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Abstract

In this paper we present some results obtained
with a troupe of low-cost robots designed to
cooperatively explore and adquire the map of
unknown structured orthogonal environments. In
order to improve the covering of the explored
zone, the robots show different behaviours and
cooperate by transferring each other the perceived
environment when they meet. The returning
robots deliver to a host computer their partial
maps and the host incrementaily generates the
map of the environment by means of a
possibility/ necessity grid.

Keywords: uncertain reasoning in situated autonomous
robots, map building with uncertainty, possibility/
necessity theory

1 INTRODUCTION

With the aim of exploring an structured environment that
is unknown but easily passable, a troupe of low cost,
small autonomous robots has been developed. These
robots follow the already classical line of insect robots

(Alami et al, 1993) (Brooks 1991). The goal of these .

autonomous robots is to explore and obtain partial
information about an orthogonal environment and deliver
this information to a host computer. Exploration is
performed moving randomly and following waills (or
obstacle edges) when detected. The computer host is
expected to generate the most plausible map from the
obtained information . This map models the environment
in terms of degrees of possibility and necessity of the
position of the detected walls and obstacles. The reason of
choosing possibility/necessity techniques instead of
probability is our need of an initial assigment of values
representing ignorance. Possibility theory allows a clear
representation of ignorance but probability does not.
Regarding evidential theory, it is worth noticing that in
our case Possibility and Necessity are in fact particular
cases of Belief and Plausibility because our frame of
discernment is Q={wall,—wall}.

The behaviour of these small autonomous robots is
similar -to some degree- to that of ants in two aspects.
First, in order to increase the coverage of the environment,
the robots have a partially random moving behaviour; and
second, the robots cooperate by transferring each other the
perceived environmenit when they meet. Sharing
information in this way, allows the host to get the
information not only from the robots that successfully
return after an exploratory run, but also some information
from those that could not retorn, provided that they had
encountered robots that safely returned. Using this multi-
robot strategy to generate a model of the environment, we
expect to achieve a better efficiency than that which would
be obtained based only on a single expensive robot.

The following section in this paper describes the structure
and the behaviour of the robots. Then, we describe a
statistical error analysis performed in order to know how
the error intervals increase with the covered distance and
the number of turns. This analysis will be used to model
the environment by means of possibility/necesity
techniques. The fourth section describes the map
generation process based on the partial maps perceived by
the successfully returning robots, Finally, we describe the
results obtained to date, we briefly point to related work
and we mention some future work.

2 STRUCTURE OF EACH MOYVILE
ROBOT

Each robot has been designed with the aim of being smali
and cheap. They must have a high autonomy and be
endowed with a low cost processor to memorise the
perceived environment map.

The robots environment perception system and the
communication with the host or with other robots is
based on IR impulse modulated sensors. The
communication process consists of delivering the
environmental information of a robot and it can be
stablished between a robot and the host as well as between
two robots that meet along their exploration. Therefore,
this communication process allows to get all the
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information of non-returning mini robots that had been
transferred to returning ones.

2,1 MECHANICAL CHARACTERISTICS

Each robot is 21 cm. length and 15 cm. wide (see Fig. 1).
It has three wheels, two of them are 5 cin. steering wheels
controlled by independent motors. The robots can reach a
maximum speed up of 0.6 m/sec., and since the battery
has about half hour of autonomy, each robot can do a
maximum exploration of about 1000 m,

Figure 1: Autonomous Mini-Robot

2.1 SENSING CAPABILITY

Each robot is equipped with the following sensors:
- Impulse generators at each wheel for odometry.

- Five LR. proximity sensors for frontal obstacles
detection and for wali following.

- A proximity sensor for the detection of the terrain
horizontal discontinuities.

- Safety micro switches for the detection of possible
collision.

<2 One omnidirectional IR Emitter/Receiver sensor to
detect other robots and to transmit data

. One IR Emilter with a scope of 90 degrees to
generate a priority signal (right hand preference)

23 NAVIGATION STRATEGY

The navigation system incorporated to each robot has a
partially random behaviour: The robot does a +45° or
4900 turn either randomly or when it detects an obstacle.

The random turns are done with significantly different
probabilities: P1>P2>P3, corresponding to three
differentiated behaviours:

P1= robot with an "Anxious" behaviour

P2=robot with “normal" behaviour
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P3= robot with "routine” behaviour.

When the robot finds a frontal obstacle, the turn can b
done to the right or to the left based also on a probabilit
value P4. The robots having a probability P4<0.5 wil
show a tendency to turn to the right more often than t
the left, whilst the robots having a probabitity P4>0.:
will behave inversely.

