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Abstract

This paper introduces a new class of fuzzy closure operators called
implicative closure operators, which generalize some notions of fuzzy
closure operators already introduced by different authors. We show
that implicative closure operators capture some usual consequence re-
lations used in Approximate Reasoning, like Chakraborty’s graded con-
sequence relation, Castro et al.’s fuzzy consequence relation, similarity-
based consequence operators introduced by Dubois et al. and Gerla’s
canonical extension of classical closure operators. We also study the
relation of the implicative closure operators to other existing fuzzy in-
ference operators as the Natural Inference Operators defined by Boix-
ader and Jacas and the fuzzy operators defined by Biacino, Gerla and
Ying.

Keywords: Implication Measures, Approximate Reasoning, Fuzzy
Closure Operators, Closure Systems and Fuzzy Consequence Relations.

1 Introduction

Many works have been devoted to extend the notions of closure operators,
closure systems and consequence relations from two valued logic to many

*This is a revised and extended version of two previous conference papers by the same
authors that appear in the Proc. of 9th I[EEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2000), San Antonio (Texas), USA, pp. 197-202, and in the Proc. of 1999
Eusflat-Estylf Joint Conference, Palma de Mallorca (Spain), pp. 35-37.



valued logic. Concerning closure operators, one of the first works was done
by Michdlek in [25] in the framework of Fuzzy Topological Spaces. Never-
theless the best well-known approach to many-valued closure operators is
due to Pavelka [27]. He defines such operators (in the standard sense of
Tarski) as mappings from fuzzy sets of formulas to fuzzy sets of formulas.
But before going into details let us introduce some notation conventions we
shall use throughout this paper.

In the following we shall denote by £ a propositional language, by P(L)
its power set and by F (L) the set of L-fuzzy subsets of £, where (L, A,V, <
,0,1) is a complete distributive lattice. Propositions of £ will be denoted
by lower case letters p,q, ..., and fuzzy sets of propositions by upper case
letters A,B, etc. For each A € F(L) and each p € £, A(p) € L will stand
for the membership degree of p to A. Moreover, the lattice structure of L
induces a related lattice structure on F(L£), (F(£),N,U, C,0,1), which is
complete and distributive as well, where N, U are the pointwise extensions
of the lattice operations A and V to F(L), i.e.

(ANB)(p) = A(p)AB(p),forallpe L
(AUB)(p) = A(p)VB(p),forallpe L,

and where the lattice (subsethood) ordering and top and bottom elements
are defined respectively by

ACB iff A(p) < B(p) foralpel

O(p) =0 and 1(p)=1,forallpe L.

For any k € L, we shall also denote by k the constant fuzzy set defined by
k(p) = k for all p € L.

Now we are ready to follow our introduction with Pavelka’s definition of
fuzzy closure operator.

Definition 1 (Fuzzy closure operator [27]) A fuzzy closure operator
on the language L is a mapping C' : F(L) — F(L) fulfilling, for all
A, B € F(L), the following properties:

C1) fuzzy inclusion: A C C(A)
C2) fuzzy monotony: if A C B then C'(A) C C(B)
C'3) fuzzy idempotence: C(C(A)) C C(A).

On the other hand, Chakraborty extends in [8] the concept of consequence
relation by defining graded consequence relations as fuzzy relations between



crisp sets of formulas and formulas. To do so, in [9] he assumes to have a
t-norm-like! operation @ in L such that (L,®, 1, <,=) is a complete resid-
uated lattice.

Definition 2 (Graded consequence relation [8]) Let @ be a t-norm
operation on L. A fuzzy relation g. : P(L) x L — L is called a graded
consequence relation if, for every A, B € P(L) and p,q € L, g. fulfills:

gc1) fuzzy reflexivity: ¢g.(A,p) =1 forallp € A
g.2) fuzzy monotony: if B C A then ¢.(B,p) < g.(4,p)

g:3) fuzzy cut: [inf,ep g.(A, q)] @ g.(AU B, p) < ge(A4,p).”

In [17] Gerla examines the links between fuzzy closure operators and
graded consequence relations. Castro et al. point out in [7] that several
methods of approximate reasoning used in Artificial Intelligence, such as
Polya’s models of plausible reasoning [28] or Nilsson’s probabilistic logic [26],
are not covered by the formalism of graded consequence relations, and they
introduce a new concept of consequence relations, called fuzzy consequence
relations which, unlike Chakraborty’s graded consequence relation, apply
over fuzzy sets of formulas.

Definition 3 (Fuzzy consequence relation [7]) A fuzzy relation f. :
F(L) X L L is called a fuzzy consequence relation if the following three
properties hold for every A, B € F(L) and p,q € L:

fel) fuzzy reflexivity: A(p) < f.(A,p)
fe2) fuzzy monotony: If B C A then f.(B,p) < f.(4,p)

fe3) fuzzy cut: if for all p, B(p) < fo(A,p), then for all q, f-(AUB,q) <
f(A,q)

However, it is worth noticing that fuzzy consequence relations as defined
above, when restricted over crisp sets of formulas, become only a particular
class of graded consequence relations. Namely, regarding the two versions
of the fuzzy cut properties, (¢.3) and (f.3), it holds that for A, B € P(L),
if B(p) < fe(A,p) for all p € L, it is clear that inf,ep f.(A,¢) = 1.

'Tt can be called in this way because it satisfies all the main properties of t-norms, i.e.
commutativity, associativity, monotony, 1 is neutral and 0 is a null element.

*by the residuation this axiom is equivalent to [infgep gc(A,q)] < g-(A U B,p) =
9e(A,p)



To conclude this brief overview, let us point out the in the classical
setting there are wellknown relationships of interdefinability among closure
operators, consequence relations and closure systems. In the general frame-
work, fuzzy closure operators and fuzzy consequence relations are related in
a analogous way, as proved in [7]:

o if C'is a fuzzy closure operator then f., defined as f.(A4,p) = C'(A4)(p),
is a fuzzy consequence relation.

e if f.is afuzzy consequence relation then C', defined as C’(A) = f.(A,"),
is a fuzzy closure operator.

Therefore, via these relationships, the fuzzy idempotence property (C’S) for
closure operators and the fuzzy cut property (f.3) for consequence relations
become equivalent.

Moreover, also as in the classical setting, a fuzzy closure operator C
on F(L) defines its corresponding closure system C as the set of closed
fuzzy sets, ie. C = {T € F(L) | C(T) = T}. Conversely, if F(L) is a
complete lattice, then every complete inf-semilattice C C F(L) containing
the maximum defines a closure operator €' whose closure system is C [29].
And such a closure operator is defined by C'(4) =\ {T' eC | ACT}.

