found. In [19], and later in [17], a full
many-valued modal approach is developed over the finitely-valued �Lukasiewicz
logic in order to capture the notion of necessity defined using ⇒KD. A logic
programming approach over Gödel logic is investigated in [3] and in [2] by re-
lying on ⇒KD and ⇒RG, respectively. More recently, following the approach of
[12], modal-like logics to reason about the necessity of fuzzy events in the frame-
work of MV-algebras have been defined in [13], in order to capture the notion of
necessity defined by ⇒KD and ⇒�L.

The purpose of this paper is to explore different logical approaches to reason
about the necessity of fuzzy events over Gödel algebras. In more concrete terms,
our ultimate aim is to study a full modal expansion of the [0, 1]-valued Gödel logic
with a modality N such that the truth-value of a formula Nϕ (in [0, 1]) can be
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interpreted as the degree of necessity of ϕ, according to some suitable semantics.
In this context, although this does not extend the classical possibilistic logic,
it seems also interesting to investigate the notion of necessity definable from
Gödel implication, which is the standard fuzzy interpretation of the implication
connective in Gödel logic:

(4) x⇒G y = 1 if x ≤ y, and x⇒G y = y otherwise (Gödel);

This work is structured as follows. After this introduction, in Section 2 we
recall a characterization of necessity measures on fuzzy sets defined by implica-
tions ⇒KD and ⇒RG and provide a (new) characterization of those defined by
⇒G. These characterizations are the basis for the completeness results of several
logics introduced in Section 3 capturing the corresponding notions of necessity
for Gödel logic formulas. These logics, with Kripke style semantics, are built over
a two-level language composed of modal and non-modal formulas, moreover the
latter not allowing nested applications of the modal operator. In Section 4 a
full fuzzy modal logic for graded necessity over Gödel logic is introduced to-
gether with an algebraic semantics. Finally, in Section 5 we mention some open
problems and new research goals we plan to address in the near future.

Due to lack of space, we cannot include preliminaries on basic notions regard-
ing Gödel logic and its expansions with truth-constants, with Monteiro-Baaz’s
operator Δ and with an involutive negation, that will be used throughout the
paper. Instead, the reader is referred to [17,10,11] for the necessary background.

2 Some Necessity Measures over Gödel Algebras of
Fuzzy Sets and Their Characterizations

Let X be a (finite) set and let F (X) = [0, 1]X be the set of fuzzy sets over
X , i.e. the set of functions f : X → [0, 1]. F (X) can be regarded as a Gödel
algebra equipped with the pointwise extensions of the operations of the standard
Gödel algebra [0, 1]G. In the following, for each r ∈ [0, 1], we will denote by r
the constant function r(x) = r for all x ∈ X .

Definition 1. A mapping N : F (X) → [0, 1] satisfying

(N1) N(∧i∈Ifi) = infi∈I N(fi)
(N2) N(r) = r, for all r ∈ [0, 1]

is called a basic necessity.

If N : F (X) → [0, 1] is a basic necessity then it is easy to check that it also
satisfies the following properties:

(i) min(N(f), N(¬Gf)) = 0
(ii) N(f ⇒G g) ≤ N(f) ⇒G N(g)

The classes of necessity measures based on the Kleene-Dienes implication
and the reciprocal of Gödel implication have been already characterized in the
literature. We do not consider here the one based on �Lukasiewicz implication.
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Lemma 2 ([3,2]). Let N : F (X) → [0, 1] be a basic necessity. Consider the
following properties:

(NKD) N(r ⇒KD f) = r ⇒KD N(f), for all r ∈ [0, 1]
(NRG) N(r ⇒RG f) = r ⇒RG N(f), for all r ∈ [0, 1]

Then, we have:

(1) N satisfies (NKD) iff N(f) = infx∈X π(x) ⇒KD f(x)
(2) N satisfies (NRG) iff N(f) = infx∈X π(x) ⇒RG f(x)

for some possibility distribution π : X → [0, 1] such that supx∈X π(x) = 1.

