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Abstract.
In this paper we survey Milord II—a KBS design tool. We concentrate on its

object level and meta-level languages, with special emphasis on the control tech-
niques and the communication between both languages. The control, declarative
in nature, is based on reflection techniques over a meta-language equipped with
a declarative backtracking mechanism. Reflection and subsumption techniques are
used to tackle the problem of knowledge incompleteness. This meta-level approach
is based on assumptions over the current state of the object deductive process.
Reflection makes meta-level deduction effective at the object level. Whenever the
assumptions made at the meta-level are proved to be erroneous, a declarative back-
tracking mechanism retracts them. The deductive calculus at the object level is based
on a rule specialization calculus. Complex reasoning tasks can be implemented using
a combination of the overall set of Milord II meta-control techniques. To illustrate
the use of such modelling techniques we present first a scheduling reasoning system,
second a method for solving a general class of default reasoning problems, and finally
a legal reasoning problem involving default rules and priorities.

Keywords: Knowledge-based systems, Complex reasoning control.

1. Introduction

Reasoning patterns occurring in complex problem solving tasks usu-
ally cannot be modelled by means of just a pure classical logic ap-
proach. This is due to several reasons, for instance: incompleteness of
the available information, need of using and representing uncertain or
imprecise knowledge, or combinatorial explosion of classical theorem
proving when knowledge bases become large. To deal with these prob-
lems, Milord II, an architecture for Knowledge Base Systems (KBS),
combines modularization techniques with both implicit and explicit
control mechanisms and with an approximate reasoning component
based on many-valued logics.

Roughly speaking, a Knowledge Base (KB) in Milord II consists
of a hierarchy of modules interconnected by their export interfaces.
Each module contains an Object Level Theory (OLT) and a Meta-
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Level Theory (MLT) interacting through a reflective mechanism (see
Figure 1).
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Figure 1. Structure of a Milord II module hierarchy.

A module can be understood as a functional abstraction between
the set of components it needs as input and the type of results it can
produce. From the logical point of view, Milord II makes use of both
many-valued logic and epistemic meta-predicates to express the truth
status of propositions. For further details in these logical topics the
reader is referred to [4, 10, 11, 12, 13, 14].

In this chapter we focus on the control techniques used in Milord II
that determine a KBS execution. The explicit part of the control,
declarative in nature, is mainly based on a reflective approach and a
declarative backtracking mechanism. In this context, reflection makes
sense as a control mechanism because there is a clear separation be-
tween domain (object-level) and control (meta-level) knowledge. The
basic implicit control components are a subsumption mechanism and a
process of elimination of unnecessary rules, both concerning the object
level.

Next we list the most usual control requirements for a KBS language
together with the solutions adopted in Milord II.

Locality of Control: All explicit control mechanisms are specified lo-
cally to each module. This allows us to identify a module as the
complete description of a problem (or subproblem). The separation
between domain and control knowledge is a typical characteristic of
most KBS languages to offer a clear and declarative programming
style.
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Specificity versus generality: To solve problems, human experts are
able to reason at different levels of precision depending on the
amount of data at hand. For instance, a physician cannot always
gather all the relevant data to make a complete and accurate diag-
nosis. This is the case, for example, when a patient is in a coma and
thus the physician cannot pose him any question. Nonetheless, the
physician has to make a diagnosis, although it may be provisional.
To represent these situations Milord II provides the knowledge
engineer with two different control options:

− To write rules with different levels of specificity (using more
or less information, that is, putting more or less conditions)
deducing the same conclusion with possibly different levels of
belief. To deal with this kind of rules, Milord II extends the
concept of subsumption by associating sets of partial labels
to the rules. This technique guarantees the use of the more
specific knowledge whenever possible.

− To encode default-like rules (by means of meta-rules) that
generate plausible assumptions to be used when a piece of
relevant information is missing (see Section 9).

Avoidance of unnecessary work: Milord II takes advantage of the
specialization deductive mechanism [10, 11] to eagerly detect when
a rule cannot increase the certainty on a conclusion. When a rule
is applied, Milord II’s engine decides whether other rules with the
same conclusion can increase its certainty or not. If not, they are
removed.

Locality of threshold: In some cases knowledge engineers are inter-
ested in programming modules whose deduced predicates are only
useful if their certainty is above a minimum truth level. This is
done by declaring a threshold local to each module. Whenever a
rule gets, by specialization, a truth interval with its minimum value
below the module threshold, it is removed.

Flexibility in data gathering: Given a query to a module, different
strategies for the module to get an answer can be used. The differ-
ent evaluation strategies of Milord II determine how and in which
order the necessary external information is gathered.

Declarativity of Control: Milord II Horn-like meta-rules are used as
a declarative language to implement several control actions, e.g.
elimination of rules, generation of plausible assumptions, dynamic
changing of the modules hierarchy or dynamic creation of modules.
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The detailed description of the different implicit and explicit control
mechanism of Milord II is structured in this Chapter as follows. In
Section 2 we present a general picture of the whole control structure.
Sections 3 through 8 are devoted to describe the different Milord II con-
trol mechanisms, that is, the object level process, the upwards reflection
operation, the meta-level process, the downwards reflection operation
and the communication among modules respectively. In Section 9 two
reasoning tasks are implemented using some of the previously presented
control mechanisms.

2. Milord II overview

A Milord II KB consists of a hierarchy of modules, each module con-
taining different kinds of knowledge, structured as sketched in Figure 2.

From a logical point of view, a module is composed of an Object
Level Theory (OLT) and a Meta Level Theory (MLT). The OLT is gen-
erated by a set of rules which are specified in the Deductive Knowledge
definition. These rules are formulas belonging to the Object Level Lan-
guage OLn, a propositional language based on many-valued semantics.
Formulas of this language are of the form (r, V ), where r is a Horn-
like rule and V is an interval of truth values belonging to a finite and
totally ordered set of values, also specified in the module declaration.
Deduction in the object level language, denoted `O, is mainly based
on a specialization inference rule, a straightforward generalization of
the many-valued version of Modus Ponens, which allows to simplify
rules as soon as we know truth-intervals for any of their conditions.
On the other hand, the MLT is generated by a set of meta-rules which
are specified in the Deductive Control definition. These meta-rules
are formulas of the Meta Level LanguageMLn, a restricted first order
classical language of Horn rules. Variables in meta-rules, if any, are
considered universally quantified. Deduction at the meta level, denoted
by `M, is based on Modus Ponens and particularization. The overall
reasoning process of a module consists on reasoning at each level and
interacting between both levels. This process produces a sequence of
modifications over the initial OLT and MLT. For a deeper insight of
Milord II modules, the reader is again referred to [4, 14].

From an operational point of view, a module can be identified with
a process attached to it, used to compute values (truth intervals) for
all the propositions and variables contained in its export interface.
Namely, a module execution consists of the reasoning process necessary
to compute the values for the propositions and variables in the export
interface the user queries about. The execution of a module can possibly
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activate the execution of submodules in the hierarchy. These executions
only interact with the parent module through the export interface of
the submodules, giving formulas back as result. It is worth noticing
that the interaction is made only at the object level.

