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Abstract (English)

The Coalition Structure Generation Problem (CSGP) is well-known in the area
of MultiAgent Systems. Its goal is establishing coalitions between agents while
maximizing the global welfare. Between the existing different algorithms de-
signed to solve the CSGP, DP and IDP are the ones with less temporal complex-
ity. After analyzing the performance of the DP and IDP algorithms, we detect
which is the most frequent operation and we propose an optimized method for
performing it: The Fast Split Method (FSM). Then, based on the FSM, we
propose two algorithms (FSDP and FSIDP) which are up to 30 times faster
than the original DP and IDP. In addition, we study the possibility of divid-
ing the work in different threads and propose a method for doing it. Then
we present a parallel version of the FSIDP Algorithm using a shared memory
paradigm: SMIDP. This version enables us to reach a speedup of 182X using
our two six-core processor computer.
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I also want to thank Dr. Jesús Cerquides and Dr. Juan Antonio Rodŕıguez for
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Chapter 1

Introduction

1.1 Motivation

1
In a multi agent system environment, agents usually collaborate in order to
reach an objective. This collaboration between agents is known as coalition.

Just like in real life, there are situations where collaboration is the most efficient
way to reach an objective. We can find many examples of ordinary situations
where coalition formation is applied, such as two people who want to move two
big tables. The most efficient way to do this is working together, moving one ta-
ble first and then the other. The two people are therefore establishing a coalition.

When incrementing the complexity of the system, determining which is the best
combination of coalitions that will improve the performance of the whole system
is not an easy task.

In the agents field, a coalition is an agreement between two or more agents
which decide to collaborate in order to reach a common goal. Given a set of
agents, any possible combination of coalitions is called Coalition Structure. The
Coalition Structure Generation Problem (CSGP) [2] studies how to assess the
coalition that maximizes the social welfare.

Besides the initial application of the CSGP, which is finding the optimal Coali-
tion Structure for a given set of agents, there is a large number of similar appli-
cations that can be modeled using the same representation, such as distributed
vehicle route planning [12], task allocation [14], airport slots allocation [10] and
social networks [16], among others.

In the last two decades, different strategies have been proposed to solve the
CSGP: methods based on Dynamic Programming [17, 11, 8], heuristic ap-
proaches [13, 14], and anytime algorithms [7, 9, 6, 4].

Finding a solution to the CSGP requires the exploration of an exponential num-
ber of combinations which makes the algorithm computationally demanding. It
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is so demanding that computation time is the main problem when solving CSGP.

This report presents the work done optimizing a method for solving the CSGP.

The objective of this work is to study how to solve CSGP faster than current
state of the art approaches. We focus on a Dynamic Programming approach,
the only one being both optimal and having less temporal complexity. Our re-
sults are compared with the DP[11] and IDP[8] algorithms in terms of SpeedUp.

In order to increase performance when solving the CSGP, we tackle the problem
in two stages:

• First, stuying the number of instructions needed and propose and opti-
mization to minimize execution time..

• Second, propose a new parallel implementation of the DP algorithm where
the Fast Split Method is introduced.

1.2 Contributions

We developed a software framework able to validate any CSGP algorithm im-
plementation functionality and performance.

We implemented DP and IDP algorithms as they are described in their articles
and incorporated them to our framework. Then we measured them in order to
analyze their execution pattern.

We developed a method for executing the most frequent operation found in
CSGP DP implmementation in a computationally efficient way. We call it the
Fast Split Method (FSM). Thanks to this, we propose two new algorithms:
FSDP and FSIDP.

We describe performance results obtained with FSDP and FSIDP. Considering
a problem of size 25, DP needs 16 hours and 30 minutes to find the optimal
solution, while IDP needs almost 6 hours. Our FSDP and FSIDP Algorithms
solve the same CSGP using the same hardware in 52 and 30 minutes respec-
tively. FSIDP reaches a SpeedUp of 30X over DP for a problem of size 25.

We developed a parallel version of the algorithm in order to be run in a Mul-
tiCore system: Shared Memory IDP (SMIDP). This algorithm solves the same
problem of size 25 in 3 minutes and 30 seconds using a PC with two six-core
processors reaching a SpeedUp of 182X.