The characterization of the necessity measures based on Gödel implication is
somewhat more complex since it needs to consider also an associated class of
possibility measures which are not dual in the usual strong sense.

Definition 3. A mapping Π : F (X) → [0, 1] satisfying

(Π1) Π(∨i∈Ifi) = supi∈I Π(fi)
(Π2) Π(r) = r, for all r ∈ [0, 1]

is called a basic possibility.

Note that if Π : F (X) → [0, 1] is a basic possibility then it also satisfies
max(Π(¬f), Π(¬¬f)) = 1.

For each x ∈ X , let us denote by x its characteristic function, i.e. the function
from F (X) such that x(y) = 1 if y = x and x(y) = 0 otherwise. Observe that
each f ∈ F (X) can be written as

f =
∧

x∈X

x ⇒G f(x) =
∨

x∈X

x ∧ f(x).

Therefore, if N and Π are a pair of basic necessity and possibility on F (X)
respectively, by (N1) and (Π1) we have

N(f) = inf
x∈X

N(x ⇒G f(x)) and Π(f) = sup
x∈X

Π(x ∧ f(x)).

Then we obtain the following characterizations.

Proposition 4. Let Π : F (X) → [0, 1] be a basic possibility. Π further satisfies
(Π3) Π(f ∧ r) = min(Π(f), r), for all r ∈ [0, 1]

iff there exists π : X → [0, 1] such that supx∈X π(x) = 1 and, for all f ∈ F (X),
Π(f) = supx∈X min(π(x), f(x)).

Proof. One direction is easy. Conversely, assume that Π : F (X) → [0, 1] satisfies
(Π1) and (Π3). Then, taking into account the above observations, we have

Π(f) = sup
x∈X

Π(x ∧ f(x)) = sup
x∈X

min(Π(x), f(x)).

Hence, the claim easily follows by defining π(x) = Π(x) . �
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Proposition 5. Let N : F (X) → [0, 1] be a basic necessity and Π : F (X) →
[0, 1] be a basic possibility satisfying (Π3). N and Π further satisfy

(ΠN) N(f ⇒G r) = Π(f) ⇒G r, for all r ∈ [0, 1]

iff there exists π : X → [0, 1] such that supx∈X π(x) = 1 and

N(f) = inf
x∈X

π(x) ⇒G f(x) and Π(f) = sup
x∈X

min(π(x), f(x)).

Proof. As for the possibility Π , this is already shown above in Proposition 4. Let
N be defined as N(f) = infx∈X π(x) ⇒G f(x) for the possibility distribution
π : F (X) → [0, 1] determined by Π . We have N(f ⇒G r) = infx∈X(π(x) ⇒G

(f(x) ⇒G r)) = infx∈X((π(x) ∧ f(x)) ⇒G r) = (supx∈X π(x) ∧ f(x)) ⇒G r =
Π(f) ⇒G r. Hence, Π and N satisfy (ΠN).

Conversely, suppose that N and Π satisfy (ΠN). Then, using the fact that
Π(x) = π(x) for each x ∈ X , we have N(f) = infx∈X N(x ⇒G f(x)) =
infx∈X Π(x) ⇒G f(x) = infx∈X π(x) ⇒G f(x). �

3 Four Complete Logics: The Two-Level Language
Approach

The language of the logics we are going to consider in this section consists of
two classes of formulas:

(i) The set Fm(V ) of non-modal formulas ϕ, ψ . . ., which are formulas of GΔ(Q)
(Gödel logic G expanded with Baaz’s projection connective Δ and truth
constants r for each rational r ∈ [0, 1]) built from the set of propositional
variables V = {p1, p2, . . .};

(ii) And the set MFm(V ) of modal formulas Φ, Ψ . . ., built from atomic modal
formulas Nϕ, with ϕ ∈ Fm(V ), where N denotes the modality necessity,
using the connectives from GΔ and truth constants r for each rational r ∈
[0, 1]. Notice that nested modalities are not allowed.

The axioms of the logic NG0 of basic necessity are the axioms of GΔ(Q) for
non-modal and modal formulas plus the following necessity related modal
axioms:

(N1) N(ϕ→ ψ) → (Nϕ→ Nψ)
(N2) N(r) ↔ r, for each r ∈ [0, 1] ∩ Q.