Consequently, the different robots of the exploratio:
troupe will not show an identical behaviour. They ca
behave in six different ways corresponding to the differer
combinations of behaviours and turning tendencies,

24 CONTROL SYSTEM

The control unit in cach robot has been designed having i
mind that the hardware had to be as simpie as possibl
but, on the other hand, it had to allow achieving

behaviour sufficiently smart in order tc navigal
efficiently. Furthermore the robot had to be based on
hardware flexible enough to attow for experimentation «
navigation and control strategies. These requirements hay
resulted in a design which contains three differes
functional modules : the navigation module that generat
the trajectory to be followed; the steering module th
controls the motors in order to follow the generat
trajectory; and the perception module that acquir
information of the environment by means of IR sensor
The computer used to implement the navigation contr
unit is a 80C186 with a IMB RAM to store the perceive
environment map. Finally, the steering control module

implemented on a 80C552 and operates with a resolutic
of 2 mm.

3 ERROR ANALYSIS

With the goal of studying the position error of each rot
due to the imprecise odometry and to the impreci
steering, we have performed an analysis based
experimental data obtained from the real robots runni
straight (10 feet and 20 feet) and also turning 45 degre¢
left and 45 degrees right followed by a 10 feet straight it
We have performed 20 trials of each run and turni
situation for each robot. With the data obtained, we ha
used the Kolmogorov normality test to verify that t
experimental sample indeed follows a normat distributi
both in the direction of the trajectory and in the directi
perpendicular to the trajectory and we have tested that be
distributions are independent. Based on this distributic
we have determined the size of an error rectang
comprising the 95% of the sample (which is ellipti
shaped), associated to the final position of the robot afte
straight un of 10 feet. This rectangle is 2.5 inches (in

direction of the trajectory) x 11 inches (in the direct
perpendicular to the trajectory) in the average. We hi
also experimentally concluded that the size of the er
rectangle is proportional to the covered distan
Concerning the additional error due to turning, we h:
obtained that when the robots turn 45 degrees there is



the average, an error of about 2 degrees always towards the
same direction. For example a robot with 2 degrees of
error towards the left turns 43 degrees to the right instead
of 45 degrees and turns about 47 degrees 1o the left instead
of 45 degrees.

31 ERROR PROPAGATION

In free space, a trajectory is composed of a set of
alternating segments and turns. Given the error rectangle
at the initial point of a trajectory, we want to determine
the error rectangle at the end of each segment taking into
account the turning error and the error accumulated along
the ségment. The next figure shows the error propagation
after a right turn, a straight line, another right turn and
finally another straight line.

Figure 2: Error propagation

When following a wall, since the robot remains
practically always at the same distance from the wall, the
error along the direction orthogonal to the wall is taken to
be constant and equal 1o the error that the robot has after
turning to place itself parallel to the wall once the wall
has been detected. This error analysis and error propagation
study is performed on each robot and is used by the host
to compute the possibility/necessity grid modelling the
environment as described in the next section,

4 MAP GENERATION

The space being explored by the robots is discretized by
means of a grid. Cells in the grid represent a small area of
the real environment and confain two values ; the degree
of possibility and the degree of necessity of the presence
of obstacles. Initially, that is before any exploration has
taken place, all the cells have a possibility value 1T of 1
and a necessity value N of 0. These initial values
correpond to a situation of total ignorance according to the
theory of possibility (Dubois and Prade 1988). As robots
communicate the information gathered during their
exploration, the possibility and necessity values are
modified in a way that depends on the presence, or not, of
obstacles. The information gathered by each robot is
nothing else but the trajectory of the robot together with
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the position of the walls detected (and followed) by the
infrared sensors along the trajectory path, as well as the
singular points detected, that is the wall ends and the
corners. Due to the unavoidable odometry error, the
position of the detected walls has an associated error. As
we have explained in the last section, we have
experimentally determined this error which has been
approximated by a rectangle centered around the cell
corresponding to the estimated position of the robot as
shown in figure 3.

] - communicated
' position

i| discretization
of the error:
X eITOr x==5, error y=3

Figure 3: Grid representation of a position and its
associated error.

Modelling the certainty of detected walls

When an error rectangle is associated to a position that
belongs to a detected wall, the occupancy certainty degree
{that is the certainty about the presence of an obstacie in
that position) is expressed by means of necessity values in
every cell that results partially or totally covered by the
error rectangle around that position. The necessity values
decrease linearly with the magnitude of the error and
remains positive (N(wall) = @> 0) in the cells inside the
error rectangle but gets the value 0 at the cells outside the
limits of the rectangle. These values have been established
with the aim of reflecting that, having detected some
obstacle, the necessity that there is a wall cannot be
longer zero but positive since a positive value denotes
some certainty degree about the occupancy of the space.
However this occupancy certainty degree decreases when
the distance to the central cell of the error rectangle
increases. Figure 4 a) shows this case. Notice that the
possibility value is constantly equal to 1 in all the cells
covered by the error rectangle.