Begin
Hierarchy of submodules

Import: ...
Export: ...
Deductive knowledge

Dictionary: ...
Rules: ...
Inference System: ...

Truth-values: ...
Connectives: ...
Renaming: ...

end deductive
Control knowledge

Evaluation Type: ...
Truth Threshold: ...
Deductive Control: ...
Structural Control: ...

end control
end

Figure 2. Knowledge components of a module.

Conceptually, the execution of a module involves two deductive
subprocesses, object and meta-level, that act as co-routines, and three
operations. Two of them, upwards reflection and downwards reflection,
are resume-type operations between the co-routines that, besides acting
as resuming operations, modify the knowledge used by the deductive
subprocesses. The third operation is the communication with the user
and/or other modules that has the effect of adding new formulas to
the object-level co-routine. Figure 3 shows the structure of a module
and the relations between its components. Besides that, the module
evaluation type determines in which way subprocesses and operations
are combined to get the global control behaviour of a module execution.

Next we succinctly describe each one of the above mentioned pro-
cesses and operations.

Object Level Process: This process uses as data the set of propo-
sitional variables and rules of the module possibly updated by
the previous downwards reflection and communication operations.
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Figure 3. A: structure of the components of Milord II module process. B: Co-routine
view of a module process.

With this data and a goal to be solved, the task of the process is to
obtain a value for the goal and potentially for other propositional
variables of the module. Obtaining a value for a propositional
variable can be done in one of the following ways1: by using the
communication operation, either by querying the user (when the
propositional variable is declared as Import) or querying a sub-
module (when the propositional variable belongs to the export
interface of a submodule); or by deduction when the propositional
variable is the conclusion of a rule. To do so, the process follows
the rule specialization algorithm with two implicit control mecha-
nisms, namely the subsumption and the elimination of unnecessary
rules, and a parametric control mechanism, the truth-threshold rule
elimination.

The type of evaluation determines when the control is passed to
the upwards reflection or to the communication operations.

Upwards Reflection Operation: This operation translates a subset
of the current object level formulas in the object process to meta-
predicate instances in the meta-level process. Once the operation
concludes, the meta-level process is resumed.

Meta Level Process: The meta level process takes as input the set
of meta-rules of a module and the set of meta-predicate instances

1 Actually there are other ways such as functional evaluation—in the case of
propositional variables with an attached function—or constrain propagation, but
they are out of the scope of this paper.
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generated by the upwards reflection operation, together with the
meta-predicate instances that had been previously deduced. The
process then makes use of a forward inference engine with a depth-
first control strategy, following the writing order of meta-rules. The
stop condition is the impossibility of applying any meta-rule. In
that case, the process resumes the object level process through the
downwards reflection operation.

Downwards Reflection Operation: This operation is the dual of
the upwards reflection one. It translates formulas from the meta-
level process into the object level one and executes the actions
determined by the meta-level process. When the translation is
finished, the object level process is resumed. Special mention has
to be made when an instance of the action Assume is applied.
In this case, as many extensions of the meta-theory MLT as ele-
ments in the argument of the Assume action are generated (see
Figure 4). These extensions conform a tree of MLTs. Every time
an Assume action is executed a new branching is added to this
tree. Whenever a Resume action is executed, a backtracking in
that tree is performed and the computation is resumed. This is
how the declarative backtracking mechanism (see Section 7) is
implemented.

Communication: This operation is used to add new formulas to the
object-level process either from the external user or from other
modules of the KB. The evaluation type determines when this
operation is to be applied.

The control mechanisms determine the algorithmic behaviour of
the processes themselves or just the way processes and operations are
combined. The combination of the previous processes and operations
is done by the explicit declaration of the evaluation strategy inside
each module. In Milord II there are three evaluation strategies: lazy,
eager and reified. Each one of them produces a different behaviour.
On the one hand, the lazy and eager evaluation types are opposite
strategies about how to obtain external data (from the user and/or from
its submodules). The lazy strategy always tries to use the minimum
information while the eager strategy makes use of as much information
as possible.

In the following algorithmic descriptions of the evaluation strategies,
OLP stands for object level process and MLP for meta level process.

Lazy: A module with lazy evaluation finds the cheapest path to com-
pute a solution for a goal, that is, no irrelevant data will ever
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Figure 4. Module processes and operations. Assume and Resume actions.

be gathered. The control used in the module to answer a query,
in a simplified view, is a loop over first finding the next relevant
propositional variable to look for a value and then specializing the
deductive knowledge. This cycle is repeated until the goal is solved
or no more relevant questions exist. This is the evaluation strategy
used by default.

Given a query to a lazy module, the control flow of the module
process is the following one2:

1. [OLP ] If the goal has already a value, STOP.

2. [OLP ] Otherwise, depending on the kind of goal, it performs
one of the next steps in order to get a value for it.

a) Submodule goal. If the goal is a path to a submodule of the
current module, and if that submodule is visible3, then call
the communication operation with this goal (the commu-
nication operation will call the submodule object process
to solve the goal).

b) Goal belonging to the import interface. Call the communi-
cation operation with this goal (the communication oper-
ation will query the user to give a value for the goal).

2 A symbol between square brackets stands for the name of the active process in
which the algorithm step is performed

3 Submodules can be hidden by a refinement operation between modules [3]. This
kind of operation is out of the scope of this paper.
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c) Goal with a function attribute. Now the evaluation of the
goal depends on the evaluation of the function associated
to the propositional variable. If there are arguments of the
function with no value, call recursively the lazy algorithm
over them from left to right. When all arguments have
values, evaluate the function.

d) Goal that can be deduced by means of rules. In this case
we start a depth-first search on the rules of the module de-
ducing the goal to look for a propositional variable without
value. The search algorithm orders rules according to the
following criteria, in order of preference.

i) More specific rules first. We try to find solutions by
first using the more specific rules—those with less con-
ditions.

ii) More precise rules first. A rule is more precise than
another when its truth-value interval is more precise.
Notice that this order can change during the execution
because of the specialization of rules.

iii) The writing order of rules.
To evaluate the conditions of a selected rule, the search
strategy follows the writing order of the conditions (left
to right), in a depth-first manner. Finally, call recursively
the lazy algorithm with the above mentioned propositional
variable as a subgoal.

Notice that the algorithm finally returns a path to a submodule
of the current module, a propositional variable belonging to its
import interface, or a propositional variable with a evaluable
function associated to it, and its associated value.

3. [OLP ] Specialization of rules
4. [OLP ] Call the reification operation
5. [MLP ] The meta level fires all possible meta-rules.
6. [MLP ] Call the reflection operation
7. [OLP ] If the reflection operation does not modify the object

level set of formulas GOTO 1, otherwise GOTO 3.

Notice that this algorithm always provides the goal with a value
since, in the worst case, it will get the value unknown, which
corresponds to the maximum imprecision interval.

Eager: An eager strategy asks the user for all the variables and propo-
sitions declared in the Import interface of the module and queries
all the exportable propositional variables of its submodules as well.
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Given a query to a module with an eager evaluation, the control
flow of the module process is the following one:

1. [OLP ] If the goal has already a value, STOP.

2. [OLP ] Otherwise, call the communication operation as many
times as necessary to get values for all imported propositional
variables in their writing order.