The rules of inference of NG0 are modus ponens (for modal and non-modal
formulas) and necessitation: from � ϕ infer � Nϕ.

It is worth noting that NG0 proves the formula N(ϕ ∧ ψ) ↔ (Nϕ ∧ Nψ),
which encodes a characteristic property of necessity measures.
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As for the semantics we consider several classes of possibilistic Kripke models.
A basic necessity Kripke model is a system M = 〈W, e, I〉 where:

– W is a non-empty set whose elements are called nodes or worlds,
– e : W × V → [0, 1] is such that, for each w ∈ W , e(w, ·) : V → [0, 1]

is an evaluation of propositional variables which is extended to a GΔ(Q)-
evaluation of (non-modal) formulas of Fm(V ) in the usual way.

– For each ϕ ∈ Fm(V ) we define its associated function ϕ̂W : W → [0, 1],
where ϕ̂W (w) = e(w,ϕ). Let F̂m = {ϕ̂ | ϕ ∈ Fm(V )}

– I : F̂m→ [0, 1] is a basic necessity over F̂m (as a G-algebra), i.e. it satisfies
(i) I(r̂W ) = r, for all r ∈ [0, 1] ∩ Q

(ii) I(∧i∈I ϕ̂iW ) = infi∈I I(ϕ̂iW ).

Now, given a modal formula Φ, the truth value of Φ in M = 〈W, e, I〉, denoted
‖Φ‖M, is inductively defined as follows:

– If Φ is an atomic modal formula Nϕ, then ‖Nϕ‖M = I(ϕ̂W )
– If Φ is a non-atomic modal formula, then its truth value is computed by eval-

uating its atomic modal subformulas, and then by using the truth functions
associated to the GΔ(Q) connectives occurring in Φ.

We will denote by N the class of basic necessity Kripke models. Then, taking
into account that GΔ(Q)-algebras are locally finite, following the same approach
of [13] with the necessary modifications, one can prove the following result.

Theorem 6. NG0 is sound and complete for modal theories w.r.t. the class N
of basic necessity structures.

Now our aim is to consider extensions of NG0 which faithfully capture the
three different notions of necessity measure considered in the previous section.
We start by considering the following additional axiom:

(NKD) N(r ∨ ϕ) ↔ (r ∨Nϕ), for each r ∈ [0, 1] ∩ Q.

Let NGKD be the axiomatic extension of NG0 with (NKD). Then, using Lemma
2, it is easy to prove that indeed NGKD captures the reasoning about KD-
necessity measures.

Theorem 7. NKD is sound and complete for modal theories w.r.t. the subclass
NKD of necessity structures M = 〈W, e, I〉 such that the necessity measure I is
defined as, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒KD ϕ̂W (w) for some
possibility distribution π : W → [0, 1] on the set of possible worlds W .

To capture RG-necessities, we need to expand the base logic GΔ(Q) with an
involutive negation ∼. This corresponds to the logic G∼(Q), as defined in [10].
So we define NGRG as the axiomatic extension of NG0 over G∼(Q) (instead of
over GΔ(Q)) with the following axiom:

(NRG) N(∼ϕ→ 1 − r) ↔ (∼Nϕ→ 1 − r), for each r ∈ [0, 1] ∩ Q.
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Then, using again Lemma 2 and the fact that also G∼(Q)-algebras are locally
finite, one can also prove the following result.

Theorem 8. NGRG is sound and complete for modal theories w.r.t. the subclass
NRG of necessity structures1 M = 〈W, e, I〉 such that the necessity measure I is
defined as, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒RG ϕ̂W (w) for some
possibility distribution π : W → [0, 1] on the set of possible worlds W .

It is worth pointing out that if we added the Boolean axiom ϕ ∨ ¬ϕ to the
logics NKD and NRG, both extensions would basically collapse into the classical
possibilistic logic.

