
A Language for the Execution of
Graded BDI Agents

Ana Casali1, Llúıs Godo2 and Carles Sierra2

1 Depto. de Sistemas e Informática
Facultad de Cs. Exactas, Ingenieŕıa y Agrimensura

Universidad Nacional de Rosario
Av Pellegrini 250, 2000 Rosario, Argentina.

2 Institut d‘Investigació en Intel·ligència Artificial (IIIA) - CSIC
Campus Universitat Autònoma de Barcelona s/n

08193 Bellaterra, Catalunya, España.

Abstract. In this paper we present a calculus for the execution of Multi-
context system with its corresponding semantics. This calculus is general
enough to support different kinds of MCSs and particularly, we show
how a graded BDI agent can be mapped to the language proposed. The
graded BDI agent model is based on multi-context systems and is able
to deal with graded mental attitudes. Taking advantage of the calculus
presented we give operational semantics to this agent model.

1 Introduction

We are interested in the specification and deployment of multi-agent systems,
and particularly we focus on the execution of intentional model of agents.

We consider that making the BDI architecture more flexible will allow us to
design and develop agents potentially capable to have a better performance in
uncertain and dynamic environments. Along this research line we have proposed
a general model for Graded BDI Agents, specifying an architecture able to deal
with the environment uncertainty and with graded mental attitudes. The logical
framework of this model has been presented in [3] and how this model can be
used to specify an architecture for a Travel Assistant Agent can be seen in [4].

The graded BDI model of agents (g-BDI) is based on multi-context systems.
These systems are basically deductive machines. In this work we want to intro-
duce another specification that allows us to define the operational semantics of
this agent model. The semantics for a g-BDI model of agent will describe how
a valid agent model is interpreted as sequences of computational steps. Opera-
tional semantics may define an abstract machine and give meaning to phrases
by describing the transitions they induce on states of the machine. Alternatively,
with different process calculus, operational semantics can be defined via syntac-
tic transformations on phrases of the language itself. For our purpose we decided
to follow this second approach.

Since the g-BDI agent model is formalized using multi-context systems (MCS),
we first introduce a specific ambient calculus, which we call Multi-context Calcu-
lus (MCC), with its corresponding semantics. The calculus presented is general
enough to support the execution of different kinds of MCSs and particularly, we
show how a graded BDI agent can be mapped to it.

This paper is organized as follows: in Section 2, we introduce the graded BDI
model of agent based in multi-context systems. Section 3 outlines some process
calculus related to multiagent systems. In Section 4, we present the Multi-context
calculus (MCC) and in next Section 5, we give this calculus semantics. The
mapping from g-BDI agents to MCC is presented in Section 6 and finally, in
Section 7 some conclusions are outlined.

2 Graded BDI agent model

The graded BDI model of agent (g-BDI) allows to specify agent architectures
able to deal with the environment uncertainty and with graded mental atti-
tudes. In this sense, belief degrees represent to what extent the agent believes
a formula is true. Degrees of positive or negative desire allow the agent to set
different levels of preference or rejection respectively. Intention degrees give also
a preference measure but, in this case, modeling the cost/benefit trade off of
reaching an agent’s goal. Thus, a higher intention degree towards a goal means
that the benefit of reaching it is high, or the cost is low. Then, Agents having
different kinds of behavior can be modeled on the basis of the representation
and interaction of these three attitudes.

The specification of the g-BDI agent model is based on Multi-context systems
(MCS). Multi-context systems were introduced by Giunchiglia et.al. [7] to allow
different formal (logic) components to be defined and interrelated. The MCS
specification contains two basic components: units or contexts and bridge rules,
which channel the propagation of consequences among theories. Thus, a MCS is
defined as a group of interconnected units:

〈
{Ci}i∈I ,∆br

〉
, where each context

Ci ∈ {Ci}i∈I is the tuple Ci = 〈Li, Ai,∆i〉 where Li, Ai and ∆i are the language,
axioms, and inference rules respectively. When a theory Ti ⊆ Li is associated
with each unit, the specification of a particular MCS is complete. The deduction
mechanism of these systems is based on two kinds of inference rules, internal
rules ∆i, and bridge rules ∆br, which allow to embed formulae into a context
whenever the conditions of the bridge rule are satisfied.

In the g-BDI agent model, we have mental contexts to represent beliefs (BC),
desires (DC) and intentions (IC). We also consider two functional contexts:
for Planning (PC) and Communication (CC). Thus, the g-BDI agent model is
defined as the MCS: Ag = ({BC,DC, IC, PC,CC},∆br).