As we have already mentioned in the infroduction, in our
case Possibility and Necessity values are particular cases
of Belief and Plausibility ones. We can easily see how our
assigned values N{wall)= >0 and [I{wall)=1 can be
considered as Belief(wall} and Plausibility(wall)
corresponding to the following basic probability
assignment {b.p.a.}:
frame of discernment ={ wall,wall},
with mass m:P(C)— [0,1],

m{@)=0, m{wall)= ¢, m(wall}=0, m{(Q)=1- &.
and therefore, we obtain:
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Bel(wally= Y, P(A) = m(wall) + m(D) = &

Acwall

Pi(wally= Y P(A)=m(wall)+m() =1-«

Anwall#0

Modelling the certainty of free space

On the other hand, paths atong which there was no
detection supply information of free space, that is IT(—~
wall)}=1 and N(- wall}>0, or equivalently, according to the
axjoms of possibility theory, IT(wall) < 1. This
possibility value increases with the distance to the central
cell of the error rectangle and reaches the value 1 at the
cells outside the limits of the error rectangle. Obviously,
we have N(wall) = 0 for all the cells covered by the error
rectangle. Figure 4b shows this case.

gwali)=t o

Newall)>0

b)

Figure 4: [T and N values assigned to cells corresponding
to: a) wall detection, and b) free space.

4.1 VALUE ASSIGNMENT

The height of the pyramids in figure 4 are determined by
the magnitude of the error. The underlying idea is to
establish a linear error-height relation such that, a null
error implies the maximum allowed value of height (i.e.
one), while an error too large implies a zero height since
the information is no longer reliable. The error threshold
that assigns a limit to a ‘too large' error is established
experimentally and is the same as the one that forces the
robot to return from its exploration due to the irrelevancy
of its later data. Sumimarising, the height values are
obtained by applying the following formula:

, current error
height =1-

max imum allowed error

The computation of this height is done locally for each
cell in the discretized environment grid on the basis of
necessity propagation. Such propagation starts at the
central cell and spreads over all those cells laying within
the pyramid base. This is done passing four different
values among cells: e, €], ¢; and e which contain the
distance between the current position and each side of the
error rectangle, i.e. right, left, up and down respectively,
This definition implies that their values are unitarily
increased or decreased in each step of the propagation until
they reach the zero value. Let errorx be the lengih of the
error rectangle base, and let errory be the rectangtle height,
then the error values are initially assigned at the central
cell as follows: ep,=ej=errory/2 and e, =eq =errory/2 and
the following formulas are used to compute the height N
corresponding to each cell within the error rectangle
(Figure 5 shows schematically the propagation process):
N=min{Nx ,Ny}, where:

x xX—err le,—el e +e

N =1- - I x=—bemt err, =t
err, max error 2 2

] y—err, le,—e.l e, te

NY:]_ b — ¥ , ¥ d u’ erry: d u
err, max error 2

¥

- initial cell

e =er=4
ev=ed =2
N=1-(4/max_error)

edge cell
el = 8, er =0,
Eu =3, edq= 1
a) N=0

N=height

. p N=0
a=0 er=er er=0
a - er -~
& ++ e+t
b}

Figure 5: Value propagation: a) to adjacent cells, and b)
along one dimension of the error rectangle.

4.2 COMBINATION OF VALUES

The cell necessity and possibility values representing
trajectories in free space and wall segments are propagated
from a central cell 1o the cells around as we have seen
above. In considering consecutive points along the
trajectory of the robot or along a wall segment, some of



the cells covered by the current pyramid might already -

have values assigned by previous pyramids, and as a
consequence the new values must be the result of a
combination between these old and new values. In the case
of wall segments the values are necessities (increasing
from Q) and are combined by using the max operation
(figure 6 b). In the case of trajectories these values are
possibilities (decreasing from 1) and are combined by
means of the min operator. Figure 6 a} graphically shows
the results of such combination

Figure 6: Segment representation corresponding to: a)
trajectories (possibility pyramids), and b) walls (necessity
pyramids).

When the same portion of a wall has been detected twice
(or more) indepently, the necessities are combined by
means of the probabilistic sum, that is S(x,y) = x+y - xy,
in order to reinforce the certainty about the location of the
wall. Figure 7 shows this situation

Figure 7: Reinforcement combination of two wall
segments.