Finally, to define a logic capturing NG-necessities, we need to expand the
language of NG0 with an additional operator Π to capture the associated
possibility measures according to Proposition 5. Therefore we consider the
extended set MFm(V )+ of modal formulas Φ, Ψ . . . as those built from atomic
modal formulas Nϕ and Πϕ, with ϕ ∈ Fm(V ), truth-constants r for each
r ∈ [0, 1] ∩ Q and GΔ connectives. Then the axioms of the logic NΠG are
those of GΔ(Q) for non-modal and modal formulas, plus the following necessity
related modal axioms:

(N1) N(ϕ→ ψ) → (Nϕ→ Nψ)
(N2) N(r) ↔ r,
(Π1) Π(ϕ ∨ ψ) ↔ (Πϕ ∨Πψ)
(Π2) Π(r) ↔ r,
(Π3) Π(ϕ ∧ r) ↔ (Πϕ ∧ r)
(NΠ) N(ϕ→ r) ↔ (Πϕ→ r)

where (N2), (Π2), (Π3) and (NΠ) hold for each r ∈ [0, 1] ∩ Q. Inference rules
of NΠG are those of GΔ(Q) and necessitation for N and Π .

Now, we also need to consider expanded Kripke structures of the form M =
〈W, e, I, P 〉, where W and e are as above and the mappings I, P :→ [0, 1] are such
that, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒G ϕ̂W (w) and P (ϕ̂W ) =
supw∈W min(π(w), ϕ̂W (w)), for some possibility distribution π : W → [0, 1]. Call
NPG the class for such structures. Then, using Proposition 5 we get the following
result.

Theorem 9. NΠG is sound and complete for modal theories w.r.t. the class
NPG of structures.

4 Possibilistic Necessity Gödel Logic and Its Algebraic
Semantics: The Full Modal Approach

The logics defined in the previous section are not proper modal logics since
the notion of well-formed formula excludes those formulas with occurrences of
1 With the proviso that the evaluations e of propositional variables extend to G∼(Q)-

evaluations for non-modal formulas and not simply to GΔ(Q)-evaluations.
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nested modalities. Our aim in this section is then to explore a full (fuzzy) modal
approach.

We start as simple as possible by defining a fuzzy modal logic over Gödel
propositional logic G to reason about the necessity degree of G-propositions.
The language of Possibilistic Necessity Gödel logic, PNG, is defined as follows:
formulas of PNG are built from the set of G-formulas using G-connectives and
the operator N . Axioms of PNG are those of Gödel logic plus the following
modal axioms:

1. N(ϕ→ ψ) → (Nϕ→ Nψ).
2. Nψ ↔ NNψ.
3. ¬N0.

Deduction rules for PNG are Modus Ponens and Necessitation for N (from ψ
derive Nψ). These axioms and rules define a notion of proof �PNG in the usual
way.

Notice that in PNG the Congruence Rule “from ϕ ↔ ψ derive Nϕ ↔ Nψ”
as well as the theorems N1 and N(ϕ ∧ ψ) ↔ (Nϕ ∧ Nψ) are derivable. Also
observe that, if we had restricted the Necessitation Rule only to theorems, we
would have obtained a local consequence relation (instead of the global one
we have introduced here). For this weaker version of the logic, the Deduction
Theorem in its usual form would holds, nevertheless this logic turns out not to
be algebraizable.

Theorem 10. [Deduction Theorem] If T ∪ {ϕ, φ} is any set of PNG-formulas,
then T ∪ {ϕ} �PNG φ iff T �PNG (ϕ ∧Nϕ) → φ.

Kripke style semantics based on possibilistic structures (W, e, I) could be also
defined as in Section 3, but now the situation is more complex due to the fact
that we are dealing with a full modal language. Moreover, it seems even more
complex to try to get some completeness results with respect to this semantics
so this is left for future research. This is the reason why in the rest of the paper
we will turn our attention to the study of an algebraic semantics, following the
ideas developed in [15,14] for the case of a probabilistic logic over �Lukasiewicz
logic, and see how far we can go.
We start by defining a suitable class of algebras which are expansions of Gödel
algebras with a new unary operator trying to capture the notion of necessity.