The overall behavior of the system will depend of the logic representation
of each intentional notion in the different contexts and the bridge rules. Figure
1 illustrates the g-BDI agent proposed in [3] and shows one of the bridge rules
included in the agent model.

DC

IC

CC

PC

(1)

(4)

(6)

(2)

(3)

(5)

(4)

BC

Fig. 1. Multi-context model of a graded BDI agent and a bridge rule example.

In order to represent and reason about graded notions of beliefs, desires and
intentions, we use a modal many-valued approach [6] where uncertainty reason-
ing is dealt with by defining suitable modal theories over suitable many-valued
logics. For instance, let us consider a Belief context where belief degrees are to
be modeled as probabilities. Then, for each classical formula ϕ, we consider a
modal formula Bϕ which is interpreted as “ϕ is probable”. This modal formula
Bϕ is then a fuzzy formula which may be more or less true, depending on the
probability of ϕ. In particular, we can take as truth-value of Bϕ precisely the
probability of ϕ. Moreover, using a many-valued logic, we can express the gov-
erning axioms of probability theory as logical axioms involving modal formulae.
Then, the many-valued logic machinery can be used to reason about the modal
formulae Bϕ, which faithfully respect the uncertainty model chosen to represent
the degrees of belief. To set up an adequate axiomatization for our belief context
logic we need to combine axioms for the crisp formulae, axioms of Lukasiewicz
logic for modal formulae, and additional axioms for B-modal formulae accord-
ing to the probabilistic semantics of the B operator. The same many-valued
logic approach is used to represent and reason under graded attitudes in the
other mental contexts. The formalization of the adequate logics for the different
contexts is described in [3].

3 Process Calculus

The process calculus approach has been used to cope with formal aspects of
multi-agent interactions. As for example, we present some of these calculus be-
low.

The π-calculus is a process calculus developed by Milner et al. [8] as a con-
tinuation of the body of work on CCS (Calculus of Communicating Systems)
[9]. The aim of the π-calculus is to be able to describe concurrent computations
whose configuration may change during the computation. The Ambient Calcu-
lus due to Cardelli et al. [2] was developed as a way to describe the movement
of processes (agents) and devices, including movement through boundaries (ad-
ministrative domains). It can be seen as an extension of the π-calculus and it

is presented in more detail in next Subsection 3.1. The Lightweight Coordina-
tion Calculus (LCC) [10] can be also considered as a variant of the π-calculus
with asynchronous semantics to coordinate processes that may individually be in
different environments. LCC was designed specifically to formalize agent proto-
cols for coordination and it is suitable to express interactions within multi-agent
systems without any central control. It also makes it possible to verify the pro-
tocols using automated means, e.g. model checking [13]. Walton in [11] presents
a language based in CCS [9] to specify agent protocols in a flexible manner dur-
ing the interaction of agents. Then, in [12] he proposes a Multi-agent Protocol
(MAP) oriented to agent dialogues. These protocols allow to separate agent dia-
logue from a specific agent reasoning technology. Ambient LCC [14] is a language
based on process algebra concepts that combines the notions of LCC and Am-
bient calculus. It was specially designed to support the execution of electronic
institutions, an organization model for Multi-Agent Systems.

In order to give a g-BDI model of agent semantics, we take advantage of
process calculus. As in Ambient LCC we combine Ambient calculus with some
LCC elements but in this case, for dealing with the execution of intentional
agents. We focus on the work about Ambient Calculus [2] to capture the notion
of bounded ambient and we take into account some elements of LCC syntax [10]
to represent the state components (e.g. terms).

3.1 Mobile Ambient Calculus

Ambient calculus was developed as a way to express mobile computation [2].
The inspiration behind Ambient calculus is the observation that many aspects
of mobility involve administrative considerations. For example, the authorization
to enter or exit a domain, and the permission to execute code in a particular
domain. These issues were principally motivated by the needs of mobile devices.
However, they are very similar to the issues faced by agents in an open envi-
ronment. The Ambient calculus addresses this problem by defining an ambient
(informally) as a “bounded space where computation happens”. The existence of
a boundary determines what is inside and outside the ambient. Process mobility
is represented as crossing of boundaries and security is represented as the ability
or inability to cross them. In turn, interaction between processes is by shared
locations within a common boundary. Ambients can also be nested, leading to
a determined hierarchy. An ambient is also something that can be moved. For
example, to represent a computer or agent moving from one place to another.

More precisely, each ambient has a name, a collection of local processes that
run directly within the ambient, and a collection of sub-ambients. The syntactic
categories are processes and capabilities. A process is analogous to an individ-
ual agent. A process may be placed inside an ambient, may be replicated, and
may be composed in parallel with another process, which means that the pro-
cesses execute together. In Ambient calculus, n[P] denotes an ambient named n
containing the process P. The syntax of Ambient calculus is shown in Table 1.