In this paper we aim at bridging the gap between Chakraborty’s graded
and Castro et al.’s fuzzy consequence relations by introducing a new class
of closure operators, that we call implicative closure operators, whose asso-
ciated consequence relations generalize at the same time the former conse-
quence relations®. In some more detail, after this introduction, in Section
2 we define and characterize implicative closure operators as well as their
associated closure systems. In Section 3, we related implicative closure oper-
ators to other kinds of fuzzy (inference) operators defined by fuzzy relations,
in particular to those defined by preorders and similarity relations. Finally,
in Section 4, we show that Implicative Closure operators also capture some
well-known approximate entailments, like the approximate and proximity
entailments introduced by Dubois et al. [11], the canonical extension of a
classical closure operator defined by Gerla [17], Boixader and Jacas’ natural
inference operators [5], and the fuzzy operators defined by Biacino, Gerla
and Ying [4]. But before going into details, we introduce below some back-
ground that will be needed in the rest of the paper.

For our task, we need to consider enriched lattice structures as alge-
bras of truth values for fuzzy sets of formulas. Namely, we need to expand

A very close notion to implicative closure operators has been independently introduced
by Belohlavek in [1, 2] after our conference papers were published.



lattices (L,A,V,0,1) to complete BL-algebras?, i.e. algebraic structures
(L,A\,V,®,=,0,1) where (L,A,V,0,1) is a complete distributive lattice,
(L,®,1) is a commutative monoid and (®,=) is a residuated pair, i.e. it
verifies the residuation condition for all z,y,z € L

r@y<zifand only if =z <y = z,
and which further fulfills the following two conditions for all x,y, z € L,
tANy=2®@(x=y) and (z2=>y)Vy=>2)=1

The operation = is usually called residuum of @. Main examples of BL-
algebras are the ones defined over the real unit interval [0, 1]. In a such
a case the operation @ is a continuous t-norm and = is its corresponding
residuum. The importance of BL-algebras on [0,1] is that they generate the
whole variety of BL-algebras [10]. Point-wise extensions of these operations
to fuzzy sets of formulas in F (L) are defined analogously as previously done
for the lattice operations A and V. Throughout this paper, for each o € L,
a @ A will denote the fuzzy set in F(L) defined by (o @ A)(p) = a @ A(p)
for all p € £ and the same for the residuated implication.

On the other hand and in the context of a BL-algebra (L,A,V,®,=
,0,1), we shall also make use of the degree of inclusion between two fuzzy
sets of formulas to defined as

[AEp B] = inf A(p) = B(p).
peEL
Notice that, since it holds = y = 1 iff x < y for all 2,y € L, we have that
[ACg B]=1iff AC B.

Actually, using the notation of closure operators and the notion of degree
of inclusion, the relationship between graded consequence and fuzzy conse-
quence relations become self-evident. As already mentioned, the former is
defined only over classical sets while the latter is defined over fuzzy sets, but
both yield a fuzzy set of formulas as output. But, having this difference in
mind, the two first conditions of both operators, i.e. g.1, f.1 and g¢.2, f.2,
become syntactically the same than C'1 and C?2 respectively,

1) fuzzy inclusion: A C C'(A)

2) fuzzy monotony: If B C A then C'(B) C C(A)

*BL-algebras are introduced by Héjek in [19] as the algebraic counterpart of the so-
called Basic Fuzzy Logic, which is the logic of continuous t-norms and which is briefly
recalled at the end of section 2.



while the third one, the fuzzy cut, become very close one to another:

03) fuzzy eut: ([B € C(A)] & C(AUB)) C C(A),
where [BC C(A)] =inf,ep C(A)(g) (recall that B is a classical set).

£:3) fuzzy cut: if B C C(A) then C(AU B) C C(A)

2 Implicative closure operators

In this section we introduce implicative closure operators as a generalization
of Chakraborty’s graded consequence relations over fuzzy sets of formulas.
The adjective implicative is due to the fact we generalize the Fuzzy Cut
property (¢.3) by means of the above defined degree of inclusion, which
in turn depends on the implication operation = of the BlL-algebra L =
(L,A\,V,®,=,0,1) over which fuzzy sets of formulas are defined. Unless
stated otherwise, for the rest of the section we shall assume F (L) be defined
over a given (and fixed) BL-algebra L is fixed.

Definition 4 (Implicative closure operators) A  mapping C
F(L) — F(L) is called an implicative closure operator if, for every
A, B e F(L), C fulfills:

C1) fuzzy inclusion: A C C'(A)
C?2) fuzzy monotony: If B C A then C(B) C C'(A)
C'3) fuzzy cut®: [B Cy C(A)]@ C(AU B) C C(A). .

The corresponding implicative consequence relation, denoted by [., and de-
fined as I.(A,p) = C(A)(p). The translation of the properties of Implicative
closure operators to Implicative consequence relation read as follows:

I.1) fuzzy reflexivity: A(p) < I.(A,p)

1.2) fuzzy monotony: If B C A then I.(B,p) < I.(A,p)

1.3) fuzzy cut: [BCg C(A)] @ I.(AUB,p) < I.(A,p).

5Due~ to the residuation property, this axiom could also be presented as C’(A UB) C
[B Co CA)] = C(A).



Now, it is easy to check that the restriction of implicative consequence rela-
tions over classical sets of formulas are exactly Chakraborty’s graded con-
sequence relations, since if B is a crisp set, [B Cg C(A)] = inf,ep I.(A, p).
On the other hand, fuzzy consequence relations are implicative as well, since
property 1.3) clearly implies f.3). Therefore, implicative consequence rela-
tions generalize both graded and fuzzy consequence relations.

Implicative closure relations admit also representation theorem which is a
generalization of the one given by Chakraborty in [8] for graded consequence

relations.

Theorem 1 A fuzzy relation 1. : F(L) x L — L is an implicative conse-
quence relation if and only if there exists a family of fuzzy sets {T;};cr such
that 1.(A, p) = infier([A Cg Ti] = Ti(p))-

Proof: First, assume a family {7;};cs is given and let us prove that I. as
defined above is an implicative consequence relation. Properties 1.1 1.2 are
easy to prove. In order to prove [.3 we shall make use of the following
general properties, where A, B,C, D are arbitrary fuzzy sets:

i) A=C)n(B=C)=((AUB) = ()

(i) ANB=A® (A= B)

(i) f (A@B)=C2>Dthen A=C2B®D

iv) ( A= (B=C)=B= (A=)
Then, by (i), we have (A(q) = Ti(q)) A(B(g) = Ti(q)) = (AUB)(q) = Ti(q).

