Mixed Rational Assessments of Possibility and Probability Measures

Tommaso Flaminio1 Enrico Marchioni2

1Dipartimento di Matematica e Scienze Informatiche Università di Siena

2Departamento de Lógica Universidad de Salamanca
Introduction

The ground many-valued logic RL_{Δ}

The logic $FP\Pi(RL_{\Delta})$

Mixed rational assessments and the coherence problem CMA

Complexity for CMA problem

Future work
Introduction

The ground many-valued logic $R\Delta$

The logic $FP\Pi(R\Delta)$

Mixed rational assessments and the coherence problem CMA

Complexity for CMA problem

Future work
Outline

- Introduction
- The ground many-valued logic $R\Delta$
- The logic $FP\Pi(R\Delta)$
- Mixed rational assessments and the coherence problem CMA
- Complexity for CMA problem
- Future work
Outline

- Introduction
- The ground many-valued logic $R\Delta$
- The logic $FP\Pi(R\Delta)$
- Mixed rational assessments and the coherence problem CMA
- Complexity for CMA problem
- Future work
Outline

- Introduction
- The ground many-valued logic $R\Delta$
- The logic $FP\Pi(R\Delta)$
- Mixed rational assessments and the coherence problem CMA
- Complexity for CMA problem
- Future work
Introduction

The ground many-valued logic $R\mathcal{L}_\Delta$

The logic $FP\Pi(R\mathcal{L}_\Delta)$

Mixed rational assessments and the coherence problem CMA

Complexity for CMA problem

Future work
A fuzzy logical approach to probability and possibility was firstly introduced in 1995 by Hájek, Godo and Esteva. The central idea is the following:

- Add a modality $P [\Pi]$ for probable [possible] to the language of RPL
- An event E is regarded as an equivalence class of a formula of Classical Logic φ_E
- The probability [possibility] of an event E can be expressed as $P(\varphi_E) [\Pi(\varphi_E)]$ saying φ_E is probable [φ_E is possible]
Introduction and motivations (2)

- The logic $FP(RPL)$ for reasoning about probability,
- The logic $F\Pi(RPL)$ for reasoning about possibility (and necessity)

Axioms and rules are those of RPL plus an axiom schema to deal with those of a probability measure (possibility measure) and the rule of P-Necessitation: *If we deduce φ, then $P(\varphi)$* (in an analogous way for Π)
The ground many-valued logic \mathcal{RL}_Δ

The language of \mathcal{RL}_Δ consists in a countable set of propositional variables p_0, p_1, \ldots, the propositional constant $\bar{0}$, the binary connectives \oplus and \rightarrow, unary connectives Δ, and δ_n (for each $n \in \mathbb{N}$).

Further definable connectives are:

- $\neg \varphi$ stands for $\varphi \rightarrow \bar{0}$
- $\varphi \& \psi$ stands for $\neg(\varphi \rightarrow \neg \psi)$
- $\varphi \equiv \psi$ stands for $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$
- $\varphi \wedge \psi$ stands for $\varphi \&(\varphi \rightarrow \psi)$
- $\varphi \lor \psi$ stands for $\neg(\neg \varphi \land \neg \psi)$
The ground many-valued logic $R\Delta$

The language of $R\Delta$ consists in a countable set of propositional variables p_0, p_1, \ldots, the propositional constant $\bar{0}$, the binary connectives \oplus and \rightarrow, unary connectives Δ, and δ_n (for each $n \in \mathbb{N}$).