In general, an ambient exhibits a tree structure induced by the nesting of
ambient brackets. Each node of this tree structure may contain a collection of

P, Q, R ::= 0 Inactivity
(νn) .P Restriction
P |Q Parallel Composition
M [P] Ambient
!P Replication
M.P Capability Action

M ::= n Name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M ′ composite

Table 1. Syntax of Ambient calculus

(non-ambient) processes running in parallel, in addition to subambients. We say
that these processes are running in the ambient, in contrast to the ones running
in subambients. The general shape of an ambient is, therefore:

n [P1 | · · · | Pk |m1 [...] | · · · |mr [...]]

One of the relevant characteristics of the Ambient calculus is the definition of
capabilities M for processes, which are described by actions. These capabilities
permit things to happen within ambients. Especially, this calculus presents some
actions related to crossing or opening ambient boundaries. Thus, different capa-
bilities are defined for: entering an ambient (in m), exiting an ambient (out m)
and opening an ambient (open m). For further information on the formal defi-
nition of Ambient calculus the reader is referred to [2].

After these considerations, we find that the notion of ambient is also appro-
priate to represent contexts in Multi-context systems. Contexts encapsulate the
local aspects of particular logical deductions in a global system and bridge rules
enable to represent the interaction or compatibility between them. Then, each
unit can be mapped to an adequate ambient having a state and a process run-
ning in it. Moreover, bridge rules may be also represented by special ambients
whose mobile processes may be in charge of the inter-context deduction.

4 Multi-context Calculus

Multi-context systems (MCS) are specifications of deductive machines that mod-
ify the internal states of the different contexts through the context inner deduc-
tions and bridge rules [5]. In order to translate these MCS specifications into
computable languages, we propose a Multi-context calculus (MCC) based on
Ambient calculus. The notion of ambient allows us to encapsulate the states and
processes of the different contexts and bridge rules in the MCS. The possibility
of structuring ambients hierarchically enables us to represent complex contexts
where different components may be represented by different ambients.

We also take advantage of the process mobility addressed in Ambient calcu-
lus to represent the process attached to a bridge rule. This process is meant to
supervise a number of context ambients to verify if particular formulae are sat-
isfied and if that is the case, to add a formula in another context ambient. Thus,
this process will be getting in and out of the different ambients. Our definition of
the actions for entering and exiting an ambient (i.e. in C and out C) is slightly
different from the one used in Ambient calculus. In Ambient calculus a process
gets into or out of an ambient C with the ambient enclosing it. In MCC calculus
we want the process to move alone, then we redefine these capabilities as follows:

m [in n.P ‖ n [Q]] → m [n [P ‖ Q]]

m [n [out n.P ‖ R]] → m [P ‖ n [R]]

Furthermore, for defining our calculus we use some elements of the LCC [10]
as the concept of structure terms to constitute the ambient state. In LCC terms
are used to specify constraints that restrict the interchange of messages and to
represent some postconditions after the message sending. In our calculus, the
ambient state formulae determine the results of the execution of the context
ambient process (inner-context deduction) and also can trigger some bridge rule
processes (inter-context deduction).

The conceptual background of MCC is the global multi-context ambient
structure MCS, having an identifier and a Clause inside it. This clause may
generate a set of clauses (ambients) for representing contexts and bridge rules.
A context ambient has an identifier, a state and the context process being exe-
cuted in it. Moreover, a context ambient may have other context ambients inside
it composing a nested structure. Besides, a bridge rule ambient has an internal
state to record substitutions and a special process representing the inter-context
deduction, attached to it. The ambient structure for such a MCS where the
brackets are displayed as boxes, is illustrated in Figure 2.

Fig. 2. The general ambient structure for a MCS

The definition of the MCC syntax is shown in Table 2. In the following items
we describe the principal syntax categories in the definition.