3. Steps 3, 4, 5 and 6 of the Lazy evaluation algorithm.

4. FOR each submodule DO (Submodules are ordered by their
writing order).

a) [OLP ] call the communication operation to get values for
all the submodule exportable propositional variables used
in the rules or meta-rules of the module.

b) Steps 3, 4, 5 and 6 of the Lazy evaluation algorithm.

END FOR

5. [OLP ] If the goal has already a value, STOP.

6. Steps 3, 4, 5 and 6 of the Lazy evaluation algorithm.

7. [OLP ] GOTO 4

Reified: This kind of evaluation strategy does not differ from the eager
one in the way of gathering data. The main difference of a reified
strategy with respect to both lazy and eager strategies is that
the specialization mechanism of the object level is not used at
all. Therefore, deduction is only performed at the meta-level pro-
cess. The motivation behind this evaluation strategy is to provide
module designers with the possibility to define meta-interpreters.

3. Object level process

3.1. Object-level deduction

Milord II provides the user with approximate reasoning capabilities
at the object level. The approximate reasoning mechanisms are based
on the use of a finitely-valued fuzzy (or many-valued) logic. Before
describing the logical deduction system, and for the sake of a better
understanding, we first outline the semantics behind it.

A particular many-valued logic can be specified inside each mod-
ule by defining which is the algebra of truth-values, i.e. which is the

dynamics.tex; 30/03/2001; 9:26; p.10



11

(finite) ordered set of truth-values and which is the set of logical op-
erators associated to them. Formally speaking, a Milord II algebra
of truth-values An,T = 〈An,≤, Nn, T, IT 〉 is a finite linearly ordered
residuated lattice with a negation operation. In plain words, the set
of truth-values An = {0 = a1 < a2 < ... < an = 1} is a chain of n
elements where 0 and 1 are the booleans false and true respectively; the
negation operation Nn is the involution in An, i.e. Nn(ai) = an−i+1;
the conjunction operator T is a t-norm, i.e. a binary, commutative,
associative and non-decreasing operation on A − n with 1 as neutral
element and 0 as null element; finally IT is the residuum of T , i.e.
defined as IT (a, b) = Max{c ∈ An | T (a, c) ≤ b}, and it is used to
model a many-valued implication. As it is easy to notice from the
above definition, any of such truth-values algebras is completely de-
termined as soon as the set of truth-values An and the conjunction
operator T are chosen. So, varying these two characteristics we gen-
erate a family of different multiple-valued logics. For instance, taking
T (ai, aj) = amin(i,j) or T (ai, aj) = amin(n,n−i+j) we get the well-known
Gödel’s and  Lukasiewicz’s semantics (truth-tables) for finitely-valued
logics [5, 6, 8, 7].

In a given module, and thus for a given truth-value algebra An and a
set of propositional variables ΣO, the set OLn of object-level formulas
consists of:

− OLn-Atoms: {(p, V ) | p ∈ ΣO}

− OLn-Literals: {(p, V ), (¬p, V ) | (p, V ) ∈ OL-Atoms}

− OLn-Rules: {(p1 ∧ p2 ∧ · · · ∧ pn → q, V ∗) | pi and q are literals
(atoms or negations of atoms) and ∀i, j(pi 6= pj , pi 6= ¬pj , q 6=
pj , q 6= ¬pj)}

where V and V ∗ are intervals of truth-values. Intervals V ∗ for rules are
constrained to be upper intervals, i.e. of the form [a,1], where a > 0.
That is, object level formulas are indeed signed formulas under the
form of pairs of usual propositional formulas (restricted to be literals
or rules) and intervals of truth-values.

The semantics is obviously determined by the connective operators
of the truth-value algebra An,T . Interpretations are defined by valu-
ations ρ mapping the (propositional) sentences to truth-values of An
fulfilling the following conditions4:

4 The expression T (r1, r2, r3, . . .) is the recurrent application of T as
T (r1, T (r2, T (r3 . . .))).
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ρ(true) = 1,
ρ(¬p) = Nn(ρ(p)),
ρ(p1 ∧ . . . ∧ pn → q) = IT (T (ρ(p1), . . . , ρ(pn)), ρ(q)).

Then the satisfaction relation between interpretations andOLn-formulas
is defined as

ρ |=O (ϕ, V ) iff ρ(ϕ) ∈ V

and it is extended to a semantical entailment between sets of OLn-
formulas and OLn-formulas as usual:

Γ |=O (ϕ, V ) iff ρ |=O (ϕ, V ) for all ρ such that ρ |=O A, for all A ∈ Γ.

Once the semantics is clear, we come to the (syntactical) deduction
system which is implemented in each module. The Many-valued Spe-
cialisation Calculus (Mv-SC for short) is defined by the following
axioms:

− A1: (ϕ, [0, 1])

− A2: (true, 1)

and by the following inference rules:

− Weakening: from (ϕ, V1) infer (ϕ, V2), where V1 ⊆ V2

− Not-introduction: from (p, V ) infer (¬p,N∗(V ))

− Not-elimination: from (¬p, V ) infer (p,N∗(V ))

− Composition: from (ϕ, V1) and (ϕ, V2) infer (ϕ, V1 ∩ V2)

− Specialization: from (pi, V ) and (p1 ∧ · · · ∧ pn → q,W ∗) infer
(p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn → q,MP ∗T (V,W ∗))

where N∗n([a, b]) = [Nn(b), Nn(a)] is the point-wise extension of Nn to
intervals and MP ∗T (V,W ∗) is defined as follows: MP ∗T ([a, b], [c,1]) =
[T (a, c),1]. In [11] it is shown that this deductive system is sound with
respect to the above semantics and complete for deriving OLn-atoms.
Object-level deduction will be denoted by `O.

3.2. Object Level Control Mechanisms

3.2.1. Subsumption mechanism
When expressing the deductive knowledge of a module, experts might
write different rules concluding the same propositional variable to rep-
resent the possibility of either:
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− having different unrelated sets of conditions entailing that propo-
sitional variable, or

− having different sets of conditions related by an inclusion relation
that may allow concluding that propositional variable (with differ-
ent certainty values). Subsumption is the mechanism that ensures
that only the most specific sets of conditions will be used.

The widely accepted subsumption criterion is to use always the more
specific knowledge in the deductive process. This idea is made precise
in the following general definition.

DEFINITION 1. (Subsumption). Given a knowledge base KB and two
rules R1 : (A1 → B,α1) and R2 : (A2 → C,α2) where B and C are
literals over the same propositional variable, we say that rule R1 is
more specific than rule R2 if, taking for granted the set of formulas in
KB, whenever A1 is true A2 is also true, that is, when

KB |= A1 → A2

In the particular multi-valued logical framework of Milord II this
definition can be expressed as ρ(A1 → A2) = 1, for all many-valued
interpretation ρ such that ρ |= KB. By definition of the implication
connective as a residuum, the condition ρ(A1 → A2) = 1 is equivalently
expressed as ρ(A1) ≤ ρ(A2).

This criterion can be described in terms of the set of labels—non
deducible propositional variables needed to apply the rule—associated
to each premise. Namely, it can be checked that, in the conditions of
the above definition, rule R1 is more specific than rule R2 if for each
label Li of A1 there is a label Lj of A2 such that Li → Lj is a valid
formula. The condition |= Li → Lj reduces to the inclusionship of
labels Lj ⊂ Li.