Further definable connectives are:

- $\neg \varphi$ stands for $\varphi \rightarrow \bar{0}$
- $\varphi \& \psi$ stands for $\neg(\varphi \rightarrow \neg \psi)$
- $\varphi \equiv \psi$ stands for $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$
- $\varphi \land \psi$ stands for $\varphi \& (\varphi \rightarrow \psi)$
- $\varphi \lor \psi$ stands for $\neg(\neg \varphi \land \neg \psi)$
The ground many-valued logic $R\Delta$ (2)

Axioms and rules are the following:

(Ł) Those of Łukasiewicz logic,

(Δ) The following axioms for Δ:

1. $\Delta(\varphi \rightarrow \psi) \rightarrow (\Delta \varphi \rightarrow \Delta \psi)$
2. $\Delta \varphi \lor \neg \Delta \varphi$
3. $\Delta \varphi \rightarrow \varphi$
4. $\Delta \varphi \rightarrow \Delta(\Delta \varphi)$
5. $\Delta(\varphi \lor \psi) \equiv (\Delta \varphi \lor \Delta \psi)$

(G) The rule of Generalization $\frac{\varphi}{\Delta \varphi}$

(D) For each $n \in \mathbb{N}$, the following axioms for δ_n

1. $n.\delta_n \varphi \equiv \varphi$
2. $\neg \delta_n \varphi \oplus (n - 1).\neg (\delta_n \varphi)$

where $n.\varphi$ stands for $\underbrace{\varphi \oplus \ldots \oplus \varphi}_{n\text{-times}}$
DMV_Δ-algebras

Example

Let \(A = \langle [0, 1], \oplus, \neg, \Delta, \{\delta_n\}_{n \in \mathbb{N}}, 0, 1 \rangle \) where:

- \([0, 1]\) is the real unit interval,
- For each \(x, y \in [0, 1] \) and for each \(n \in \mathbb{N} \):
 - \(x \oplus y = \min\{1, x + y\} \)
 - \(\neg x = 1 - x \)
 - \(\Delta(x) = 1 \) if \(x = 1 \), \(\Delta(x) = 0 \) otherwise
 - \(\delta_n(x) = x/n \)

Then \(A \) is the so called standard \(DMV_Δ \)-algebra.

Theorem

\(RL_Δ \) is sound and complete w.r.t. the standard \(DMV_Δ \)-algebra.
DMV_Δ-algebras

Example

Let $\mathcal{A} = \langle [0, 1], \oplus, \neg, \Delta, \{\delta_n\}_{n \in \mathbb{N}}, 0, 1 \rangle$ where:

- $[0, 1]$ is the real unit interval,
- For each $x, y \in [0, 1]$ and for each $n \in \mathbb{N}$:
 - $x \oplus y = \min\{1, x + y\}$
 - $\neg x = 1 - x$
 - $\Delta(x) = 1$ if $x = 1$, $\Delta(x) = 0$ otherwise
 - $\delta_n(x) = x/n$

Then \mathcal{A} is the so called standard DMV_Δ-algebra.

Theorem

$R\mathcal{L}_\Delta$ is sound and complete w.r.t. the standard DMV_Δ-algebra.
The logic $FP\Pi(\mathcal{R}_\Delta)$ is so defined:

- The language is that one of \mathcal{R}_Δ plus the unary modalities P and Π.
- Formulas are divided into two classes:
 - The class BF of non modal formulas is the smallest class of formulas such that the propositional variables belongs to BF and moreover BF is closed under the classical connectives \land and \neg.
 - The class MF of modal formulas is the smallest class of formulas containing all the atomic modal formulas like $P(\varphi)$ and $\Pi(\varphi)$ and being closed under the connectives of \mathcal{R}_Δ.

Flaminio, Marchioni
Mixed Rational Assessments
Axioms and rules of $FP\Pi(R\ell_\Delta)$ are those of $R\ell_\Delta$ plus the following:

(P1) $P(\neg \varphi) \equiv \neg P(\varphi)$
(P2) $P(\varphi \rightarrow \psi) \rightarrow (P(\varphi) \rightarrow P(\psi))$
(P3) $P(\varphi \lor \psi) \equiv [(P(\varphi) \rightarrow P(\varphi \land \psi)) \rightarrow P(\psi)]$
(Π1) $\Pi(\varphi \lor \psi) \rightarrow (\Pi(\varphi) \lor \Pi(\psi))$
(Π2) $\neg \Pi(\emptyset)$