Taking infima with respect to ¢ at both sides and using (ii) we have
A'® (A= B') = (AUBY’

where, for the sake of a simpler notation, we use X' standing for [X Cg T3]
Therefore,

(A'® (A" = B')) = Ti(p) = (AU B)' = Ti(p)
also holds, and taking into account (iii) we get

ATz Ti(p) > (A" = BY) @ (AU B)' = T;(p))
and taking infima over the subscript ¢ in both sides we have

L(A,p) > inf{A" = B'} @ L.(AU B, p) .
[2S

Finally let us show that inf;c/{A' = B'} = inf,ec{B(q) = I.(4,¢)}.
Namely, applying (iv) we have the following equalities: inf,{B(q) =



I.(A,q)} = inf{B(q) = infi{A' = Ti(¢9)}} = inf; {A* = (B(¢) =
Ti(q))} = inf;{A" = inf {B(¢q) = Ti(¢)}} = inf;{A* = B’}. This ends
the proof of property I.3.

Now suppose a relation I, fulfilling the three properties is given. Take the
family of fuzzy sets of formulas {Tp} per(cy With Tp(p) = I.(D, p). For any
A € F(L) it is clear that infperg){infeect{Alg) = Tnlg)} = Tn(p)} <
infoec{A(q) = I.(A,9)} = I.(A,p) = 1 = I.(A,p) = I.(A,p), since I,
fulfills fuzzy reflexivity. On the other hand, since I. satisfies fuzzy cut, we
have

I.(D,p) > I.(AUD,p) @ 322{A(q) = I1.(D,q)},

hence

I.(AUuD,p) < ;Ielf/;{A(q) = 1.(D,q)} = 1.(D,p) .

Taking into account that I. fulfills fuzzy monotony we have I.(A, p) < I.(AU
D,p) < infyec{Alg) = L.(D, )} = 1.(D, p). Thus

< .
Le(A,p) < Il {inf{A(g) = L(D. )} = L(D,p)}
and the theorem is proved. a

A family of fuzzy sets {T;};c; defining an implicative consequence relation
1. in the sense of the above theorem will be called a set of generators of
I.. In terms of closure operators, the above theorem says that C' is an
implicative closure operator iff there exist a family of fuzzy sets {T;}icr
such that C'(4) = N;{[A Cg T;] = T;}. Observe that, for each generator
T;, we have C( ;) = T, i.e. the generators are closed sets with respect to
the closure operator they generate.

Let us prove another interesting property of implicative closure opera-
tors.

Proposition 1 Any implicative closure operator C satisfies the next addi-
tional property, for each k € L and A € F(L):

C4) C(Ak) D2 C(A) @k .
Proof: Given an implicative closure operator C, by the representation theo-

rem 1, there exists a family of fuzzy sets {T}};cs such that C'(4) = ), {4’ =
T;}, where A" = [A Cg T;). In particular, using the same notation,

C’(A@l%) Ni((A® k)i = T;). One can easily check that (A®k)' = k = A°,
hence C(A® k) = N;((k = AY) = T;). Now, taking into account that the
inequality 2 @ (y = 2) < (z = y) = z holds for any z,y,z € L, it is clear

that C(A@ k) DN;(k@ (A= T) =k ;A = T:) = ko C(A). O

K3



This last property provides us with the clue for another characterization
of implicative closure operators.

Theorem 2 C is an Implicative Closure Operator if and only if it satisfies

C1,C2, C3 and CH4.

Proof: From Proposition 1 we only need to prove that if C' is an operator
satisfying the conditions of the theorem, then it satisfies the property C’3.
Observe that (B = D) C (BUA = DUA). In particular, letting D = C'(A)
and taking into account that C'(A) U A = C(A), we have [B Cg C(A)] C
[(BUA) Cy C(4)] € (BU A) = C(A), or equivalently, [B Cgy C(4)]®
(BU A) C C(A). Then applying C' to both sides, and using monotony,
idempotence and C4, we finally obtain [B Cgy C(A)] @ C(BU A) C C(A),
which is the property C”3. O

Property C'4 shows the behaviour of an implicative closure operator with
respect to uniform modifications of fuzzy sets of formulas when multiplying
(using the monoidal operation ®) them by a truth-constant. However, this
property does not provide an intuitive idea about the kind of operators that
are characterized by such a property. In order to offer a better interpretation,
we introduce the following more intuitive property:

(25) @-monotony: [A Co B] < [((A) Co C(B)]

This property amounts to the preservation by the closure operator of not
only the usual inclusion but also the inclusion degree. Moreover, if we define
a degree of equality between fuzzy sets of formulas by a double inclusion
schema as

A~g B=([ACg B]) @ ([BEg A]),
the above property C’Q® leads to this other property

A~g B < C(A) ~y C(B),

which establishes that two sets of consequences are at least as equal (in the
above sense) as the original sets. What is interesting is that implicative
closure operators can be also characterized in an equivalent way by using
this new property instead of the C'4 property.

Theorem 3 Let C' : F(L) — F(L) be a mapping that satisfies fuzzy in-
clusion and fuzzy idempotence. Then the following two properties are equiv-
alent:



1. [BCo C(4)] < [C(AUB) Co C(A)]
2. [BEg A] < [C(B) Ep C(A)]
Proof:

1 = 2) Because the graded inclusion is non-decreasing in the second ar-
gument and non-increasing in the first, it is obvious that the fol-
lowing properties are verified: ([B Cg A]) < ([B Cg C(A)]) and

(I(C(AU B) Cy C(A)]) < ([C(B) Cg C(A)]). Therefore, by using
transitivity over Property I, we obtain the desired inequality.

2 = 1) Since in any BL-algebra it holds that 2 = y < (z V 2) = (y V 2),

we have that [B Cg C'(A)] is always smaller than [(BUA) Cg (C(A)U
A)], and since ' satisfies fuzzy inclusion C'(A) U A = C(A), the last
inclusion degree is equal to [(BU A) Cg C(A)]. Then, by applying

Property 2, we have [(BU A) Cg C(A)] < [C(BUA) Cg C(C(A))].

Finally, using the idempotence property for C', one gets

[B Lo C(A)] < [(BUA) Ly C(A)] < [C(BUA) Ty C(A)],
and the proof is completed.

a

Corollary 1 A mapping C' : F(L) — F(L) satisfies C1, C3 and C2g if

and only if it is an implicative closure operator.

Proof: 1t is enough to remark that property 7 from last theorem is actually
an equivalent formulation of the fuzzy cut property in Definition 4, and
therefore a closure operator is implicative if and only if it satisfies fuzzy
inclusion, fuzzy idempotence and Property 1. Also, notice that property C'2
becomes now an easy consequence of C'2g,. a

It is worth mentioning that closure operators under this last formulation,
and some generalizations of them, have been recently and independently
studied by Bélohlavek in [1, 2].