A roadmap of our contributions can be seen in Figure 1.1, which shows the re-
lations between the different algorithm versions we develop. Our starting point
is an existing version of the IDP algorithm coded in Java.
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Figure 1.1: Roadmap. Different versions of the algorithm presented in this
report.

1.3 Summary

This report is organized in 7 chapters.

The present chapter introduces our work and presents our contributions.

Chapter 2 introduces the reader to the state of the art of the CSGP, and it
presents the different approaches that the community has taken to solve the
CSGP. We focus on the Dynamic Programming strategies, which are described
in detail paying special attention to the DP and IDP algorithms.

In Chapter 3 we describe the work done in order to reproduce the State of the
Art developments by coding DP and IDP algorithms and measuring the results.

Chapter 4 proposes a novel method for performing a key operation which leeds
to a significant performance improvement. The Fast Split Method is presented
and from it we propose new algorithms based on the original DP and IDP. Our
implementations are called FSDP and FSIDP. We compare the different algo-
rithms’ performance.

In Chapter 5 we analyze FSDP and FSIDP in detail in order to obtain a better
characterization of their behavior.

In Chapter 6 we introduce a technique for solving CSGP in a multicore system
using shared memory and openMP. Results are compared with the ones found
in the sequential version.

Chapter 7 concludes the report, summarizing the experiments and presenting
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the conclusions and future work.



Chapter 2

State of the art

This chapter describes in detail the Coalition Structure Generation Problem
(CSGP) and exposes the different state of the art approaches used for solving
the problem.

We focus our attention on the Dynamic Programming family algorithms. More
specifically, on the DP and IDP Algorithms, which are thoroughly analyzed.

To this end, we first introduce some basic concepts, such as coalition or split-
ting, then we detail how DP is able to find the optimal solution for a CSGP. We
provide information of the algorithm complexity and a formula for computing
the splittings evaluated by DP.

Finally, we present IDP as a variation of DP, an then we consider a theoretical
model to study the different behavior between DP and IDP.

2.1 Problem Description

The Coalition Structure Generation Problem (CSGP) belongs to the Autonomous
Agents research line in the Artificial Intelligence field, where the goal to be
achieved is establishing collaborations, or coalitions between agents.

Agents are software entities able to communicate with other agents and establish
coalitions in order to satisfy their own or collective goals. In fact, one of the big
potentials of the agents technology is precisely the possibility to communicate
and cooperate. Forming effective coalitions is one of the main challenges that
are faced today by the Autonomous Agents community.

There are a number of factors that can affect the quality of a coalition, like the
affinity between agents or the cost of establishing the coalition. Regardless of
the reason that makes a coalition desirable or not, a value indicating the quality
of this coalition is defined for each coalition. This value is called a coalition value.

The Coalition Formation is the process whereby a group of agents establish

5



coalitions between them. Finding the group of coalitions that maximizes the
global satisfaction is what is pursued by CSGP.

Applications for this problem can be found in real-life situations, such as dis-
tributed vehicle route planning, airport slots allocation or market analysis. All
these situations have the same common factor: the explosion of possibilities
given the combinatorial behavior.

In order to better illustrate the idea of a Coalition Structure, we consider a
typical application for CSGP called Combinatorial Auctions. A Combinatorial
Auction is a type of smart market that can be solved using the same algorithms
used for solving CSGP. A Combinatorial Auction is formed by: a seller, a num-
ber of items or products to be sold and a set of offers for buying the products.

For example, a seller has 4 items to be sold :

Buyers place bids for individual or groups of products as shown in Table 2.1.
The goal is to find the combination of bids which maximizes the benefit of the
seller. In the example, the best combination is to accept the offers from Ann,
Mark and John obtaining an income of $166.

Buyer Desired items Offer

Rose Marie $33

Ann $39

Mark $40

Laura $87

John $87

Nick $52

Matt $67

Julia $97

Table 2.1: Offers in a Combinatorial Auction market

Note that in the example on Table 2.1 there are offers only for some combina-
tions of items, not all. When we have a problem behaving like this, we say that
the problem does not have a complete input. Being n the number of products to
be sold, the number of possible combinations of elements is determined by 2n−1.

