Upward refinement operators for conceptual blending in the description logic EL++

Títol: Upward refinement operators for conceptual blending in the description logic EL++

Publication Type: Journal Article

Year of Publication: 2018

Authors: Confalonieri R [1], Eppe M [2], Schorlemmer M [3], Kutz O [4], Peñaloza R [5], Plaza E [6]

Journal: Annals of Mathematics and Artificial Intelligence

Volume: 82

Edició: 1-3

Paginació: 66-69

ISSN: 1573-7470
Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend. According to this form of combinational creativity, a blend is constructed by taking the commonalities among the input mental spaces into account, to form a so-called generic space, and by projecting the non-common structure of the input spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often initially incompatible, a generalisation step is needed before they can be blended.

In this paper, we apply this idea to blend input spaces specified in the description logic \mathcal{EL}^{++} and propose an upward refinement operator for generalising \mathcal{EL}^{++} concepts. We show how the generalisation operator is translated to Answer Set Programming (ASP) in order to implement a search process that finds possible generalisations of input concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of computer icons.