Finally, the following theorem characterizes fuzzy closure systems cor-
responding to implicative closure operators, that we shall accordingly call
implicative closure systems.

Theorem 4 A fuzzy closure system C= in F(L) is implicative if and only
if, for anyT € C— and for any ke L, k=T € (.

10



Proof: For one direction assume C—, is an implicative closure system. Then
there exists an implicative closure operator C such that

C— ={T c F(L)|C(T)=T} .

Now for each T € C= and k € L we have T' 2 k@ (k= T). Using monotony
and C4 we have

T=CTM2Cka(k=T)2kaC(k=T),

and by the residuation property, we have C’(l% = T) C k = T. Finally using
inclusion property we have C’(l% =T)=k=T. Thus, k = T € C.

As for the other direction, assume now C= is a subset of F (L) satisfying
that, forall T € F(L£) and k € L,if T € C— then k = T € C—.. Since (= is a
fuzzy closure system C’(A) =T €C= | ACT}isafuzzy closure operator.
Hence, only need to prove that C' satisfies property C'4. But, for any k € L,
by the assumed property, C(A) C{k =T € C= | A C k = T}, and this
is equivalent to C(4) Ck= T €Cs |AQkC T} =k = C(A® k), and
by the residuation property we obtain C'(A) @k C C(A® k). This ends the
proof. a

We conclude this section by showing that the consequence relations asso-
ciated to classical propositional logic and to Godel infinitely-valued propo-
sitional logic are implicative, while the consequence relations defined by
Product and Lukasiewicz infinitely-valued logics are not.

i) The case of classical logic
Proposition 2 The logical consequence relation = of classical propositional

logic is implicative.

Proof: Let L be a propositional language built from a countable set of propo-
sitional variables and classical logic connectives. Let Q = {w;};cs be the set
of maximally consistent sets of formulas and write

1 if pew;
m@:{ P

0 otherwise

for any formula p € L. It is well known that € can be identified with the set
of classical interpretations for £. Following the representation theorem of
implicative consequence relations we can take € as a set of generators and

11



define for each crisp set of formulas [' the following implicative consequence
relation
1(T', ) = inf{[I" € wi] = wi(q)}.

Taking into account that I' and w; are classical sets, then [I' C w;] is the
classical inclusion, i.e.,

[I' C w;] = inf[['(p) = wi(p)] =

1 if I' Cwy
o peL

0 otherwise

Thus, we have

L(T,q) = inf{w;(¢) | I' C w;}, if I'is consistent
RN I if ' is not consistent

Hence, in the case I' is consistent, I.(I',¢) = 1 if and only if any interpre-
tation that satisfies all formulas of I' also satisfies ¢. Thus, in general, we

IC(F,q):{ 1 ifTEg

have

0 otherwise

ii) The case of t-norm based residuated many-valued logics

In the case of t-norm based residuated many-valued (fuzzy) logics (see [19])
we will study the three basic logics: Gdédel, Product and Lukasiewicz, cor-
responding to the three basic t-norms: minimum, product and Lukasiewicz
respectively. The core of all t-norm based propositional calculi is the logic
BL (for Basic Fuzzy Logic) introduced by Hajek in [19]. The language of
BL is built from a countable set of propositional variables, a conjunction
&, an implication — and the truth constant 0. Definable connectives are:

PN s p&(p — 1)
VY is ((p—=0) = D) A (Y= ) = 9)
—p is @ —=0

Truth functions for & are continuous t-norms and for — their corre-
sponding residua. Axioms of BL are the following:

12



(A1) (p—= )= (¥ —=x) = (¢ = X))

(A2)  (p&rp) = ¢

(A3)  (p&rp) — (V&)

(Ad)  (p&(p = ) = (L&(¥ = ¢))

(Aba) (¢ — (¥ = X)) = ((e&y) = X))
(A5b)  ((p&t)) = X)) = (¢ = (¥ = X))

(A6) (¢ = V)= x) = (W —=¢) = x) = X)
(A7) 00— ¢

The only Inference Rule of BL is Modus Ponens. This logic is in-
deed the logic of continuous t-norms in the sense that a formula is provable
in BL iff it is a 1-tautology under each interpretation on [0,1] and under
each continuous t-norm and its residuum [10].

The three main many-valued logics cited before can be obtained as ax-
iomatic extensions of BL (see [19]).

1. Lukasiewicz logic L is the extension of BL. with the double negation
axiom

2. Godel logic G is the extension of BL. with the contraction axiom
(@) p=olky

3. Product logic is the extension of BL. with the axioms

(I11) ==y = [((p&etp) = (X&) = (9 = X)]
(I2) eA=p—0

These three logics are complete with respect to interpretations over the BL-
algebras on [0,1] defined by Lukasiewicz, Minimum and Product t-norms
respectively.

Implicative consequence relations deal with fuzzy sets of formulas, so we
need tointerpret them in these logics. In fact, the natural way of interpreting
fuzzy set of formulas is to introduce truth-constants into the language, a
truth constant @ for each rational « € [0, 1] if we want to keep the language
countable. Then, a fuzzy set of formulas A on L can be interpreted as the
set of formulas A° = {a; = ¢; | oy = A(pi), @i € L}, since a formula @ — ¢
is 1-true iff the truth-value of ¢ is greater or equal «a.

The extension of the above logics with rational truth constants are
the so-called Rational Gédel (RG), Rational Product (RII) and Rational
Pavelka (RL) logics respectively, and they need to introduce two additional

13



axioms for purposes of book-keeping of truth-constants,

(1) a&f=adp,
(2) Oé%ﬁEOé:hX)ﬂ7

for all rationals o, € [0,1], where ® and =g are the corresponding
t-norm (minimum, product and Lukasiewicz respectively) and its residuum.
Completeness results for these logics can be found in [19] for the Rational
Pavelka logic and in [14] for the Rational Godel and Rational Product
logics. Just remark that in the case of rational Product logic one has to
add the following infinitary rule of inference: from ¢ — « for each rational
o > 0, derive ¢ — 0.

Taking into account the above interpretation of fuzzy sets of formulas,
the natural way to define the consequence operator over fuzzy sets of formu-
las in each of these logics is the following: for each fuzzy set A on L, C'(A)
is again a fuzzy set on £ defined by

Ci(A)(¢) =sup{a | A®F o — ¢}

for x denoting RG, RII or RL. Remark that, to be consistent with the frame,
fuzzy sets of formulas have to take values on the rationals of [0, 1], so we
consider in the rest of this section F(£)={A: L+ [0,1]N Q}.