For instance consider the following set of rules:
R1 : a ∧ b ∧ c ∧ d→ g
R2 : e ∧ f → g
R3 : c→ e
R4 : a ∧ b→ f

It is easy to see that there is a subsumption relation between the
rules R1 and R2. The set of non deducible propositional variables neces-
sary to apply the rule R1 is {a, b, c, d}, whilst for the rule R2 is {a, b, c}.
Therefore R1 is more specific than R2.

Due to the special deductive mechanism of Milord II, based on
specialization of rules, the subsumption relation changes as deduction
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progresses. This is so because the specialization mechanism reduces
the conditions in the premises of rules, and thus modifies the reference
KB used to compute labels. Because of that, Milord II incorporates an
algorithm that dynamically computes and completes partial labels, in
the sense that, the set of labels can be incomplete and even labels may
be incomplete.

3.2.2. Elimination of Unnecessary Rules
The maximum precision given to the conclusion of a rule is limited
by the truth interval of the rule. Consider a rule with certainty value
[ar, 1] and whose premise has been evaluated to the interval [ai, aj ].
Then, the interval associated to the concluded propositional variable
by the application of this rule is given by

MP ∗T ([ai, aj ], [ar,1]) = [T (ai, ar),1)] = [a′r,1] ,where a′r ≤ ar.

This consideration leads us to the following definition.

DEFINITION 2. A rule (A→ q, [ar,1]) is unnecessary for a proposi-
tional variable (q, [ai, aj ]) if ar ≤ ai. Similarly, a rule (A→ ¬q, [ar, 1])
is unnecessary for a propositional variable (q, [ai, aj ]) if ar ≤ Nn(aj),
where Nn is the negation operator.

Therefore we can easily test whether the remaining rules concluding
a propositional variable are still useful or not. This is what we call the
elimination of unnecessary rules process. The test is applied every time
a rule is specialized since the specialization mechanism broadens rule in-
tervals. This control technique allows us to save unnecessary deductions
as well as unnecessary information requirements and processing.

4. Meta-level process

4.1. Meta-level deduction

The meta-level language MLn, corresponding to an object-level lan-
guage OLn, is a restricted classical first order language. It is defined
from a set Σrel of predicate symbols including predicates K, P and WK
which play a special role in the reflection mechanism; a set Σact of action
symbols (inhibit rules, assume, resume, filter , stop and module); a set
Σfun of classical arithmetic function symbols; a set Σcon of constants
including the truth-values of An and object propositional variables of
ΣO; and a set Σvar of variable symbols5, which can be empty.

5 They are written with a $ before, for instance $x.
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Meta-level formulas are either ground literals, in a classical sense,
or rules of the type

{P1 ∧ P2 ∧ . . . ∧ Pn → Q | Pi, Q literals },

where each variable occurring in Q must occur also in some Pi. Vari-
ables in meta-rules, if any, are considered universally quantified. Quan-
tifiers are all outermost. Only the conclusion Q may contain action
symbols.

The semantics of the language is the classical of first order logic.
The meaning of the special predicates K, P and WK will be explained
in the next subsection along with the definition of the reification rules
which use them to represent object-level sentences.

Finally, the deduction system is based on only one (modus ponens-
like) inference rule:

from {P1 ∧ P2 ∧ . . . ∧ Pn → Q,P ′1, P
′
2, . . . , P

′
n} infer Q′

where P ′1, . . . , P
′
n are ground instances of P1, . . . , Pn respectively, such

that there exists a unifier σ for {P1∧P2∧. . .∧Pn, P ′1∧P ′2∧. . .∧P ′n}, and
Q′ = σQ is the ground instance of Q resulting from σ. The deductive
system of Milord II meta-level is thus not complete with respect to the
classical semantics we use for it. Nevertheless, the deduction mechanism
based on this single inference rule is powerful enough for our modelling
purposes. Meta-level Deduction will be denoted by the symbol `M.

4.2. Control Actions

Control actions may affect the deductive knowledge of a module by in-
hibiting rules and by branching and backtracking the reasoning process.
Control actions may also modify the hierarchy of a module by inhibiting
modules, or creating new ones. They can also abort the execution.

Inhibit Rules: This action takes out of the OLT a particular set of
rules. When we execute inhibit rules(pathpredid), all the rules
containing the propositional variable pathpredid in their premises
are removed. We can also inhibit all rules containing in their premises
propositional variables related to a given one.

Assume: The argument of this action stands for an ordered list of
possible assumptions to be made at the object level that can be
retracted later on.

Resume: It retracts the latest assumption performed.

dynamics.tex; 30/03/2001; 9:26; p.15



16

Filter: This action consists on inhibiting (filtering) a set of submodules
of the module. This means that all the propositions p exported by
the filtered submodules will be considered as being (p, unknown)

Stop: This is an abort action. In some cases it is necessary to abort
the execution when an unrecoverable situation holds.

Module: When a meta-rule concludes an instance of module, for exam-
ple module(= (A, B)), an action will be performed, at downwards
reflection time, to add a submodule named A and equal to B as the
last, in writing order, of the already existing submodules. B can be
any allowed modular expression, in particular, the application of a
generic module. Generic modules containing as control knowledge
meta-rule calls to themselves are allowed. This is the way recursion
can be defined inside Milord II [12].

Assume and Resume predicates deserve special attention because
they allow to define a backtracking mechanism in Milord II (see Sec-
tion 7), useful to model hypothetical reasoning.

5. Upwards Reflection Operation

The upwards reflection operation translates formulas from the current
OLT to the MLT in the form of meta-predicate instances. It relates
a sub-theory of the OLT with the set of ground literals of the meta-
language ML. The meta-predicate WK is used to relate the set of
object mv-literals with the set of ground meta-literals. Given that the
constant names used in the MLT are exactly the same as those used
in the OLT as proposition names, the quoting functions for literals are
omitted for the sake of simplicity. The same applies for the intervals
of truth-values. So we will write WK (p, V ) instead of WK (dpe), dV e).
The reification rules are:

(p, V ) ∈ OLT
`M WK (p, V )

(p, V ) 6∈ OLT
`M ¬WK (p, V )

(p1 ∧ p2 ∧ · · · ∧ pn → q, V ) ∈ OLT
`M WK (implies(and(p1, p2, · · · , pn), q), V )

The other two meta-predicates, K and P , used in the meta-level lan-
guage to represent the OLT state are definable from the meta-predicate
WK :

K(p, [ai, aj ]) ≡WK (p, [ai, aj ])∧¬WK (p, [ai+1, aj ])∧¬WK (p, [ai, aj−1])
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P (p) ≡WK (p, [a2, 1])

5.1. Other meta-predicates

Upwards reflection also contains programmer defined relations between
propositional variables, the threshold and the rules. Although the sub-
modules of a module are not persistent, the initial submodules are also
reified, as well as those that have been filtered.