There is a complete analogy between the Combinatorial Auctions and the CSGP
(shown in Table 2.2). CSGP is about Agents, Coalitions, and Coalition Values
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instead of Items, Buyers and Offers. But the problem is numerically equivalent.

Combinatorial Auctions CSGP

Items to be sold Agents

Buyers Coalitions

Offer Coalition Value

Table 2.2: Analogy between Combinatorial Auctions and CSGP

2.2 CSGP Algorithms

There are different algorithms designed to solve CSGP. We can categorize them
as follows:

• Dynamic Programming: Algorithms of the Dynamic Programming family
[17, 8] guarantee finding the optimal solution. They explore all the search
space, storing the best combinations found so far. They minimize temporal
complexity when considering the exploration of all the search space. The
complexity of this algorithm is O(3n).

• Heuristic approaches: These algorithms try to find a solution guided by
a heuristic function [13, 14]. They do not guarantee the optimal solu-
tion. They avoid the evaluation of certain nodes, so they tend to be fast
algorithms. They are useful when dealing with big sets of data.

• Anytime algorithms: These algorithms start giving an arbitrary solution
to the problem and as they have time, they obtain better solutions. These
algorithms explore all possible combinations, therefore they are optimal,
but the time spent to obtain a solution can be very big depending on the
input. The complexity of the basic algorithm and variations [3, 7] is O(nn).
However, they can perform very well working with input data presenting
some characteristic distribution. There is a range of improvements [7, 9, 6]
done on the basis of the original idea, including a distributed version [4].

2.3 Dynamic Programming Algorithms

As mentioned in the previous section, CSGP solvers can be divided in three
categories. In this work we focus our attention on the Dynamic Programming
Algorithms family. We have chosen this algorithmic family due to its inter-
esting properties, i.e. first, Dynamic Programming algorithms have the lowest
temporal complexity, meaning that they are the fast algorithms in the worst
case scenario; second, they are input-independent, which means that they will
not perform significantly different choosing different input data; finally, we have
found that the structure of these algorithms can be adapted to solve the problem
in parallel.
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2.3.1 Basic definitions

Before a more in-depth analysis, it is important to define some concepts required
for understanding how DP works.

• The agent set is a collection containing all the agents participating in the
CSGP.

For example :
A = {a1, a2, a3, a4, a5}
where a1, a2, a3, a4 and a5 are all the agents in the system.

• A subset is a collection of agents contained in the agent set.

For example :
B = {a1, a4, a5} is a subset of A

• Given a subset with more than one agent, a split can be performed. The
split operation will generate a splitting .

For example :
The splitting {{a1}, {a4, a5}} is generated performing a split on {a1, a4, a5}.

2.3.2 Description of the algorithm (DP)

As we have seen before, Dynamic Programming algorithms guarantee an opti-
mal solution with less temporal complexity. In this section we describe how a
particular Dynamic Programming algorithm works, specifically the one by D.
Y. Yeh [17], henceforth referred to DP.

The DP algorithm evaluates all possible coalitions by first evaluating those with
less elements and increasing the number of elements as the execution progresses.
When computing a given coalition, it evaluates whether it is better to split the
coalition or keep it as is.

Consider a group of 4 agents A = {a1, a2, a3, a4} that want to achieve an ob-
jective together. Some agents have more affinity with some others when estab-
lishing a collaboration; this affinity expresses how well these group of agents
perform the problem together. This value is known and it is given as the input
for the problem: it is called coalition value and it is usually expressed as v.

For example, the coalition value of {a1} is written as v({a1}) and it is equal to
33, whereas the coalition value for the coalition of a1 with a2 is represented by
v({a1, a2}) and it is equal to 87. One possible input for a problem with 4 agents
is presented in Table 2.3, where all possible coalitions with their coalition values
are shown.

Two agents will be likely to collaborate or to establish a coalition if the sum
of their coalition values is lower than the coalition value of the two of them
together.
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Coalition Coalition Value

{a1} 33

{a2} 39

{a3} 13

{a4} 40

{a1, a2} 87

{a1, a3} 87

{a1, a4} 70

{a2, a3} 36

{a2, a4} 52

{a3, a4} 67

{a1, a2, a3} 97

{a1, a2, a4} 111

{a1, a3, a4} 100

{a2, a3, a4} 132

{a1, a2, a3, a4} 151

Table 2.3: Sample input data for a problem of size 4.