Proposition 3

(i) The consequence operator of Rational Godel logic Cre is implicative.
(ii) The consequence operators of Rational Product and Pavelka logics, Cri
and C'ry respectively, are not implicative.

Proof: (i) We have to prove that Crg(A @ k) 2 Crg(A) @ k for @ = min.
Let £ = {¢;}ier, and let oy = A(¢;) for each ¢ € I. According to our
interpretation, the fuzzy set k @ A corresponds to the set of formulas (k ®
A)° ={k ® a; = ¢i}ier. Then it will be enough to prove that

{k@a; = ditierF k@B — ¢ (*)

assuming that {a; — ¢;}ier F 5 — . But, due to the book-keeping axioms,
proving () is equivalent to prove

{k&a; = ¢i}icr F k&S — (%)

Moreover, in G one has that ©&x — ¢ is provably equivalent to » — (x —
¢), and since the deduction theorem is valid in Gédel logic (see [19]), we
have that proving (k) is still equivalent to prove

14



{k—= (s = ¢)bienkEB = ¢ (**%)
Now, by modus ponens, we have that for each 7 € I,
{k — (042' — (bz),k} F o — (bZ

that is, (* % %) holds true if {a; = ¢;};e1 F 5 — ¢, but this was just the
hypothesis.

(ii) Suppose that @ is Lukasiewicz or Product t-norm. Then, by modus
ponens and the book-keeping axioms, we have that the inference

{la=(p—=q,f2pH)bFad g
is valid in both RII and RL, and thus,
{lak—=p—q,pokaphFavkapfok—q
is valid as well. But if C'ryy and C'pp, were implicative then
{(a0k—=(p—q,80k=pl)racfok—g
should also be valid. Therefore, we should have
a@fRkLak@ @k
for all rationals «, 5 and k. In particular, this would imply (taking o = 3 =

1) that for all rational k, k @ k = k, which is only true for ® = min. a

3 Implicative closure operators and closure oper-
ators defined by a fuzzy relation

Different authors have studied the so-called fuzzy operators defined by fuzzy
relations (see [15]), specially those defined by preorders ([6] and [12]) and
by fuzzy similarity relations (see for instance [15] and [24]). We recall the
definition and basic properties of a fuzzy operator defined by a fuzzy relation
(see [22]). We continue assuming to work with fuzzy sets of formulas over a
BL-algebra L = (L, A,V,®,=,0,1).

Definition 5 Given an L-fuzzy relation B : L X L — L on the language
L, the associated fuzzy operator C'r over F (L) is defined by:

Cr(A) () = Ve {AP) @ R(p,q)}
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Jor all A e F(L).

In other words, the image C’R(A) of a fuzzy set A by the fuzzy operator C'p
is the V-® composition of A with R.

Definition 6 A fuzzy operator C'r is called upper fuzzy operator if it sat-
isfies fuzzy inclusion, i.e. if A C Cr(A) for all A € F(L). Upper fuzzy
operators which are fuzzy closure operators (in the sense of Definition 1)
will be called upper closure operators.

Proposition 4 (Cf. [6, 12]) Let Cr be a fuzzy operator. Then:
o Cg is an upper fuzzy operator iff R is reflexive.

o (g is an upper closure operator iff R is reflexive and @-transitive®,
r.e. iff R is a fuzzy preorder.

Next we list some interesting properties of upper fuzzy operators..

Proposition 5 (Cf. [15]) Any upper fuzzy operator Cr satisfies the follow-
ing properties’ :

C1: A C Cr(A)
C2: Cr(Uer Ai) = Uier Cr(A)
C4: Cr(k) =k

C5%: Cr({p} @ k) =Cr({p}) @ k

C6%: CrlA@k)=Cr(A) @k,

where {p} denotes a crisp singleton, i.e. {p}(p) = 1 and {p}(q) = 0 for
q 7 p-

Two other properties considered in [15], namely
C3: C’R o C’R = C’R
C7: CrU{p)(9) = Cr{a}) (p),

do not hold in general for upper fuzzy operators. Actually, it is easy to show
the following proposition.

R is said to be ®@-transitive if it satisfies R(p,q) ® R(q,r) < R(p,r) for all p,q,r € L.
"We use the same labelling of properties as in [15].
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Proposition 6 Let Cr be an upper fuzzy operator. Then:

o Cr satisfies C3 iff R is reflexive and @-transitive (iff R is a fuzzy
preorder).

o Cg satisfies C7 iff R is symmetric.

In [23] it is proved that if R is a @-similarity, the operator Cr satisfies
the properties C1, C2, C3, C4, C5°, C6% and (7. We have also seen that
operators C'p are fuzzy closure operators iff R is a fuzzy preorder, as it was
stated in [12]. Moreover, it is obvious from C5% and Theorem 2, that all
upper closure operators (defined by a fuzzy preorder) are implicative. The
converse is not true in general since C'4 does not imply C5%. On the other
hand, an interesting fact is that any implicative closure operator satisfies a
property called coherence in [6].

Proposition 7 If C' is an implicative closure operator, then C fulfills the
following property:

C5) coherence: C(A)(q) > C({p})(q) @ A(p), for each fuzzy set A on L and
each p,q € L.

Proof: The proof is easy by observing that any fuzzy set A can be repre-
sented as the union of truncated singletons, i.e. A ={J,c {p}® A(p). Then

it is clear that, for any p € £, C'(A) 2 C'({p} ® A(p)). Then the proposition

follows by just applying property C'4 (see Proposition 1). a

Roughly speaking, this property is requiring that if ¢ is a consequence
of p to some degree, and p belongs to A also to some degree, then ¢ must
be also a consequence of A to a certain degree. In [6] it is proved that if
a closure operator C' satisfies C'5 then €' induces a fuzzy preorder Rz on
L defined by Rx(p,q) = C({p})(q). Then it is easy to prove the following
proposition.

Proposition 8 If C' is an implicative closure operator with generators
{Ti}ier and Rz is the fuzzy preorder defined as above, then it holds that

Re(p,q) = infie ({13 (p) = Ti(q)}.

Therefore this proposition establishes that the generators of an implicative
closure operator C' are indeed generators of the induced fuzzy preorder R
as well. Conversely, given a fuzzy preorder R, the fuzzy closure operator Cr
satisfies the following property.
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Proposition 9 Let R be a fuzzy preorder. Then the closure system associ-
ated to the fuzzy closure operator C'r is the set of all generators of the fuzzy
preorder R.