Relations: When declaring a propositional variable in Milord II, it is
possible to establish a relation with another propositional variable,
in the same module or in a submodule. There is a set of system-
defined relations used for control. Other relations are domain de-
pendent and defined by programmers. The name of the relation
used in the definition of propositional variables, corresponds to a
binary meta-predicate identifier. The two arguments correspond to
the name of the propositional variables being related. For instance
the definition

p1 = name: ...
...
relation: relationid p2

becomes the next meta-predicate instance: relationid(p1, p2)

Threshold: A certainty threshold is treated as a meta-predicate in-
stance. There is an instance per module and one per each sub-
module: threshold(ai) and threshold(submodulej , ak).

Submodules: There is a meta-predicate called submodule which has
an instance per submodule (meta-predicate with only one argu-
ment), and an instance per sub-submodule (the same meta-predicate
name but with two arguments), that is, submodule(submodule1)
or submodule(submodule1, subsubmodule2).

Filtered: Instances of this meta-predicate represent the submodules
that have been filtered (removed) by meta-rules, filtered(submodule).
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6. Downwards Reflection Operation

The downwards reflection operation is responsible of making effective
at the object level the consequences of the deduced meta-predicate
instances.

K(p, V ) ∈MLT

`O (p, V )

The reflection operation modifies the data structure of the OLP to
make it causally connected, using the terminology of Patty Maes [9],
with the meta-predicate instances.

7. Declarative Backtracking

When a meta-rule with an Assume action in its conclusion is applied, as
many extensions of the meta-theory MLT as elements in the argument
set of the Assume action are generated. For instance, consider the case
where, in a certain moment, we have in the current object theory only
the literal

(p, 1)

and MLT consists of the following meta-rule:

If K(p, 1) and ¬P (q) then Assume({(q, 1), (q, 0)})

Suppose also that q could not be proved in OLT . Then, after the
upwards reflection process, the current MLT will be the extension
of the previous one with the ground literals K(p, 1) and ¬P (q). So,
now the above meta-rule can be applied, and this causes the system
to obtain the conclusion Assume({(q, 1), (q, 0)}). The meaning of the
action Assume is that the elements of its argument should be assumed
in different extensions of the current OLT . This is done by building
a tree of MLT s, each containing a K meta-predicate instance for all
the elements of the argument of Assume, implemented by a snapshots
stack. So in this case we obtain the following two different extensions
of the current MLT in Figure 5:

MLT1 = MLT ∪K(q, 1)

MLT2 = MLT ∪K(q, 0)

From now on, and until another instance of an Assume or Resume
action is obtained, the existing communication (upward reflection and
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MLT
K(p, 1)
¬P (q)

Assume({(q, 1), (q, 0)})

HH
HHH

HHj

MLT1

K(p, 1)
¬P (q)
K(q, 1)

��
���

���

MLT2

K(p, 1)
¬P (q)
K(q, 0)

Figure 5. Meta-theories branching using the Assume action.

downward reflection) between OLT and MLT is moved to a com-
munication between OLT and MLT1

6. Thus, in this case, after the
downward reflection process OLT is extended with (q, 1).

In order to backtrack in the tree of MLT s generated by successive
applications of Assume actions, the language provides a special 0-ary
predicate Resume. When a meta-rule concluding Resume is applied,
we perform a backtracking in the meta-theories tree. This backtracking
restores the parent MLT , and the current OLT becomes the OLT
which was active at the moment the assumptions were made by the
parent MLT . In the above example, backtracking from MLT1 to MLT
makes that q will not be true in the current OLT , and that immedi-
ately the communication (upward reflection and downward reflection)
between OLT and MLT is moved to a communication between OLT
and MLT2 (see Figure 6).

MLT
K(p, 1)
¬P (q)

Resume

@
@@R

MLT1

K(p, 1)
¬P (q)
K(q, 1)

�
��	

MLT2

K(p, 1)
¬P (q)
K(q, 0)

-

Figure 6. Backtracking using the action Resume.

It is worth noticing that actions Assume and Resume provide the
system with a declarative backtracking mechanism, similar to the ap-
proach taken in MetaProlog [1]. This declarative mechanism allows us
to implement several complex reasoning patterns. For instance, consider

6 Computationally speaking, MLT1 is managed by the same co-routine of
MLT but with a new snapshot in the stack containing the state of MLT plus
Assume({(q, 1), (q, 0)}).
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that an assumption was made at the meta-level. Whenever a contra-
diction occurs in OLT afterwards, we can declaratively detect it, and
then, by means of the Resume meta-predicate, we can move back to a
previous non contradictory OLT . This can be achieved by a meta-rule,
such as

If Assume($y) and K($x, ()7) then Resume

Assume instances can also be used as conditions to check whether an
assumption has been previously made. Meta-level theories keep track
of them to allow explicit reasoning about the assumptions active at
any moment. We can see the Assume action as a pointer (copy of
the state) we put in our reasoning process in order to retract what is
deduced from it later on, if necessary. An application of the mechanism
to a scheduling problem can be found in [14].

8. Communication Control Mechanisms

The last issue considered in this Chapter referring to control mecha-
nisms in Milord II concerns the communication operation. The object
level module process activates the communication operation to either
query the user or query some of the submodules. When the operation
queries the user, the result is the extension of the current OLT by a
propositional variable. However, the communication from a submodule
to its present parent module is governed by a set of inference rules
concerning the translation between the possibly different corresponding
local logics of the modules8, and the structural relations concerning the
hierarchy. Some of these rules are shown below.

`Oi (p, V )
`O (i/p, T (V ))

`Mi submodule(j)
`M submodule(i, j)

`Mi submodule(α, j)
`M submodule(i/α, j)

7 Notice that a contradiction in OLT occurs when OLT contains literals of the
form (p, V ) and (¬p, V ′) such that V ∩N∗n(V ′) = ∅. In this case the literal (p, ()) is
generated.

8 The system allows the specification of mappings between local logics in the sense
of renaming mappings T : An → I(Am) sending each truth-value of an algebra An
to an interval of truth-values of another algebra Am, extending in the obvious way
to intervals of An.
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`Mi eval type(a)
`M eval type(i, a)

The first rule translates object level formulas from the submodule
Oi to the module O. The second one informs the module O that its
submodule Oi has the module Oj as a submodule. The third one al-
lows us to propagate the KB structure through the module hierarchy.
Finally, the fourth rule informs the module O of the evaluation type of
its submodule Oi.

9. Examples of Complex Reasoning Tasks

9.1. Scheduling Reasoning System

This example is an excerpt of the detailed scheduling problem presented
in [14].

In general, to specify a complex reasoning system in Milord II it
is necessary to define a hierarchy of modules. This hierarchy captures
the usual task/subtask decomposition. However, in some cases it is
necessary to iterate over a set of subtasks (for instance, hypothesis as-
sumption, evaluation, and revision). The only way to perform iteration
in our language is through the reification/reflection mechanism. This
leads to understand the task/subtask decomposition in such cases as a
particular relation between the OLTs and the MLTs.

In this scheduling example we build a module in which we associate
to each variable a proposition identifier. The space of values for vari-
ables is understood in the proposed implementation as the set of truth
values of a particular multiple-valued logic. Requirements are expressed
as restrictions over the truth value assignments for these propositions.
Solutions to the scheduling problem are then considered to be truth
value assignments that fulfil the requirements.