MCS ::= IdMC [Clause] (1)
Clause ::= (Clausec ‖ Clause) | (Clausebr ‖ Clause) (2)
Clausec ::= C [Pc ‖ Clausec] ‖ Clausec | ε (3)
Clausebr ::= Br [Pbr] (4)
C ::= c(Idc, Sc) (5)
Br ::= br(Idbr, Sbr) (6)
Sc ::= {Term} (7)
Sbr ::= L (8)
L ::= 〈U〉 (9)
U ::= 〈V → Term〉 (10)
V ::= variable (11)

Pc ::= Clausec | `c | Pc · Pc | Pc or Pc |
if Term then Pc else Pc | Action (12)

Action ::= in C | out C | get∗(Term, L) | getS(L1, ..., Ln, L) |
add∗(L, Term) | remove(C, Term) | ε (13)

Pbr ::= Clausebr | (spy(Br, C1, ϕ1, L1) ‖ spy(Br, C2, ϕ2, L2) ‖ . . .
‖ spy(Br, Cn, ϕn, Ln)) · put∗(Br, Ck, ϕk, L1, ..., Ln) (14)

spy(Br, C, Term, L) ::= out Br · in C · get∗(Term, L) · out C · in Br
(15)

put∗(Br, C, Term, L1, ..., Ln) ::= out Br · in C · getS(L1, ..., Ln, L) ·
add∗(L, Term) · revise(C) · out C · in Br (16)

Table 2. Syntax of Multi-context calculus (MCC)

Multicontext System (MCS): is defined by an ambient structure where the
global ambient identifier is IdMC and Clause will result in the ambients and
processes inside it (see (1) in Table 2). Clause leads us to a set of two type
of clauses: Clausec and Clausebr (2). Clausec generates a context ambient
structure (possibly nested) with a context process Pc running in each am-
bient C (3). Respectively, Clausebr becomes a bridge rule ambient Br (4)
where a Pbr process is being executed. In this way, we define a global ambi-
ent where different processes (Pc and Pbr types) are running in parallel. As
the processes are being executed in different ambients there is no possible
interaction (e.g. concurrency problems) between them.

Context ambient: this ambient has a context process running in it. The con-
text ambient C is defined as c(Idc, Sc) where Idc is its identifier and Sc its
state (5). In turn the state Sc is a set of Terms of an adequate language Lc

(e.g. Prolog formulae) that represents the valid formulae in the context (7).
In many cases it may be useful to use a nested structure of context ambients.
As for example, to represent a complex context where its language or deduc-
tion system are built using different layers. In a nested structure of ambients
we can deal with this complexity defining different ambients for each layer.
In the MCC syntax it is possible to represent a context ambient structure.
From Clausec we can generate parallel context ambients (at the same level
of hierarchy) or embedded context ambients, by using the rewriting rule (3).

Context process: consists of a deductive operator `c corresponding to the con-
text logical deduction. The Pc may be composed using the basic operators:
sequential processing (.), deterministic choice (or) and the classical condi-
tional if then else. Furthermore, rewriting Pc as Clausec the recursion of
processes is allowed. Then, different kinds of programs may be represented
by Pc (12).

Bridge rule ambient: this ambient has a special process Pbr running in it (4).
These ambients are defined as br(Idbr, Sbr), having an identifier Idbr and a
state Sbr (6). The state for a Br ambient is a kind of substitution memory
L composed by the substitution lists returned by the Pbr process (8).

Bridge rule process: this process is a key characteristic in the MCC and rep-
resents the inter-context deduction process of a certain bridge rule (14). Each
Pbr is composed by a finite set of parallel spy(br, C, Term,L) processes fol-
lowed by a put∗(Br,C, Term,L1, ..., Ln) process. In the following items we
describe in some detail these important components:

– spy(Br,C, Term,L) process (15) gets out of the Br ambient and gets
into the C ambient. In this ambient it retrieves in L all the substitution
lists that result of unifying Term with formulae in the context state.
This task is done by the process get∗(Term,L), which is the heart of the
spy process. Then, it returns to the Br ambient.

– put∗(Br,C, Term,L1, ..., Ln) process (16) is executed after all the lists
of substitutions L1,...,Ln have been extracted by the different processes
spy(Br,Ci, T ermi, Li), i = 1, ..., n. This process gets out of the Br ambi-
ent, comes into the C ambient and using the getS(L1, ..., Ln, L) process,
retrieves in L all the substitutions compatible with the lists of substi-
tutions L1,...,Ln. Then, using the add∗(L, Term) process, adds all the
instances of Term applying the resulting substitutions in L. In order
to maintain the consistency in the ambient state, as the add∗(L, Term)
process may introduce new formulae in it, a revise(C) process is needed.

– revise(C) process is defined according to a suitable revision method
chosen to keep the ambient state consistent. If we want to revise using
time considerations as for example, allowing in the state to retain the

more recent formulae respect to the conflicting ones, the insertion time
t of a formulae in an ambient state, must be included in the calculus. In
our case that means that the context ambient state Sc may be redefined
as Sc =:: {(Term, t)}, where the parameter t will be only used by the
revise process. Since in some revision processes we may need to remove
formulae from the state, we include the remove(C, Term) as a possible
action.

