A MaxSAT-Based Approach to the Team Composition Problem in a Classroom

<table>
<thead>
<tr>
<th>Títol</th>
<th>A MaxSAT-Based Approach to the Team Composition Problem in a Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Type</td>
<td>Conference Proceedings</td>
</tr>
<tr>
<td>Year of Conference</td>
<td>2017</td>
</tr>
<tr>
<td>Authors</td>
<td>Manyà F [1], Negrete S [2], Roig C [3], Soler J Ramon [4]</td>
</tr>
<tr>
<td>Conference Name</td>
<td>FIRST INTERNATIONAL WORKSHOP ON TEAMS IN MULTIAGENT SYSTEMS</td>
</tr>
<tr>
<td>Editor</td>
<td>AAMAS 2017</td>
</tr>
<tr>
<td>Paginació</td>
<td>82-89</td>
</tr>
<tr>
<td>Conference Location</td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>Date Published</td>
<td>May, 9 2017</td>
</tr>
</tbody>
</table>

Abstract. Given a classroom containing a fixed number of students and a fixed number of tables that can be of different sizes, as well as a list of preferred classmates to sit with for each student, the team composition problem in a classroom (TCPC) is the problem of finding an assignment of students to tables in such a way that preferences are maximally-satisfied. In this paper, we formally define the TCPC, prove that it is NP-hard and define a MaxSAT model of the problem. Moreover, we report on the results of an empirical investigation that show that solving the TCPC with MaxSAT solvers is a promising approach.

Source URL: https://www.iiia.csic.es/ca/publications/maxsat-based-approach-team-composition-
problem-classroom

Enllaços
[1] https://www.iiia.csic.es/ca/staff/felip-many%C3%A0