In order to implement a scheduling task with a set of requirements
to be fulfilled, two modules must be defined:

Requirements module This module will contain the requirements
as meta-predicates over the propositions of the object level, i.e.
restrictions over the possible values that object level propositions
can take. These meta-predicates are defined in the dictionary of the
module. This module also defines the particular multiple-valued
logic for the object level. In the example there is no truth-values
combination, so selecting connectives is irrelevant.
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Design task Module This module contains the initial conditions of
the problem as object level rules, and the meta-rules that perform
the different subtasks of the scheduling process.

Each problem setting is determined by a number of tasks and a set
of constrains among them, and requires a particular requirements
module and a particular design task module. In order to be generic
all design task modules have been programmed with the MLT in
common. Thus, to build the actual module that will perform the
design, it is necessary to connect this particular generic design
task module with a concrete requirements module, so the former
can inherit the requirements of the problem from the later. It is
done in the following way, using the refinement operation9:

Module Example = Design : Requirements

9.1.1. Requirements Module
The requirements of the scheduler under study are:

− The number of tasks to be scheduled.

− The temporal constraint relations among them.

− The number of available time points to perform the tasks.

The tasks are represented as a set of object level propositionsA1, . . . ,
An, the temporal relations as meta-predicates over pairs of elements in
the set {A1, . . . , An}, and the number of time points time1, . . . , timeq
as the truth-values of the logic, which will be {false, time1, . . . , timeq,
true}.

In our particular case there are four types of constraints that we will
represent by four meta-predicates: before, equ, diff and notbefore.

1. before(x, y) means that activity x must occur before activity y.

2. equ(x, y) means that activities x and y must occur during the same
time period.

3. diff (x, y) means that activities x and y must not occur in the same
period.

9 A:B is a modular expression that generates a new module that results from
modifying A by adding elements inherited from B, such as dictionary or logic. See
for details [12].
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4. notbefore(x, y) means that activity x must not occur before activity
y.

9.1.2. Design Task Module
The implementation of the heuristic search to find a solution to the
scheduling problem, is done by defining a set of rules and meta-rules.
Rules are responsible for the initial attachment of the whole space
of values to the propositions and meta-rules are responsible for the
pruning of the search space.

For each proposition Ai representing a scheduling activity a rule like

R00i if true then conclude Ai is time1

has to be written in order to define the initial possible truth-values
for the propositions, i. e. the interval [time1, true]. These intervals
represent the root node of the search space. In general the truth-value
of the rules determine the initial time point to start the scheduling of
the corresponding activity. So initial conditions of the problem can be
stated just modifying the certainty values of these rules.

At the meta-level, for each possible constraint violation a meta-rule
is written, having as premise a set of conditions that are true when a
particular constraint is violated, and as conclusion “how” to restrict the
set of possible values for one activity in such a way that the violation is
solved. That is, the meta-rule cuts off a set of children states. Meta-rules
can be of two types depending on the violation:

1. Meta-rules that restrict the possible values of propositions in such
a way that there is no need for backtracking, i.e. only one child
remains. This is the case of requirements of type before, equ and
notbefore. These meta-rules use the K meta-predicate in their con-
clusion. An example of such a meta-rule for the before requirement
is:

M002 if before($x,$y) and K($x,int($z,true))
and K($y, int($w,true)) and ge($z,$w)

then conclude K($y, int(suc($z),true))

2. Meta-rules that perform branching, i.e. two children remain. This
is the case of constraints of type “diff”. These meta-rules have the
action Assume in their conclusion. Example:

M005 if diff($x,$y) and K($x,int($z,true))
and K($y,int($z,true)) then

Assume(list(($x,int(suc($z),true)), ($y,int(suc($z),true))))
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A special meta-rule is also needed to detect when no solution is
found, and then in that case to backtrack. This situation can be
detected when a proposition gets the interval [true, true] as follows:

M001 if K($x,int(true,true)) then Resume

When the search space is exhausted and no solution is found, this
situation reflects that the set of constraints is inconsistent.

9.1.3. Code of the example
Here we present the complete code of the scheduling module for a set
on 4 tasks to be scheduled (see Figure 7). The set of constraints is
specific for each example test10.

To use the scheduler in a test example we define a module re-
quirements which contains the meta-predicates defining the relations
between the propositions at the object level, and the set of truth-values
representing the admissible time points (see Figure 8).

Now, as said before, using the inheritance property of the operator
“:”, we define the module that performs a scheduling of four tasks,
module scheduler test, with a particular set of requirements, defined in
requirements.

Module Scheduler test = scheduler : requirements

Now, let’s see the execution trace of the module Scheduler test:

1. Initially OLT deduces the interval [t1,true] for all the propositions
A1-A4 by means of rules R001-R004. Upwards reflection operation
introduces the following set of predicates into MLT:

K(Ai,int(t1,true)), for i = 1, 2, 3, 4.

For the sake of simplicity, in the following we will consider only the
minimum value of the interval of truth-values of propositions. This
initial situation and all the meta-level processes are represented in
Tables I to III.

10 In the Meta-rules, it is possible to use some system-defined meta-predicates such
as: ge (greater or equal), lt (lower than), gt (greater than). The meta-predicates ge,
lt, gt can be applied over the order of the truth-values of the local logic, or over the
real numbers. It is also possible to perform operations on top of the truth-values,
such as suc (successor function), that have to be understood in the context of an
ordered set of truth-values.

dynamics.tex; 30/03/2001; 9:26; p.24



25

Module Scheduler =
Begin

Export A1, A2, A3, A4
Deductive knowledge

Rules:
R001 if true then conclude A1 is t1
R002 if true then conclude A2 is t1
R003 if true then conclude A3 is t1
R004 if true then conclude A4 is t1

Inference system:
Truth values = (false, t1, t2, t3, true)

end deductive
Control knowledge

Evaluation type: eager
Deductive control:
;; If a propositional variable gets the maximum value
;; no solution can be found.
M001 if K($x,int(true,true))

then Resume
;; X before Y.
M002 if before($x,$y) and K($x,int($z,true))

and K($y, int($w,true)) and ge($z,$w)
then conclude K($y, int(suc($z),true))

;; X equal Y
M003 if equ($x,$y) and K($x,int($z,true))

and K($y,int($w,true)) and gt($z,$w)
then conclude K($y, int($z,true))

;; X not before Y
M004 if notbefore($x, $y) and K($x,int($z,true))

and K($y,int($w,true)) and lt($z, $w)
then conclude K($x, int($w,true))

; X different Y
M005 if diff($x,$y) and K($x,int($z,true))

and K($y,int($z,true)) then
Assume(list(($x,int(suc($z),true)), ($y,int(suc($z),true))))

end control
end

Figure 7. Scheduler module declaration.
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Module Requirements =
Begin

Export A1, A2, A3, A4
Deductive knowledge

Dictionary:
Predicates:

A1 = Name: “A1” Type: many-valued
Relation: notbefore A4

A2 = Name: “A2” Type: many-valued
A3 = Name: “A3” Type: many-valued
A4 = Name: “A4” Type: many-valued

Relation: before A2
Relation: before A3
Relation: diff A1

Inference system:
Truth values = (false, t1, t2, t3, true)

end deductive
Control knowledge

Evaluation type: eager
end control

end

Figure 8. Requirements module declaration.