5 Operational Semantics

One of the purposes of defining the MCC is to provide the Multi-context com-
putational model with a clean and unambiguous semantics, allowing to be inter-
preted in a consistent way. There are different methods for giving semantics to
a process calculus as for example, defining structural congruence between pro-
cesses and reduction relations [2], or using rewriting rules for the clause expansion
[10]. We have chosen the natural semantics to provide operational semantics for
the MCC. This formalism is so called because the evaluation rules are in some
way similar to natural deduction and it has been used to specify the semantics
of Multi-Agent Protocols (MAP) [12]. In natural deduction we define relations
between the initial and final states of program fragments. Thus, we found it suit-
able for our case since the different processes may change the ambient states. A
program fragment in our model is either a context process Pc or a bridge rule
process Pbr.

We define the evaluation rules for the different processes. The general form
of these rules is: M,a � P ⇒ M ′, where M is the MCS at the start of the
evaluation, a is the ambient (C or Br type) where the procedure P is executed
and M ′ is the final global system.

I- Evaluation rules for context processes: M,C � Pc ⇒ M,C ′

Since each context process Pc runs in a particular context C of M and its
execution only changes its state, in the following evaluation rules we can omit the
reference to M . As the context ambient C is defined as c(Idc, Sc), we represent
as C ′ the modification of its ambient state i.e. C ′ = c(Idc, S

′
c).

C � Pc1 ⇒ C ′

C ′ � Pc2 ⇒ C ′′

C � Pc1 · Pc2 ⇒ C ′′ (1)

C � Pc1 ⇒ C ′

C � Pc1 or Pc2 ⇒ C ′ (2)

C � Pc1 ⇒ C
C � Pc2 ⇒ C ′′

C � Pc1 or Pc2 ⇒ C ′′ (3)

C ` Term
C � Pc1 ⇒ C ′

C � if Term then Pc1 else Pc2 ⇒ C ′ (4)

C 0 Term
C � Pc2 ⇒ C ′′

C � if Term then Pc1 else Pc2 ⇒ C ′′ (5)

II- Evaluation rule for bridge rule process: M,Br � Pbr ⇒ M ′

As the fundamental processes for the Pbr definition are the processes
get∗(Term,L), getS(L1, ..., Ln, L) and add∗(L, Term), to define their semantics
it is enough to have the Pbr semantics well defined. In some rules we use ∅ to
denote that the result of the process execution is independent of the ambient
where it is running.

∀ Termi

{{
C ` Termi

unify(Term, Termi) = Ui

}
↔ member(Ui, L

′)
}

∅ � get∗(Term,L) ⇒ L = L′
(6)

∀ (U1 ∈ L1, . . . , Un ∈ Ln)
{(unify∗(U1, . . . , Un) = L∗) ↔ member(L∗, L′)}

∅ � getS(L1, . . . , Ln, L) ⇒ L = L′
(7)

C = c(Idc, Sc)
∀Li { member(Li, L) ↔ (Term [Li] ∈ TermSet)}
C � add∗(L, Term) ⇒ c(Idc, Sc ∪ TermSet)

(8)

Where unify∗(U1, . . . , Un) is a variant of the classical unify function, where
lists of substitutions (U1, . . . , Un) instead of formulae are unified. If unify∗ suc-
ceeds, its result is a list L∗ of the unified substitutions.

6 Mapping a g-BDI Agent to the MCC

Given a g-BDI agent defined by its multi-context specification (see Section 2):
Ag = ({BC,DC, IC, PC,CC},∆br) we want to map it into the MCC language.
Thus, we need to define a mapping F : {Ag} 7→ MCC, which maps each g-
BDI agent Ag with its multi-context components (contexts and bridge rules) to
the MCC language. The general insights of the mapping F between these two
formalisms are the following:

Global ambient: the multi-context agent Ag is mapped to a global ambient
Ag in MCC:
F : Ag = ({BC,DC, IC, PC,CC},∆br) 7→ Ag [Clause]

Context ambient: each context Ci ∈ {BC,DC, IC, PC,CC} in the agent Ag,
either mental or functional, is mapped to a suitable ambient structure (possi-
bly nested) in MCC. Ambient calculus enables us to represent nested ambient
structures as Ci [PCi ‖ Ci0 [PCi0 ‖ [Ci1 ‖ ...]]], which is very useful in order
to represent complex contexts. For example, different ambients may help to
individualize different layers used in the context language definition and also
in the deduction processes.
F : Ci = 〈Li, Ai,∆i, Ti〉 7→ c(Ci, SCi

) [PCi
‖ Ci0 [PCi0 ‖ [Ci1 ‖ ...]]]