Definition 11. An NG-algebra is a structure (A, N) where A is a G-algebra
and N : A→ A is a monadic operator such that:

1. N(x⇒ y) ⇒ (Nx⇒ Ny) = 1
2. Nx = NNx
3. N1 = 1

The function N is called an internal possibilistic state on the G-algebra A.

Observe that, so defined, the class of NG-algebras is a variety. Examples of
internal possibilistic states are the identity function Id, the Δ operator and the
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¬¬ operator. The variety of G-algebras can be considered as a subvariety of NG-
algebras, namely the subvariety obtained by adding the equation N(x) = x. It
is easy to check, using the definition of NG-algebra that, for every NG-algebra
(A,N) such that N(A) = A we have N = Id, and that, given a, b ∈ A, a ≤ b
implies Na ≤ Nb.

Definition 12. An NG-filter F on an NG-algebra (A,N) is a filter on the G-
algebra A with the following property: if a ∈ F , then Na ∈ F .

By an argument analogous to the one in Lemma 2.3.14 of [17], if ∼F is the
relation defined by: for every a, b ∈ A, a ∼F b iff (a ⇒ b) ∈ F and (b ⇒ a) ∈ F ,
then ∼F is a congruence on (A, N) and the quotient algebra (A, N)/ ∼F is an
NG-algebra.

Lemma 13. Let F be an NG-filter on an NG-algebra (A,N). Then, the least
NG-filter containing F as a subset and a given a ∈ A is

F ′ = {u ∈ A : ∃v ∈ F such that u ≥ v ∗ a ∗Na}
By Corollary 4.8 of [5], it is easy to check that PNG is finitely algebraizable and
that the equivalent algebraic semantics of PNG is the variety of NG-algebras.
As a corollary we obtain the following general completeness result.

Theorem 14. The logic PNG is strongly complete with respect to the variety of
NG-algebras. This means that for any set of formulas Γ ∪ {Φ}, Γ �PNG Φ iff,
for all NG-algebra A and for all evaluation e on A, if e(Ψ) = 1A for all Ψ ∈ Γ ,
then e(Φ) = 1A.

Observe that it is not possible to prove completeness with respect to linearly
ordered NG-algebras. Otherwise N(Φ ∨ Ψ) ↔ (NΦ ∨NΨ) would be a theorem.
Now we prove some satisfiability results of formulas of the logic PNG.

Formulas of the language of PNG can be seen also as terms of the language of
NG-algebras. Therefore for the sake of clarity, in the following proofs we work
with first-order formulas of the language of NG-algebras proving that they are
satisfiable, if the corresponding formulas of the language of PNG are satisfiable.

Proposition 15. Let φ(x1, . . . , xn) be a PNG-formula. If φ is satisfiable, then
φ = 1 is satisfiable in an NG-algebra (B,Ω), by a sequence (b1, . . . , bn) of ele-
ments of B such that, for every 0 < i ≤ n, we have either bi = 1 or Ω(bi) = 0.

Proof. Let (A,N) be an NG-algebra such that φ = 1 is satisfiable in (A,N) by
(a1, . . . , an). Without loss of generality we assume that there is k ≤ n such that
for every 0 < i ≤ k, N(ai) �= 0 and for i > k, N(ai) = 0.

Now we build a finite sequence of NG-algebras (B1, . . . , Bk) and homomor-
phisms (h1, . . . , hk) such that for every 0 < i ≤ k, φ is satisfied in Bi by

(c1, . . . , ci−1, hi ◦ hi−1 ◦ · · · ◦ h1(ai), . . . , hi ◦ hi−1 ◦ · · · ◦ h1(an))

where each ci ∈ {0, 1}. We define only the first homomorphism, the others can
be introduced analogously. Let F = {x ∈ A : Nx ≥ Na1}. So defined, it is easy
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to check that F is an NG-filter. And since, by a previous assumption, Na1 �= 0,
the filter F is proper. Thus, (A,N)/∼F is an NG-algebra. Now let h1 be the
canonical homomorphism from (A,N) to (A,N)/∼F , and let B1 = (A,N)/∼F .
It is easy to check that φ = 1 is satisfied in B1 by (h1(a1), . . . , h1(an)), that
h1(a1) = 1 and that for i > k, N(h1(ai)) = 0. Finally, take (B,Ω) = (Bk, hk ◦
· · · ◦ h1 ◦N). �

Definition 16. An unnested atomic formula of the language of NG-algebras,
is an atomic formula of one of the following four forms: x = y, c = y (where c
is a constant c ∈ {0, 1}), Nx = y or F (x) = y (for some function symbol F of
the language of the Gödel algebras).