Table I. First assumption.

← 1 → ← 2 → ← 3 →

t1 t2 t3 t1 t2 t3 Assume t1 t2 t3

A1 A1 A1

A2 M002 ⇒ A2 A2

A3 M002 ⇒ A3 A3

A4 A4 M005 ⇒ A4

2. Table I represents a part of the meta-level process until the first
assumption is generated. Meta-rule M002 is used two times consid-
ering the relations “A4 before A2” and “A4 before A3”, increasing
the value of the propositional variables A2 and A3.
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3. Meta-rules M003 and M004 cannot be fired. Given the relation “A4
diff A1” and that A4 and A1 have the same value, an assumption
is produced by meta-rule M005:

Assume(list((A4,int(t2,true)), (A1,int(t2,true))))

first the value t2 is assumed for A4.

4. Similarly to the previous meta-level process, Table II represents
meta-rule actions until a new assumption is performed. M002 in-
crease again the values of A2 and A3.

Table II. Second assumption.

← 4 → ← 5 → ← 6 →

t1 t2 t3 t1 t2 t3 Assume t1 t2 t3

A1 M004 ⇒ A1 A1

M002 ⇒ A2 A2 A2

M002 ⇒ A3 A3 A3

A4 A4 M005 ⇒ A4

5. Now a matching occurs for meta-rule M004 because of the relation
“A1 notbefore A4”, producing a new value for A1.

6. Given that A4 and A1 have the same value, a new assumption is
performed by meta-rule M005:

Assume(list((A4,int(t3,true)), (A1,int(t3,true))))

first the value t3 is assumed for A4.

7. Table III represents a new cycle of the meta-level process until a
resume operation is performed. Now meta-rule M002 increase again
the value of A2, making it equal to true (represented as * in the
table).

8. Given that the value for A2 is true, a matching is possible for
meta-rule M001 producing a resume operation. Remember the last
assumption:

Assume(list((A4,int(t3,true)), (A1,int(t3,true))))

now the value t3 is assumed for A1, and A4 return to the previous
value, t2.

Now no meta-rules can be applied, and the solution is found.
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Table III. Resume.

← 7 → ← 8 →

t1 t2 t3 Resume t1 t2 t3

A1 M001 ⇒ A1

M002 ⇒ * A2

A3 A3

A4 M001 A4 ⇐

9. Finally downwards reflection operation assigns to the propositions
of OLT the solution result:

{(A1,[t3,true]),(A2,[t3,true]),(A3,[t3,true]),(A4,[t2,true])}

Notice that if the we invert the relation “A4 diff A1” in the code
of requirements module an equivalent solution is obtained without any
assumption.

9.2. A General Method for solving a class of Default

Reasoning problems

In this section we describe, through an example, a simple approach
implemented in Milord II to tackle some of the usual problems in
defeasible reasoning, such as inheritance, irrelevance and specificity,
in a restricted propositional framework.

Consider the following well-known set of defeasible rules:

B → F, P → B,P → ¬F

The intended behaviour of this set of rules is to infer ¬F given P , to
infer F given B, and to infer B given P .

The implementation in Milord II makes use of three modules. The
module Penguin (see Figure 9) defines an object level component with
the following characteristics:

− For those propositional variables with contradictory default con-
clusions a couple of extra propositional variables (in this case FPos
and FNeg) that will accumulate the evidence for the particular sign
coming from eventually different deductive paths. These proposi-
tional variables are related through two relations named supports
and distracts.
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Module Penguin =
Begin

Import P, B
Export F
Deductive knowledge

Dictionary:
Predicates:

B = Name: “Bird” Type: many-valued
P = Name: “Penguin” Type: many-valued
F = Name: “Flies” Type: many-valued
FPos = Name: “Flies+” Type: many-valued

Relation: supports F
FNeg = Name: “Flies-” Type: many-valued

Relation: distracts F
Rules:

R001 If B then conclude FPos is d
R002 If P then conclude B is d
R003 If P then conclude FNeg is d

Inference system:
Truth values = (0, dd, d, 1)
Conjunction = min
Modus ponens = Truth table:

((0 0 0 0)
(0 0 0 dd)
(0 0 dd d)
(0 dd d 1))

End Deductive
End

Figure 9. Module Penguin.

− Default rules are written as object level rules with truth-value d,
one degree below the maximum one (see next point). Notice that all
three rules in the example are considered as default rules, although
rules P → B and P → ¬F could be considered as well as strict
rules and have attached maximum truth-value 1.

− A local logic with as many truth-values as the maximum path in the
deductive trees associated to exportable propositional variables.
In the current example we take as {0 < dd < d < 1} as truth-
value set. The combination of conditions (conjunction declaration)
is done with the min operator. So, shorter paths win. The truth
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table for the modus ponens operation11 corresponds to the so-called
 Lukasiewicz t-norm and has the characteristic of “counting” the
number of applied defaults because it makes the minimum interval
value decrease by one term (look at the third column or row in the
table).

− At the end of a deductive process, by specialization, the value of the
coupled propositional variables is an interval with the minimum
value as low as the maximum number of default rules applied to
get it.

Module Default interpreter =
Begin

Control knowledge
Evaluation type: eager
Deductive control:
M001 If K($x, int($min1, $max1)) and supports($x, $y)

and distracts($z, $y) and K($z, int($min2, $max2))
and gt($min1, $min2))
then conclude K($y, int(1,1))

M002 If K($x, int($min1, $max1)) and supports($x, $y)
and distracts($z, $y) and K($z, int($min2, $max2))
and lt($min1, $min2))
then conclude K(not($y), int(1,1))

Structural control:
M001 If K($x, $cert) and supports($x, $y)

and distracts($z, $y) and K($z, $cert)
then abort

End control
End

Figure 10. Default Interpreter module.

The Default interpreter module (see Figure 10) contains a generic
control able to manage any module containing default rules written in
the way outlined in the module Penguin. The connection between the
default interpreter module and any containing default rules is done as
in the declaration of the module Solution (see Figure 11). The Union
module operation, constructs a new module from two other modules by
performing the union component by component. In this example from
the modules Penguin and Default interpreter. Whenever the union is

11 In this example the algebra of truth-values is different for that defined in
Section 3, here defining explicitly the modus ponens operator.
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not feasible an error is raised, for example, when trying to make the
union of two modules with different local logics. Once connected, the
Default interpreter module and the Penguin module, the new module
acts as a module having the deductive knowledge of module Penguin
and the control knowledge of module Default interpreter. So the ex-
ecution of Solution acts in the following way, because of the eager
interpretation defined in Solution:

Module Solution = Union (Penguin, Default interpreter)

Figure 11. Solution module.

− P and B are queried to the user. Let suppose P is true.

− An upwards reflection step is performed. Nothing can be deduced.

− FPos and FNeg are deduced. Fpos will have an interval with a
minimum value lower than FNeg because two rules were necessary
to deduce it. Given (P, [1, 1]) and using modus ponens we get
(FPos, [dd, 1]) and (FNeg, [d, 1]).