– Language: before setting the ambient state for a context Ci, we have to
define the ambient language ALCi . Since the languages of different men-
tal contexts in the g-BDI agent model are built using different language
layers, we create the corresponding ambient hierarchical structure where
the inner an ambient is, a more basic language it has. The ambient state
will be composed by formulae of the top level language (i.e., ambient).
This structure allows us to differentiate the language layers in different
ambient states, but using the mobility of processes we can access the
different formulae in them.
F : Li 7→

{
ALCi ,ALCi0 , ...,ALCik

}
– Context ambient state: the initial ambient state SCi is composed by

the translation of the theory Ti formulae into the ambient language.
F : Ti 7→ SCi

⊂ ALCi

– Context ambient process: the process PCi attached to a context am-
bient is derived from its logical deduction system. Thus, it is built from
the context theory, axioms and inference rules.
F : 〈Ai,∆i, Ti〉 7→ PCi

Essentially the PCi process is composed by the following sequential schema:
PCi

::= P ∗
Ai

· P ∗
∆i

, where the P ∗
Ai

process represents the generation
of finitely-many instances of the different context axioms i.e. P ∗

Ai
::=

P ∗
Ai1

· ... · P ∗
Ain

, where the Aij ’s are axioms in Ai. Respectively, P ∗
∆i

is
composed by processes in charge of generating the instances of the dif-
ferent inference rules. i.e. P ∗

∆i
::= P ∗

∆i1
· ... · P ∗

∆ik
, where the ∆ij ’s are

rules in ∆i. These processes are described in more detail for DC context
in next Subsection 6.1.

Bridge rule ambient: each bridge rule Bri is mapped to a suitable ambient
Bri having as internal state a list of possible substitutions Li and a special
process PBri

. The definition of both elements related to the Bri ambient

(i.e. Li and PBri
) depends on the premise and conclusion of the bridge rule

that it represents:

F : Bri =
C1 : ϕ1, . . . , Cn : ϕn

Ck : ϕk
7→ br(Bri, Li) [PBri

]

– Internal state: is the list Li of n substitution lists, i.e.:
Li = 〈〈Li1〉 , . . . , 〈Lin〉〉 where each sublist 〈Lij〉 will contain the resulting
substitutions of unifying the formulae ϕj with formulae in the context Cj .

– Bridge rule process: the special process PBr is created in MCC (see
(12) in Table 2) to represent the bridge rule inference. For the bridge
rule Bri this process will add determined instances of the formula ϕk in
an ambient Ck when the preconditions are satisfied.
PBri ::= (spy(Br,C1, ϕ1, L1) ‖ . . . ‖ spy(Br,Cn, ϕ2, Ln)) ·

· put∗(Br,Ck, ϕk, L1, ..., Ln)

The ambient structure in MCC for representing a g-BDI agent Ag is illus-
trated in Figure 3. Therefore, for each mental or functional context in the g-BDI

Fig. 3. The ambient structure for a g-BDI agent

agent specification, we can define the corresponding ambient structure in MCC.
Since the planning and communication context are based in first order logic,
the mapping is straightforward and both contexts can be easily passed to a
corresponding ambient.

In the case of the mental contexts, since the logical framework is more com-
plex, some details must be analyzed. As a matter of example, in the next sub-
section we describe the mapping F for the Desire Context. In a similar way, the
ambients for the other mental contexts may be developed.

6.1 Mapping the Desire context (DC) into a Desire ambient

We next define a mapping F from a desire context DC to a suitable ambient
structure in MCC

F : DC = 〈LDC , ADC ,∆DC , TDC〉 7→ c(DC,SDC) [PDC ‖ ...]

For this, we start with a synthesized description of the components of the DC
context: the language LDC , the axioms ADC , the inference rules ∆DC and a
theory TDC . A more complete description can be found in [3].

Language (LDC): it is defined over a (classical) propositional language L (gen-
erated from a finite set of propositional variables and connectives ¬ and →)
by introducing two (fuzzy) modal operators D+ and D−. As in other mental
contexts, we use a (modal) many-valued logic to formalize reasoning about
graded desires by means of the trick of interpreting the (positive and nega-
tive) degrees of desires over a (classical) proposition ϕ as the truth-degrees
of the modal formulas D+ϕ and D−ϕ respectively. We choose Lukasiewicz
logic, extended with rational truth-constants, as the underlying many-valued
logic dealing with the many-valued modal formulas. The LDC language is
built therefore as follows:
– If ϕ ∈ L then D−ϕ,D+ϕ ∈ LDC