Lemma 17. Let φ be a term of the language of NG-algebras. Then there is a
set Γφ of unnested atomic formulas such that, for every NG-algebra (A,N):

φ = 1 is satisfiable in (A,N) iff Γφ is satisfiable in (A,N).

Proof. It is a direct consequence of Theorem 2.6.1 of [21]. �

Example: Let φ be the term x1 ∨ N(x2 ⇒ N(x3 ⇒ 0)), take Γφ to be the
following set of unnested atomic formulas:

{x1 ∨ y = z, 1 = z,Nw = y, (x2 ⇒ v) = w,Nq = v, (x3 ⇒ p) = q, 0 = p}

Theorem 18. Let φ(x1, . . . , xn) be a PNG-formula. If φ is satisfiable, then φ =
1 is satisfiable in the NG-algebra ([0, 1]G, Δ) by a sequence of rational numbers.

Proof. Let (A,Ω) be an NG-algebra in which φ(x1, . . . , xn) = 1 is satisfiable by
an n-tuple (a1, . . . , an). Without loss of generality we may assume that:

– φ is a conjunction of unnested atomic formulas (by using Lemma 17);
– for every 0 < i ≤ n, ai �= 0 and ai �= 1 (otherwise we can work with the

formulas φ(xi/1) or φ(xi/0), by substituting the corresponding variables by
the constants 0 or 1);

– for every i, we have Ω(ai) = 0 (by Proposition 15).

Now we consider the unnested conjuncts of φ. For the sake of simplicity, assume
that there is k ≤ n such that only in case that 0 < i ≤ k, the variable xi has an
occurrence in an unnested atomic formula of the form Nxi = y. We work now
with the formula γ = φ(Nxi/0), obtained by substituting in φ all the occurrences
of Nxi by the constant 0, for every 0 < i ≤ k.

Observe that, so defined, γ is a conjunction of unnested atomic formulas
in the language of the G-algebras which is satisfied in (A,Ω) by (a1, . . . , an).
Therefore, the conjunction γ0 = γ∧∧

0<i≤k(xi �= 1) is also satisfied in (A,Ω) by
(a1, . . . , an) (by our assumptions at the beginning of this proof). Finally, since
γ0 is a formula in the language of the G-algebras, it is satisfied in [0, 1]G by a
sequence of rational numbers, and thus, by definition of γ0, it is easy to check
that φ is also satisfied in ([0, 1]G, Δ). �
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5 Future Work

Several issues related to the logic PNG deserve further investigation. A topic that
is worth studying in depth is the relation between the algebraic semantics for
the logic PNG (and of some meaningful axiomatic extensions) and the Kripke
style semantics of the kind used in Section 3. This is crucial if one wants to
keep as the intended graded semantics of the N operator one of the possibilistic
necessities of the families described in Section 2. Actually, the PNG logic might
only capture the logic of basic necessities, and so, different axioms (and possibly
operators as well) must be added in order to capture other more specific families
of necessities, somehow related to axioms (NKD), (NRG), (Π3) or the axiom
(NΠ).

Also as a future task, we aim at studying the complexity of the sets of sat-
isfiable formulas for both NGKD, NGRG and NΠG. Given the results in [18],
we conjecture that the problem of checking satisfiability for those logics is in
PSPACE. As for PNG, notice that from the results in the above section and the
fact that satisfiability for GΔ is an NP-complete problem (easily derivable from
[17]), we immediately obtain that the set of satisfiable PNG-formulas is in NP.
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