Further deduction rules are the following:

- P-Necessitation $\frac{\varphi}{P(\varphi)}$
- Π-Necessitation $\frac{\varphi}{\Pi(\varphi)}$
- Π-Monotonicity $\frac{\varphi \rightarrow \psi}{\Pi(\varphi) \rightarrow \Pi(\psi)}$
A probabilistic-possibilistic Kripke model (PΠ-Kripke model) for $FPΠ(RLΔ)$ is a system $\mathcal{K} = \langle W, \mathcal{U}, e, \mu, \rho \rangle$ where:

- W is a non-empty set of possible worlds and \mathcal{U} is a Boolean algebra of subset of W.
- $e : V \times W \rightarrow \{0, 1\}$ is such that, for each fixed $w \in W$, the function $e(\cdot, w) : V \rightarrow \{0, 1\}$ is a Boolean evaluation. For each $\varphi \in BF$ let $W_\varphi = \{w \in W \mid e(\varphi, w) = 1\}$.
- $\mu : \mathcal{U} \rightarrow [0, 1]$ is a finitely additive probability measure over \mathcal{U} such that W_φ is μ-measurable for each $\varphi \in BF$.
- $\rho : \mathcal{U} \rightarrow [0, 1]$ is a possibility measure over \mathcal{U} such that W_φ is ρ-measurable for each $\varphi \in BF$.
Let $\mathcal{K} = \langle W, \mathcal{U}, e, \mu, \rho \rangle$ be a $P\Pi$-Kripke model for $FP\Pi(RL_\Delta)$ and let Φ be a modal formula. Then the truth degree of Φ in \mathcal{K} ($\|\Phi\|_\mathcal{K}$) is defined as:

- If Φ is $P(\varphi)$, then $\|P(\varphi)\|_\mathcal{K} = \mu(W\varphi)$
- If Φ is $\Pi(\varphi)$, then $\|\Pi(\varphi)\|_\mathcal{K} = \rho(W\varphi)$
- If Φ is a compound formula then $\|\Phi\|_\mathcal{K}$ is computed by evaluating the atomic modal formulas occurring in Φ and then using the truth functions associated to the connectives in Φ.

Theorem

$FP\Pi(RL_\Delta)$ is sound and complete w.r.t. the class of $P\Pi$-Kripke models.
Mixed rational assessments and the coherence problem

Let $\mathcal{E} = \{\varphi_1, \ldots, \varphi_n\}$ be a finite class of events. Let

\[(\chi_P)\quad P(\varphi_i) = \alpha_i \in [0, 1] \cap \mathbb{Q}\]

be an assessment of probability over \mathcal{E}, and let

\[(\chi_\Pi)\quad \Pi(\varphi_i) = \beta_i \in [0, 1] \cap \mathbb{Q}\]

be an assessment of possibility over \mathcal{E}. Then $(\chi) = (\chi_P) \cup (\chi_\Pi)$ is called a rational mixed assessment.

Definition

A rational mixed assessment (χ) is said coherent if the following are satisfied:

- (χ_P) and (χ_Π) are coherent via a probability μ and a possibility ρ respectively (internal coherence)
- For each ψ in the Boolean algebra \mathcal{B} generated by the events in \mathcal{E}, $\mu(\psi) \leq \rho(\psi)$ (external coherence)
Mixed rational assessments and the coherence problem

Let $\mathcal{E} = \{\varphi_1, \ldots, \varphi_n\}$ be a finite class of events. Let

$$P(\varphi_i) = \alpha_i \in [0, 1] \cap \mathbb{Q}$$

be an assessment of probability over \mathcal{E}, and let

$$\Pi(\varphi_i) = \beta_i \in [0, 1] \cap \mathbb{Q}$$

be an assessment of possibility over \mathcal{E}. Then $(\chi) = (\chi_P) \cup (\chi_\Pi)$ is called a rational mixed assessment.