– If r ∈ Q ∩ [0, 1] then r ∈ LDC

– If Φ, Ψ ∈ DC then Φ→L Ψ ∈ LDC and ¬LΦ ∈ LDC

Axioms and inference rules (ADC and ∆DC): to axiomatize the logical sys-
tem DC we need to combine axioms of classical propositional calculus (CPC)
for formulas of L with Lukasiewicz logic axioms for modal formulae, plus ad-
ditional axioms characterizing the behavior of the modal operators D+ and
D−:

- Axioms of CPC for formulas of L
- Axioms of Lukasiewicz logic modal formulae.
- Axioms1 for D+ and D− over Lukasiewciz logic:
Ax1 : D+(A ∨B) ≡L D+A ∧L D

+B
Ax2 : D−(A ∨B) ≡L D−A ∧L D

−B
- Rules are: modus ponens for → and →L and introduction of D+ and
D− for implications:
∆1: from A→ B derive D+B →L D+A and
∆2: from A→ B derive D−B →L D−A.

Theory (TDC): it consists of a set of formulas from LDC

Now we are ready to define the corresponding Desire Ambient F(DC) by
describing its state language ALDC , its initial state SDC and its process PDC .
1 These are the basic ones, one could consider additional axioms introducing some

constraints between both modalities.

1. State Language ALDC

Since the modal language LDC for the desire context is built in two layers
(one base propositional language L and the modal LDC), we define two am-
bients to represent these language layers. We define the ambient DC0 (to
represent language L) inside the ambient DC (to represent language LDC),
having the following ambient structure: DC [PDC ‖ DC0]
This nested ambient structure enables us to deal in a proper way with the
different fomulae in the two language layers. The language for the DC0 am-
bient is the basic language used in the DC context for building the language
LDC . As it is convenient for the definition of the deductive process PDC , we
consider that the formulas of this language are in Disjunctive Normal Form
(DNF). So we have or DC0 the mapping F : L 7→ ALDNF defined by
– F(ψ) = ψDNF

The mapping from the language LDC to the language ALDC for the desire
ambient, F : LDC 7→ ALDC is then defined as follows:
– F (D+ϕ) = d+(F(ϕ))
– F (D−ϕ) = d−(F(ϕ))
– F (r) = r
– F (¬LΦ) = neg(F(Φ))
– F (Ψ →L Φ) = imp(F(Ψ),F(Φ))

2. Initial state SDC

The DC ambient state SDC is composed by the translated formulae of the
context theory: SDC = {F(Φ) | Φ ∈ TDC}

3. DC Process PDC

We need to map the logical deduction of the desire context DC, composed
by two different layers of axioms and inference rules, into the PDC process.
Actually, it can be shown that reasoning in the DC axiomatic system can
be reduced to reasoning in plain Lukasiewicz logic from a big, but finite,
theory which gathers suitable translations of instances of all the axioms and
inference rules, and of the formulas of the context theory TDC . We will con-
sider deduction in Lukasiewicz logic as an encapsulated process P L without
entering in its internals. This is possible since there exist theorem provers
for this many-valued logic [1]. We describe next how to build such a theory
in the context ambient which incorporates a finite set of instances of the ax-
ioms and inference rules that model the behavior of D+ and D−. The idea
is that, since we have a language L built over a finite set of propositional
variables, there are only a finitely-many different DNF formulas, so there
are finitely-many instances of axioms and rules over these DNF formulas.
Therefore the PDC process will consist of two parts. The first one, involv-
ing four processes PV , PDNF , PAX , P∆, will add to the initial ambient state
SDC (context theory) the set of instances of the axioms and inference rules,
changing the initial state into S′DC :

c(DC,SDC) � (PV (V Set) · PDNF (V Set) · PAX · P∆) ⇒ c(DC,S′DC)

Then, over the state S′DC , the deduction over Lukasiewicz logic, represented
by the process P L can be be applied. Thus, the PDC process is defined as
the following schema of sequential processes:

PDC ::= PV (V Set) · PDNF (V Set) · PAX · P∆ · P L
In the following items we describe the four first processes:
– The PV (V Set) process extracts from SDC the finite set of variables ap-

pearing in the formulas of TDC and puts them in V Set.