− An upwards reflexion is performed with K(FPos, int(dd, 1)) and
K(FNeg, int(d, 1)). M002 is applied and K(not(F ), int(1, 1)) is
concluded.

− Downwards reflection produces: (F, [0, 0]). As expected penguins
don’t fly.

9.3. A Legal Problem: Default Reasoning

This example is borrowed from Brewka [2] and it is based on the next
statements :

− According to Uniform Commercial Code (UCC) a security interest
in goods is perfected by taking possession of the collateral.

− According to Ship Mortgage Act (SMA) security interest in a ship
may only be perfected by filing a financing statement.

− UCC is state law, SMA federal law. UUC is more recent than SMA.

− The principle Lex Posterior gives precedence to newer laws.

− The principle Lex Superior gives federal law precedence over state
law.
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− Miller has possession of a certain ship but did not file a financing
statement.

We are interested in formalizing this example in such a way that
we can answer negatively the question Is Millers’ security interest
perfected?

In [2] default logic is enriched by allowing to represent priorities
among defaults and reasoning about them. In this formalism, defaults
are referenced by a unique name identifier, and preferences among
defaults are encoded by a strict partial order, noted <, in the set of
default names. This preferences are used then to eliminate all those
Reiter extensions which are incompatible with the priority information
they contain.

Using Brewka’s approach, the previous statements are represented
as follows.

Defaults:
UCC : possession→ perfected
SMA : ship ∧ ¬financial–statement→ ¬perfected
LP (di, dj) : more–recent(di, dj)→ di < dj
LS(di, dj) : federal–law(di) ∧ state–law(dj)→ di < dj

Propositional variables and relations:
possession
ship
¬financial–statement
more–recent(UCC, SMA)
federal–law(SMA)
state–law(UCC)

The set of Reiter extensions would be:

E1 = Th(W ∪ perfected, UCC < SMA)
E2 = Th(W ∪ ¬perfected, UCC < SMA)
E3 = Th(W ∪ perfected, SMA < UCC)
E4 = Th(W ∪ ¬perfected, SMA < UCC)

The only extensions compatible with the priority information defined
so far are E1 and E2. If we add the next priority information

LS(x, y) < LP (y, x)

the conflict is solved in favour of E4.
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In Figure 12 an implementation of this example in Milord II is
presented12. Let us comment the more relevant aspects of the code.

− Object level rules are used to model the verification of the condi-
tions of UCC and SMA laws. When they are verified, rules deduce
object level predicates named UCC and SMA with the value s (for
sure), meaning true in the many-valued logic used by default in
Milord II.

− Most important elements are in the meta-level. The first five meta-
rules (M001-M005) model, in a straightforward manner, the LP
and LS preference criteria.

− The last two meta-rules model the defaults. For example M006
says: If it is known that the conditions of the UCC law are fulfilled,
UCC with truth-value true, and there are no laws preferred to UCC
with their conditions fulfilled, and it is not known the negation of
the propositional variable perfected, then the propositional variable
perfected can be assumed.

− The eager evaluation mechanism starts by querying the user about
possession, ship and financial-statements in this order, then ap-
plies, if possible, the object level rules, upwards reflect, and deduces
at the meta-level. Let us follow a trace:

1. Possession? true

2. Ship? true

3. Financial statements? false

4. OL deduction gets: (ucc, [s, s]) and (sma, [s, s])

5. Upwards reflection produces:K(ucc, int(s, s)),K(sma, int(s, s)),
more recent(ucc, sma), law(sma, federal), law(ucc, state), and
other irrelevant meta-predicates.

6. M001 applies getting: LP (ucc, sma)

7. M002 applies getting: LS(sma, ucc)

8. M003 applies getting: preferred(LS(sma, ucc), LP (ucc, sma))

9. M004 fails, $list is not nil

10. M005 applies getting: preferred(sma, ucc)

11. M006 fails, $list is not nil
12 The meaning of set of instances(var1, expression, var2) is the following:

given an expression containing the variable var1, the variable var2 will be bound
to a list containing all the instances of var1 that make the expression true.

dynamics.tex; 30/03/2001; 9:26; p.33



34

Module Legal =
Begin

Import possession, ship, financial statements
Export perfected
Deductive knowledge

Dictionary:
Predicates:
Perfected = Name: “Perfected” Type: many-valued
Possession = Name: “Possession” Question: “Possession?”

Type: boolean
Ship = Name: “Ship” Question: “Ship?” Type: boolean
fin stat =Name: “Financial Statements” Type: boolean

Question: “Financial Statements?”
SMA = Name: “SMA” Type: boolean Relation: law federal
UCC = Name: “UCC” Type: boolean

Relation: law state Relation: more recent SMA
Federal = Name: “Federal” Type: class
State = Name: “State” Type: class
Rules:
R001 if possession then conclude UCC is s
R002 if ship and no(fin stat) then conclude SMA is s

End deductive
Control Knowledge

Evaluation type: eager
Deductive control:
M001 if more recent($y, $z) then conclude LP($y,$z)
M002 if law($y, federal) and law($z, state)

then conclude LS($y, $z)
M003 if LS($x, $y) and LP($y, $x)

then conclude prefered(LS($x, $y), LP($y, $x))
M004 if more recent($y, $z) and

set of instances($x, prefered($x,LP($y,$z)), $list)
and equal($list,nil) then conclude prefered($y, $z)

M005 if law($y,federal) and law($z, state) and
set of instances($x,prefered($x,LS($y,$z)), $list)
and equal($list,nil) then conclude Prefered($y, $z)

M006 if K(UCC, int(s,s)) and
set of instances($x,conj(prefered($x, UCC),

K($x, int(s, s))), $list) and equal($list, nil)
and no(K(not(perfected), int(s,s)))

then conclude K(perfected, int(s,s))
M007 if K(SMA, int(s,s)) and

set of instances($x,conj(prefered($x, SMA),
K($x, int(s, s))), $list) and equal($list, nil)

and no(K(perfected, int(s,s)))
then conclude K(not(perfected), int(s,s))

End control
End

Figure 12. Legal module declaration.
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12. M007 applies getting: K(not(perfected), int(s, s))

13. No more meta-rule applies

14. Downwards reflection produces: (not(perfected), [s, s])

15. No object level deductions are possible. STOP

10. Conclusions

It is often the case that reasoning patterns occurring in complex prob-
lem solving tasks cannot be modelled (or at least it may turn very
cumbersome) by means of a pure logical approach. Extra-logical mecha-
nisms may be of great help in such situations if correctly used in suitable
contexts. In this paper we have described the control techniques suc-
cessfully used in the Milord II system. The most remarkable feature
is its declarative control which is modelled by a meta-level approach,
based on reflection techniques and equipped with a declarative back-
tracking mechanism. The use of reflection techniques, together with
an (implicit) subsumption mechanism at the object level, has been
proved specially well suited to tackle the problem of incompleteness of
knowledge. As a final remark, it is interesting to notice that, although
particular to this system, most of the considered techniques can be
of general interest for a variety of multi-language logical architectures
(e.g. multi-agent systems).
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7. P. Hájek. Fuzzy logic from the logical point of view. In M. Bartošek, J. Staudek,
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