Proof: Taking into account that a fuzzy set T is a generator of the fuzzy
preorder R if for all p,q € L, then R(p,q) < T(p) — T(q), the following
relations hold:

Cr(T)(g) = Vyper T(p) @ R(p,q)

< Ve T(p) @ (T(p) = T(q))

= Ve T(P)AT(9)

=T(q) -
Then Cr(T) = T and thus T is closed with respect to Cr. On the other
hand if T is closed by Cg, then T(q) = Cr(T)(q) = V, T(p) @ R(p,q) and
thus, for all p € £, (T'(p) @ R(p, q)) < T'(q) and, by residuation, this implies
R(p,q) < (T'(p) = T(q)). Therefore T is a generator of R. o

As a consequence, and taking into account the result of [23] characteriz-
ing the generators of a fuzzy preorder, we have the following characterization
of the closure system associated to an upper closure operator.

Proposition 10 A set of fuzzy sets C— is the closure system corresponding
to an upper closure operator iff

1) it is closed under arbitrary unions, and

2) for any fuzzy set F € C= and for any k € L, it holds that k=F, koF
and F = k belong to C.

Let us remark that a fuzzy preorder R can be generated by different fami-
lies of generators. For each family we obtain, via the representation theorem,
a possibly different implicative closure operator but whose associated fuzzy
preorder is always R. It is an open problem to study under which conditions
two families of generators of a fuzzy preorder induce the same implicative
closure operator. Nevertheless, we have the following result.

Theorem 5 The upper closure operator defined by a fuzzy preorder R is the
least implicative closure operator C' such that C'({q})(p) = R(q,p) for any
p.q€ L.

Proof: Suppose that C' is an implicative closure operator and R is the
fuzzy preorder associated to it. Then the fuzzy closure operator defined by
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R satisfies

Cr.(A)(q) =\ Alp) @ Ra(p.g)=\/ Alp) @ C({p})(q) < C(A)(q),
peEL peEL

the last inequality being due to Proposition 7. a

Finally, observe that closure system for an implicative closure operator C' is
just the complete inf-semilattice generated by the fuzzy sets {k = T}}:cr,
with k& € [0,1] and {T}};c; being a set of generators for C'. This is a conse-
quence of Theorem 4, the fact that all generators T; are closed and the fact

that, for any A, C’(A)(q) = infier{ki = Ti(q)}, where k; = [A Cg T}].

4 Relationships with other approaches

In this section we relate our approach to other approaches in the framework
of fuzzy inference operators developed for some authors during the last years.

4.1 Extensional Inference Operators

In [5] Boixader and Jacas analyze approximate reasoning patterns through
the notion of extensionality with respect to the so-called natural ®-similarity
functions. For this purpose, they introduce a family of operators [ :
[0,1]Y +— [0,1]V, where U and V are universes of discourse. These opera-
tors are called extensional inference operators if they preserve the point-wise
order, i.e. if Ay Cpy Ay then (A1) Cv I(Az), and satisfy @-extensionality,
i.e.
B (Ar, Az) < Ep(1(Ar), 1(Az))

where E{? and E‘(}? are the natural similarity functions on fuzzy subsets of
U and V respectively, defined by

E%)(Ah AQ) = infer{Al ($) vV A2($) = A1($) A A2($)}

and analogously for E‘@ In this context, it is assumed that ® and = stand
for continuous t-norm and its residuum respectively. They show that it is
possible to associate to any fuzzy rule “If A then B” the so-called natural
inference operator, which is the optimal one from the extensionality point
of view.

Definition 7 (Natural inference operator) Given a fuzzy rule “If A
then B” with A € [0,1]Y and B € [0,1]V, the natural inference operator
Iapg : [0,1]Y + [0,1]V associated to the rule is defined by [45(A")(v) =
infuer{A'(v) = A(u)} = B(v).
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Theorem 6 [5, Theorem 15] The natural inference operator associated to
the rule “If A then B” is the least specific extensional inference operator I
satisfying:

o [(A) =B,

e I(A") Dy B, for any A" € [0,1]Y, and moreover I4g(A') = B if
A Cy A.

Boixader and Jacas give a representation theorem for the extensional infer-
ence operators.

Theorem 7 ([5, Theorem 15]) I : [0,1]Y — [0,1]V is an extensional in-
ference operator if, and only if, there exists a family of natural inference
operators {14,B, }icr such that I =infcrI4,B,.

We are now in position to show that implicative closure operators are a
special class of extensional inference operators. To this end, and in order
to consider a common definitional context, in the rest of this subsection we
shall take the universes U and V to be same and equal to the propositional
language L, i.e. we take U =V = L. Moreover, even Boixader and Jacas
only consider fuzzy sets with values in [0, 1], we can safely extend their
framework to consider fuzzy sets over an arbitrary BL-algebra (L, A, V, ®, =
,0,1). Once settled all these preliminaries, we can reason as follows. Since
for any implicative closure relation [I. there exists a family of fuzzy sets
{T;}ier such that

1.(A)(p) = infie1[A o Ti] = Ti(p)}
it is obvious that, for each ¢ € I, the operator I; defined as
1;(A)(p) = [ACg Ti] = Ti(p)

can be actually considered as the natural inference operator on £ associated
to the rule “f T; then T;”. Therefore, as an easy consequence of Theorem
7, the following theorem holds.

Theorem 8 Implicative Closure Operators are Fxtensional Inference Oper-
ators.

The question is then whether the reciprocal of this theorem is also true. The
answer is negative since, in general, extensional inference operators satisfy
neither fuzzy inclusion nor fuzzy idempotence. In the following we identify
some conditions under which these properties are satisfied.
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Lemma 1 An extensional inference operator I : L — L satisfies fuzzy in-
clusion if, and only if, the associated family of rules {“If A; then B;” }icr
is such that A; C B; for alli e 1.

Proof: Suppose A; C B; for all ¢. Then using BL-algebra properties we have
B;(p) > Ai(p) N A(p) = (A(p) = Ai(p)) ® A(p), which is equivalent to

A(p) < (A(p) = Ai(p)) = Bi(p).

Therefore Ty5,(4)(p) = [A T Al = Bi(p) > (A(p) = Ai(p)) = Bip) >
A(p). Hence, I(A) = (NierLa;B,(A) 2 A.

Now suppose that A C I(A) for all A. Then, since I(A) C I4,p,(A) for
each ¢ € I, we have

AC f(A) C inBi(A) = [A Cg AZ] = B,.
Taking A = A; we obtain A; = A C B; and the lemma is proved. a

It is obvious that if A = B then I4p is an implicative consequence operator
and, of course, it satisfies idempotence. In general, we can have I4p idem-
potent without having necessarily A = B, as the following results will show.
But first of all we state some properties of the degrees of inclusionship in
order to simplify later proofs.