Definition

A rational mixed assessment (χ) is said coherent if the following are satisfied:

- (χ_P) and (χ_Π) are coherent via a probability μ and a possibility ρ respectively (internal coherence)
- For each ψ in the Boolean algebra \mathcal{B} generated by the events in \mathcal{E}, $\mu(\psi) \leq \rho(\psi)$ (external coherence)
Mixed rational assessments and the coherence problem

Let $\mathcal{E} = \{\varphi_1, \ldots, \varphi_n\}$ be a finite class of events. Let
\[
(\chi_P) \quad P(\varphi_i) = \alpha_i \in [0, 1] \cap \mathbb{Q}
\]
be an assessment of probability over \mathcal{E}, and let
\[
(\chi_\Pi) \quad \Pi(\varphi_i) = \beta_i \in [0, 1] \cap \mathbb{Q}
\]
be an assessment of possibility over \mathcal{E}. Then $(\chi) = (\chi_P) \cup (\chi_\Pi)$ is called a rational mixed assessment.

Definition

A rational mixed assessment (χ) is said coherent if the following are satisfied:

- (χ_P) and (χ_Π) are coherent via a probability μ and a possibility ρ respectively (*internal coherence*)
- For each ψ in the Boolean algebra \mathcal{B} generated by the events in \mathcal{E}, $\mu(\psi) \leq \rho(\psi)$ (*external coherence*)
Mixed rational assessments and the coherence problem

Theorem

Let $\mathcal{E} = \{\varphi_1, \ldots, \varphi_n\}$ be a finite set of events, let $\mathcal{A} = \{a_1, \ldots, a_m\}$ be the set of atoms generated by $\varphi_1, \ldots, \varphi_n$ and let

$$(\chi): \mu(\varphi_i) = \alpha_i, \rho(\varphi_i) = \beta_i \ (i = 1, \ldots, n)$$

be a rational mixed assessment over \mathcal{E}. Then the following are equivalent:
Theorem

(i) (χ) is coherent,

(ii) There are $n + 1$ atoms a_1, \ldots, a_{n+1} such that the $FP\Pi(R\Lambda)-$theory T_χ whose proper axioms are:

(A1) $\Delta(\bigwedge_{i=1}^n P(\varphi_i) \equiv \overline{\alpha_i})$

(A2) $\Delta(\bigwedge_{i=1}^n \Pi(\varphi_i) \equiv \overline{\beta_i})$

(A3) $\Delta(\bigwedge_{i=1}^n \Pi(a_i) \rightarrow \Pi(a_{i+1}))$

(A4) $\Delta(\bigwedge_{j=1}^{n+1} \left[\bigoplus_{i=1}^j P(a_i) \right] \rightarrow \Pi(a_j))$

is logically consistent, i.e. $T_\chi \not\vdash_{FP\Pi} \overline{0}$.
Now we are going to show that the coherence test for rational mixed assessment is a problem NP-complete.

Theorem

1. The satisfiability problem for $R\Delta$ is NP-complete.
2. The satisfiability problem for modal formulas of $FP\Pi(R\Delta)$ is NP-complete.

Theorem

Testing the coherence of a rational mixed assessment (χ) is a problem NP-complete.
Now we are going to show that the coherence test for rational mixed assessment is a problem NP-complete.

Theorem

1. The satisfiability problem for $R\Delta$ is NP-complete.
2. The satisfiability problem for modal formulas of $FP\Pi(R\Delta)$ is NP-complete.

Theorem

Testing the coherence of a rational mixed assessment (χ) is a problem NP-complete.
Now we are going to show that the coherence test for rational mixed assessment is a problem NP-complete.

Theorem

1. The satisfiability problem for RL_Δ is NP-complete.
2. The satisfiability problem for modal formulas of $FP\Pi(RL_\Delta)$ is NP-complete.