– The PDNF (V Set) process enters in the DC0 ambient and through the
add∗DNF (V Set) process creates and adds to SDC0 the finite set of DNF
formulae built upon the variables in V set, i.e.:

PDNF (V Set) ::= in DC0 · add∗DNF (V Set) · out DC0

– The PAX process is composed by all the processes derived from each
context axiom. For this particular case of the DC ambient we have:

PAx ::= PAx1 · PAx2

These processes represent respectively the axioms Ax1 and Ax2 (see
below), for instance PAx1 is defined as:

PAx1 ::= in DC0 · get∗(dpair(x, y), L) · out DC0 ·
· add∗(F(D+(x) ∧D+(y) ≡ D+(x ∨ y)), L)

where the special component processes have the following meaning:
• get∗(dpair(x, y), L) stores in L all the pairs (x, y) satisfying the con-

dition dpair(x, y): x, y ∈ SDC0 and x 6= y;
• add∗(F(D+(x)∧D+(y) ≡ D+(x∨ y)), L), using the pairs (x, y) ∈ L

for substitution, instantiates and adds to the ambient state SDC the
formulae F(D+(x) ∧D+(y) ≡ D+(x ∨ y)).

In a similar way the PAx2 process represents the corresponding axiom
for D−.

– The P∆ process is composed of the processes representing the instances of
the different inference rules. For the DC ambient there are two processes
representing the rules ∆1 and ∆2, hence

P∆ ::= P∆1 · P∆2 , with

P∆1 ::= in DC0· get∗(F(x→ y), L)· out DC0· add∗(F(D+(y) → D+(x)), L)
and similarly for P∆2 , where
• get∗(F (x→ y), L) gets the pairs (x, y) resulting from the unification

of F (x→ y) in DC0 ambient;
• add∗(F(D+(y) → D+(x)), L) adds all the instances of the formula
F(D+(y) → D+(x)) with pairs (x, y) ∈ L.

– The final process P L applies Lukasiewicz logic deduction ` L to the state
S′DC resulting from the previous processes, i.e. P L ::= ` L

7 Conclusions

In this work we have defined a MCC calculus for Multi-context systems (MCS)
execution. The MCC proposed is based on Ambient calculus [2] and includes
some elements of LCC [11]. The operational semantics for this language was
given using Natural Semantics. We expect that MCC will be able to specify
different kinds of MCSs. Particularly, we have shown how graded BDI agents
can be mapped to this calculus. Through MCC we are given to this agent model
computational meaning and in this way, we are getting closer to the development
of an interpreter of the g-BDI agents.

References

1. Beavers G. Automated theorem proving for Lukasiewicz logics. Studia Logica, Vol-
ume 52, Number 2 pp. 183-195, 1993.

2. Cardelli L. and Gordon A. D.. Mobile Ambients. In Maurice Nivat, editor, Foun-
dations of Software Science and Computational Structures, number 1378 in Lecture
Notes in Computer Science, pp. 140155. Springer-Verlag, 1998.

3. Casali A., Godo L. and Sierra C. Graded BDI Models For Agent Architectures.
Leite J. and Torroni P. (Eds.) CLIMA V, Lecture Notes in Artificial Intelligence
LNAI 3487, pp. 126-143, Springer-Verlag, Berling Heidelberg, 2005.

4. Casali A., Godo L. and Sierra C. Modeling Travel Assistant Agents: a graded BDI
Approach. IFIP, Volume 217, Artificial Intelligence in Theory and Practice, Ed.
Max Bramer (ISBN 0-387-34654-6) (Boston: Springer), 415-424, 2006.

5. Ghidini C. and Giunchiglia F. Local Model Semantics, or Contextual Reasoning =
Locality + Compatibility Artificial Intelligence,127(2):221-259, 2001.

6. Godo, L., Esteva, F. and Hajek, P. Reasoning about probabilities using fuzzy logic.
Neural Network World, 10:811–824, 2000.

7. Giunchiglia F. and Serafini L. Multilanguage Hierarchical Logics (or: How we can
do without modal logics) Journal of Artificial Intelligence, vol.65, pp. 29-70, 1994.

8. Milner R., Parrow J. and Walker D., A calculus of mobile processes, Parts 1-2.
Information and Computation, 100(1), 1-77. 1992.

9. Milner R., Communication and Comcurrency. Prentice-Hall International, 1989.
10. Robertson D. Multi-Agent Coordination as Distributed Logic Programming Pro-

ceedings of the International Conference on Logic Programming, Sant-Malo, 2004.
11. Walton C. and Robertson D. Flexible multi-agent protocols. Technical Report EDI-

INF-RR-0164, University of Edinburgh, 2002.
12. Walton C. Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Inter-

national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 2004.

13. Walton C. Model Checking Multi-Agent Web Services. In Proceedings AAAI
Spring Symposium on Semantic Web Services, Stanford, California, 2004.

14. Joseph S., Perreau de Pinninck Bas, A., Robertson, D., Sierra, C., Walton, C.
Interaction Model Language Definition. IJCAI 2007 Workshop AOMS Agent Orga-
nizations Models and Simulations. Dignum V., Dignum F., Matson E. and Edmonds
B. eds., pp. 49-61, 2007.