Lemma 2 The following conditions hold:
(i) [C Cg D@ [D Cg K] < [C Eg ],
(i) [(k = C) Cg D] > k@ [C' Eg D],
(iii) [(k© C) Ce D] = k = ([C' Eg D)),
forany k€ L .

Proof: (i) [ Co D] & [D Co F] = (inf, C(p) =
E(p) < (Clpo) = D(p) & (Dipo) = Bipo)) < C
po. Therefore, [C'Cg D] @ [D Cg E] <inf,C(p) = E
(ii) It is enough to prove that (k= C'(p)) = D(p) > k® (C(p) = D(p)) for
each p. But this is equivalent to D(p) > k@ (C'(p) = D(p)) @ (k = C(p))
and this obviously holds.

(iii) It is obvious since (k@ C) = D =k = (C = D). 0

) ® (infp D(p) =

Lemma 3 If I4p satisfies idempotence then [B Cg Al = B = B.

Proof: Since I4p(A) = B holds true, we necessarily have B = I4p(A) =
IAB(IAB(A)):IAB(B),LG. [B Cg A]:>B:B. a
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Theorem 9 145 is a closure operator iff AC B and [BCgy Al = B = B.

Proof:

=) It directly follows from Lemma 3.

<) Assume A C B and [BCg A] = B = B and let us check that I4p is a
closure operator:

monotony: If C' C C’, then I4g(C)=[C Cy A]= B<[C'Cy A]= B =
I4p(CY).
inclusion: From [C' Cg B] < C'(q) = B(q) for each ¢ we have [C' Cg B] ®

C'(q) < B(q), and since A C B, we also have [C' Cg A]® C'(q) < B(q)
and hence C'(q) < [C' Cg Al = B(q), that is, C' C I4p5(C).

idempotence: We have [4p(I4p(C)) = [Iap(C) Cg Al = B =[[C' Cg 4]
B] Cg A] = B. Now by (ii) of Lemma 2 we have I4p(Iap(C))
([CEp A]®[B Eg A]) = B =[C Eg Al = ([B Ly A] = B)
[C E@ A] = B= IAB(C).

A 4

a

Therefore 45 is a closure operator.

Corollary 2 Let the BL-algebra L be defined over [0,1] and A C B.

e [f ® = min, then I4p is a closure operator if, and only if, inf{A(q) |

A(q) < B(q)} > sup{B(p) | B(p) # 1}*.

o If® isisomorphic to the product t-norm then 155 is a closure operator
if, and only if, if there exists ¢ € L such that A(q) < B(q) then B is a
crisp set.

e [f the t-norm @ is isomorphic to the Lukasiewicz t-norm, max(z +
y—1,0), then L4 is a closure operator if, and only if, if there exists
q € L such that A(q) < B(q) then B(p) =1 for allp € L.

Observe that in all these cases if there exists ¢ € £ such that A(q) < B(q)
then B(q) =

Theorem 10 45 is a closure operator iff Iap = Ipp.

Proof:
<) Trivial
=) Assume [4p is a closure operator. Then we have:

8Taking by convention, as usual, that inf § = 1 and sup® =0
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1. By (i) of Lemma 3, A C B, and thus for each C' we have [C'Cg A] <
[C' Cg B, hence I45(C) = [C Cgy A] = B2 [C Cg Bl = B =
Igp(C).

2. By (i) of Lemma 2 and (ii) of Lemma 3, for each C' we have I4p(C) =
[CCe Al = BC ([C'Cg BI@[BLg A]) = B=[CLy Bl = ([BLe
A] = B) = [C Cg B] = B= IBB(C).

Therefore we have seen that for each C', I4g(C') = Igp(C). ]

Until now we have shown that a natural inference operator I4p defined on
U =V = L can be a closure operator when A C B with A # B, but in any
case it must be I4p = Igg. Therefore, a natural inference operator which
is a closure operator must be implicative as well. We can also prove this
result for extensional inference operators.

Theorem 11 Any extensional inference operator (defined on U =V = L)
which is a closure operator is implicative as well.

Proof: Let I =inf;c;14,p, be an extensional inference operator such that it
is a closure operator. Then we only need to prove that I fulfills property 1.4,
i.e. that I(k® A,p) > I(A,p) @k hold true for every A, p and k. Actually
we will prove that 14,5 (k@ A, p) > k@ I4,B,(A,p) for all i € I. Namely, we
have I4,p,(k® A,p) = [(k ® A) Cg A;] = B;(p), and using (iii) of Lemma
2, this is equal to (k = [A Cg A;]) = Bi(p) > k@ ([ACg Ai] = Bi(p)) =
k @ I4,B,(A,p). The reason for the last inequality is that the inequality
t® (y = z) < (2 = y) = z always holds in any BL-algebra. a

4.2 Approximate and proximity similarity-based entailments

Let ® and = be a continuous t-norm and its residuum respectively. In [13],
given a @-similarity relation S : 2 xQ — [0, 1] on the set © of Boolean inter-
pretations of a propositional language £, a fuzzy set p* on €, is associated
to each proposition p € L in the following way:

p*(w) = sup,, i, S(w, w').

p* can be interpreted as approzimately p since it defines the fuzzy set of
interpretations which are close to some model of p. From this definition,
Dubois et al. define in [11] two graded consequence relations on £ x L.

Definition 8 (Approximate Consequence Relation) For each p,q €

L and a € [0,1], we define p = q iff Is(q | p) = inf,psup, i, S(w, w') >
a.
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Definition 9 (Proximity Consequence Relation) For each p,q € L,
K C L and o € [0, 1], we define p E%q iff Jsx(q]| p) = infyprx{p”(w) =
7 (w)} > a.

In [11] it is proved that Is(q | p) = Js,7(¢ | p), where T stands for a Boolean
tautology, i.e. any formula whose set of models is the whole set €. In our
framework, the approximate and proximity consequence relations can be
obtained as implicative closure operators. Indeed, consider the family of
fuzzy sets ' = {w},ecq, where for each w € , the fuzzy set w : L — [0, 1]
is defined by w(q) = ¢*(w). Now define a mapping C. : F(L) — F(L),
where here F(£) = [0, 1]* by

Ce(A)(g) = Inf [A Eg w] = w(q)),

weF
for all A € F(L). By construction, this is obviously an implicative closure
operator. An easy computation shows that C’c({p})(q) = Jst(¢ | p) =
Is(q | p), and hence we obtain the above approximate consequence relation.
Moreover, if we consider now the family of fuzzy sets to be F' = {w},x,
for a subset K C £, then what we get is C.({p})(¢) = Jsk(q | p), that is,
the proximity consequence Relation.