Theorem

Testing the coherence of a rational mixed assessment (χ) is a problem NP-complete.
Now we are going to show that the coherence test for rational mixed assessment is a problem NP-complete.

Theorem

1. The satisfiability problem for $R\Delta$ is NP-complete.
2. The satisfiability problem for modal formulas of $FP\Pi(R\Delta)$ is NP-complete.

Theorem

Testing the coherence of a rational mixed assessment (χ) is a problem NP-complete.
Complexity for CMA problem

Proof.

(Sketch): By the previous theorem we can reduce the CMA problem can be reduced to the satisfiability problem for T_χ

Hardness. Easy: CPA is a subproblem of CMA and CPA is well known to be NP-complete. Thus CMA is NP-hard.

Membership. The NP algorithm works as follows:

1. Randomly generate $n + 1$ atoms from the events in \mathcal{E}
2. Build the theory T_χ
3. Test the satisfiability of T_χ

Notice that the algorithm is NP given that T_χ contains a number of atoms which is polynomial in the number n of the events in \mathcal{E}.
Proof.

(Sketch): By the previous theorem we can reduce the CMA problem can be reduced to the satisfiability problem for T_{χ}

Hardness. Easy: CPA is a subproblem of CMA and CPA is well known to be NP-complete. Thus CMA is NP-hard.

Membership. The NP algorithm works as follows:

1. Randomly generate $n + 1$ atoms from the events in \mathcal{E}
2. Build the theory T_{χ}
3. Test the satisfiability of T_{χ}

Notice that the algorithm is NP given that T_{χ} contains a number of atoms which is polynomial in the number n of the events in \mathcal{E}.
Complexity for CMA problem

Proof.

(Sketch): By the previous theorem we can reduce the CMA problem can be reduced to the satisfiability problem for T_p.

Hardness. Easy: CPA is a subproblem of CMA and CPA is well known to be NP-complete. Thus CMA is NP-hard.

Membership. The NP algorithm works as follows:

1. Randomly generate $n + 1$ atoms from the events in E
2. Build the theory T_p
3. Test the satisfiability of T_p

Notice that the algorithm is NP given that T_p contains a number of atoms which is polynomial in the number n of the events in E.

Flaminio, Marchioni

Mixed Rational Assessments
Proof.

(Sketch): By the previous theorem we can reduce the CMA problem can be reduced to the satisfiability problem for T_χ.

Hardness. Easy: CPA is a subproblem of CMA and CPA is well known to be NP-complete. Thus CMA is NP-hard.

Membership. The NP algorithm works as follows:

1. Randomly generate $n + 1$ atoms from the events in \mathcal{E}
2. Build the theory T_χ
3. Test the satisfiability of T_χ

Notice that the algorithm is NP given that T_χ contains a number of atoms which is polynomial in the number n of the events in \mathcal{E}.
Proof. (Sketch): By the previous theorem we can reduce the CMA problem can be reduced to the satisfiability problem for T_χ.

Hardness. Easy: CPA is a subproblem of CMA and CPA is well known to be NP-complete. Thus CMA is NP-hard.

Membership. The NP algorithm works as follows:

1. Randomly generate $n + 1$ atoms from the events in \mathcal{E}
2. Build the theory T_χ
3. Test the satisfiability of T_χ

Notice that the algorithm is NP given that T_χ contains a number of atoms which is polynomial in the number n of the events in \mathcal{E}.

Flaminio, Marchioni
Mixed Rational Assessments
Future work

Our future work will deal with conditional measures to deal with the conditional version of the CMA problem in a way allowing to prove that also this problem is NP-complete.
A general way to prove that the conditional version of CPA is NP-complete, is to decompose a conditional assessment into a class of simple assessments P_1, \ldots, P_n. In an analogous way it can be done for Π.
In order to define a nice logic for this proposal we have to know, starting form a conditional mixed assessment, how many simple modalities P_1, \ldots, P_n and Π_1, \ldots, Π_m we have to introduce or otherwise how to proceed if we are totally ignorant on it.