Following the interpretation of the Possibilily/Necessity
assignments as Belief/Plausibility values, we can justify
now the use of the two different combination rules
described above. On one hand, we have already seen that
we apply the probabilistic suiz when combining
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independent wall detections in the same celi, and this
operation is nothing but Dempster's rule for simple
support masses:

Bel(wally=0;, i=12

Bellf; (wally=m, @ m{wally=o,+ o, -0, -0,
(and m(Qy=1-0) (1~ 0,))

On the ofher hand, we also combine values coming from a
single wall segment detection, and since we are
considering non-independent evidences, Dempster's rule is
not suitable for evidence combination. Instead, we have
used a max-combination, a cautious operation whose
results are still under the evidence theory framework.
Indeed, max combination is in accordance with the so-
called 'combination of compatibie Belief functions'
{Chateauneuf 1994} that makes sense when interpreting
Bel/Pl values as bounds of the probability measures
consistent with them. Namely, let

F, ={PiBel(A) < P(A) < PL(A)

be the family of such probabilities (Dempster 1967).
Then, their natural combination can be taken as the
intersection:

Fo=FnF=

{ Pimax(Bel,(A), Bel,(A)) < P(A) < min(PL{A), PL,(A))}
In general, P;Fszgﬁ P{A) and PESEEFZ P(A) are not a pair of

Belicf and Plausibility values (Chateauneuf 1994).
However, in our particular case, this combination leads to

a proper belief function. Indeed, the function Bel” is
defined as

Bel{é (wall) = R iglf . P{A) = max{Bel, (wall}, Bel,(wall)) =
(=T iate]

=max{,;,a,)
Beg;‘; (Q,) = Bet]{;_ (—M’aﬂ) - O

Bel,(Q)=1

a belief function whose corresponding mass assignments
are !

m{wall) = max(o;, 0,)

m(3) = m(—wall)=0
m{E) =1 —max{o,, a,)

Moreover, in this particular case, this max-combination is
also in accordance with a new combination operation
proposed in (Torra 19935}

S RESULTS

Figure 8 shows some of the results obtained, in
simulation, with three robots departing from the point
labelled "I" and taking into account the error position
propagation along the trajectories. The orthogonal
environment is represented by straight continuous lines,
the trajectories by dark grey and the detected walls and
obstacles by medium grey and the singular points by light
grey. The darker the color along the three trajectories, the
smaller the possibility value [T of existence of a wall or
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Figure 8: Global map obtained from three partial maps by three robots. 'I' indicates the exploration initial position of the
robots.

obstacle. For the detected wall segments, the lighter the
grey the smaller the certainty value N of the wall or
obstacle being in that position. The grey degradation in
the singular points also reflects the decrease of certainty
about their actual position. The exploration stops when
the cumulated error is higher than a previously set value.

6 RELATED WORK

There are quite a few works addressing the problem of map
building. (Betge-Brezetz et al. 1996) use landmarks,
defined as object features, to model natural environments
and the uncertainty associated to their position is
estimated by means of probabilistic techniques assuming a
gaussian distribution of the uncertainty. In the case of
certainty grid representations, the probabilistic approach
has been also widely used to estimate the probability of
cell occupancy (Moravec and Elfes 1985, Lim and Cho
1992, Pagac et al, 1996). Probabilistic techniques are
reliable only if enough sensor data is available and,
furthermore, if the data is well distributed in the explored
environment and this distribution can be easily obtained,
A very natural alternative when these conditions are not
met is provided by fuzzy set theory. (Kim et al 1994) use
fuzzy numbers to model the uncertainty of the parameters
of geometric primitives and coordinate transformations
used to describe natural enviromments. (Poloni et al. 1995)
have also used fuzzy logic to build maps of unknown
office-like environments. Their work is similar to ours in

the sense that each point in the map has a degree of being
empty and of being occupied however their approach uyses
straight fuzzy sefs instead of dual possibility/necessity
measures, another difference is that they work with only
one robot and therefore no cooperation is involved, finally
they use ultrasonic sensors instead of infrared ones and as
a consequence the error accumulates faster than in our
approach. The main consequence of workiag with only
one robot and less precise sensors is that the maps built
are significantly smaller.

7 CONCLUSIONS AND FURTHER
WORK

The real robots are now working with a contour-based
map building method also based on fuzzy techniques but
we have detected some shortcomings due {o the globality
of the computational process involved, such shortcomings
obliged us to adopt some ad hoc solutions during the
proces of map completion (see Amat et al. 1995). The
grid-based method presented here is completely based on a
local computation process (the propagation of possibility
and necessity values from a cell to their neighbours),
exploils better the information about free space conveyed
by the trajectories, takes advantage of the fact that
possibility and necessity are dual measures and,
furthermore, is compufationally simpler, we are now in
the process of incorporating this new approach to the real
robots. On the other hand, further work is also in progress
regarding the problem of planning additional trajectories




towards zones of the environment poorly explored. In the
long term we also plan to address the problem of learning
higher level environment concepts ("corner", "door", etc.)
based on sequences of sensor radings, i.e. we plan fo
address the problem of symbol grounding at least in
simple orthogonal environments
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