4.3 Gerla’s Canonical Extensions

In [16] Gerla proposes a method to extend any classical closure operator
C' defined on P(L), i.e. on classical sets of formulas, into a fuzzy closure
operator C* defined in F(L),i.e. on fuzzy sets of formulas. This approach is
further delevoped in [18, Chap. 3, Sec. 6]. In the following, we assume F (L)
to be fuzzy sets of formulas valued on a complete linearly-ordered Gédel BL-
algebra L, i.e. a linear BL-algebra (L, A,V,®,=,0,1) where @ = A.

Definition 10 (Canonical Extension [16]) Given a closure operator C':
P(L) — P(L), the canonical extension of C' is the fuzzy operator C* :
F (L) — F(L) defined by

C*(A)(p) =supfa e L|pe C(Al)},

where A, stands for the a-cut of A, i.e. A, ={p€ L | A(p) > a}.

The canonical extension C* is a fuzzy closure operator such that C*(A)(p) =

Lif p € C(0) and C*(A)(p) > sup{A(g) A AA(g:) | p € C({ar,- -, 9]}

If C'is compact, then the latter inequality becomes an equality. Moreover,
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it holds that if a fuzzy set A4 is closed by C* then any a-cut of A is closed
by C.

Furthermore, the following characterization of the canonical extension
of a classical closure operator is given.

Theorem 12 (c¢f. [18, Chap. 3, Th. 7.3]) A fuzzy closure operator C' is
the canonical extension of a closure operator if, and only if, for every meet-
preserving function f : L — L such that f(1) = 1, if C’(A) = A then
C(foA)=foA

In other words, this theorem says that if A belongs to the closure system
defined by C, then so does f o A. Now, taking into account that, for all
k € L, the function f; : L > L defined by fr(I) = k = [ is a meet
preserving function with fz(1) = 1, the application of Theorem 4 leads us
directly to the following result.

Theorem 13 The canonical extension of any classical closure operator is
an tmplicative closure operator.

4.4 Biacino-Gerla-Ying’s approach

Finally, we consider the connection with Ying’s approach [30], further elab-
orataded in [3, 4]. Ying proposed a propositional calculus in which the rea-
soning may be approximate by allowing the antecedent of a rule to match
a fact only approximately. More precisely, Ying considered a propositional
language £ built on a set Var of propositional variables, the constant F
(for false) and an implication connective —. He assumes a A-similarity
relation S on propositional variables is given. This relation is a map-
ping S : Var x Var — L, where (L,A,V,0,1) is a complete and in-
finitely distributive lattice, satisfying S(p,p) = 1, S(p,q) = S(q,p) and
S(p,q) AN S(q,r) < S(p,r) for all p,q,r € L. Such a similarity S induces a
similarity relation S on formulas defined in the following way:

S(p,q) = S(p, q), if p, q are propositional variables;

(
( S(q, F) =0,if ¢ # I
( _
(

U
o
=

[

P,q) :S(ac,av’)/\g(y,y’)7 ifp=(x—2)and ¢ = (y = ¥);

and S(p,q) = 0, otherwise.
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Based on the similarity S, Ying then considers a graded consequence relation
gy + P(L) x L — L by defining gy (A,p) = sup{S(AUAX,B) | B I p},
where S(X,Y) = infyey sup,cx S(z,y), AX is a set of logical axioms and
F stands for deduction in classical propositional logic.

This graded consequence relation is extended by Biacino and Gerla in
[3] to apply over fuzzy sets of formulas in the following way.

Definition 11 (/3]) Let S : £ X L — L be a A-similarity relation on
formulas. Then we define a fuzzy relation S : F(L) X P(L) — L between
SJuzzy sets and classical sets of formulas induced by S as follows:

S(A,B) = qlgf Zgg{s(q ;P)NA(p) )

S(A, B) gives the least degree at which each formula of B is equivalent to the
fuzzy set of formulas A, and one can check that S(A, B) = inf,cp C's(4)(q),
where C'g is nothing but the upper closure operator defined by the similarity
relation S, as defined in Definition 5. By using S, a new fuzzy operator may
be obtained.

Definition 12 (/3]) Let S be a A-similarity on L as above and let C' be a
compact classical closure operator on P (L), respectively. Then we define the
fuzzy operator Cy : F(L) — F(L) associated with S as

Cy (A)(p) = sup{S(AUTaut, B) | B € P(L),p € C(B)}
for each fuzzy set A and each formula p, where Taut = C(0).

In [3], it is proved? that the new operator Cy is the composition of the
canonical extension C* of the classical closure operator C' and a slight mod-
ification of the upper closure operator Cs, namely Cy = C* o CS, where
CL(A) = Cs(AU Taut) = Cs(A) U Cs(Taut).

We extend now the complete and infinitely distributive lattice L to a
complete Godel BL-algebra by taking @ = A and defining its residdum as
usual, i.e. @ = y =sup{z € L |2 Az < y}. Then, we know from the last
section that C* is an implicative closure operator, and from Section 3 so it
is C's. Moreover, one can easily check that C’g is also an implicative closure
operatori®. So we have that Cy is a composition of two implicative closure

® Assuming L = [0, 1]. .
Tnclusion, monotony and idempotence are easy and C'4, with @ = A, is a consequence
of property C2 of Proposition 5, which is verified by Cg.
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operators, but this does not mean that Cy is necessarily an implicative
closure operator, neither a closure operator. In general, this operator does
not satisfy the fuzzy idempotence property, although it does satisfy property
C4 (with @ = A), since the composition of two implicative closure operators
always satisfies property C'4. Nevertheless, as was proved in [4], when C' is
the closure operator of classical propositional logic, such composition is a
closure operator and then it is an implicative closure operator as well.

5 Conclusions and Open Problems

In the setting of a logical approach to approximate reasoning, we have in-
troduced in this paper the class of implicative closure operators. They have
been shown to provide with an unified view of many previous generalizations
to the many-valued framework of closures operators assciated to classical
deduction systems. These new operators deal with fuzzy sets of formulas
whose membership functions take values on a BL-algebra. BlL-algebras con-
stitute the algebraic counterpart of Hajek’s BL logic, the logic of continuous
t-norms and their residua.

Although implicative closure operators are very general, and defined in
the framework of BL-algebras, strangely enough they do not capture graded
deduction (Pavelka-style) in any of the extensions of BL, except for Gddel’s
logic. Therefore, to come up with a suitable notion of fuzzy closure opera-
tor capturing graded deduction in BL. axiomatic extensions requires further
research.
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