The DP algorithm proceeds by evaluating all the possible combinations. In our
example it first considers all combinations of size 2; in a second step, it considers
all the combinations of size 3; finally, it considers all combinations of size 4.

Saying that the algorithm considers all the combinations of a certain size means
that for every combination the algorithm evaluates all possible splittings in two
groups and will compare the best splitting with the value of the coalition.

For instance, at some point, the algorithm will evaluate the coalition {a2, a3, a4}
for the problem shown in Table 2.3, by evaluating the values of all its splittings:

v({a2, a3}) + v({a4}) = 76;
v({a2, a4}) + v({a3}) = 65;
v({a3, a4}) + v({a2}) = 106

By comparing the best value to the value of the coalition v({a2, a3, a4}) = 132,
since 132 is greater than 106 (the best coalition value of the splittings), the
formation of the coalition will be desirable.

DP perform these operations for every possible combination of agents. To this
end, all the combinations are evaluated. The strategy followed by DP is explor-
ing all the possible values by using three nested loops.
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• Coalition size selection (outer loop). This loop sets how many ele-
ments are considered at each iteration (m). After an iteration is done all
coalitions of at most size m are evaluated.

• Coalition generation (middle loop). This loop is responsible for gener-
ating all the possible ways of choosing m elements from the element set.
At each iteration the loop will produce one coalition to be evaluated.

• Coalition evaluation (internal loop). For each coalition chosen in the
middle loop, the internal loop computes all the possible ways to split it
in two groups. For each splitting, the algorithm computes whether it is
better to split the coalition or keep it as it is.

After every single iteration in the most internal loop, DP determines if it is
better to split a coalition or not. That amounts to computing the maximum
between the value of the coalition without splitting versus the sum of the values
of the two splits of the coalition. It stores this maximum value and the Coalition
Structure generated in memory, therefore two tables are needed: one for storing
maximum values and another for storing Coalition Structures.

However, Rahwan & Jennings demonstrated in [8] that it is not needed to main-
tain a table for storing Coalition Structures. The memory required for storing
the information about the Coalition Structures found so far can be avoided,
releasing the 33% of the memory required by DP. Once a solution is found, it
is possible to compute the Coalition Structure providing that solution.

This calculation can be performed after finding the value of the Coalition Struc-
ture by adding some extra computation which is insignificant compared to the
computation time took by the whole problem.

The pseudocode of the DP algorithm is presented in Algorithhm 1.

Algorithm 1 Pseudo-code of the Dynamic Programming Algorithm

1: for m← [2 . . . n] do
2: for coalition← coalitionsOfSize(m) do
3: max value← value[coalition]
4: (S1, S2)← init()
5: for (S1, S2)← nextSplit(coalition, (S1, S2)) do
6: if (max value < value[S1] + value[S2] then
7: max value← value[S1] + value[S2]
8: end if
9: end for

10: value[coalition]← max value
11: end for
12: end for

Table 2.4 presents a trace of the execution of the DP algorithm with the input
data presented in Table 2.3. The first, second, and fourth columns represent the
value of the three nested loops, the third and fifth columns represent the data
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that is evaluated on every iteration, and the last column shows the final value
stored which is the maximum value between the two previous columns.

Let us focus on Table 2.4, taking a look at the rows with m=3. Note that the
stored value is always done in the coalition of size 3, but the information needed
to make this writing is either the overwritten value or the information calculated
with m=2. In fact, for every value of m, the information needed is calculated
in previous steps. This fact will guarantee us that when we consider any split
of a coalition, it is certainly the best possible value for the given elements.

2.3.3 Complexity

The DP algorithm receives as input the values for all possible combinations of
a given set of n elements. As we saw before, it requires storing 2n− 1 positions.
This memory is rewritten as the algorithm proceeds and no additional memory
is required. Therefore the spatial complexity of the algorithm is determined
only by the input data size and it is equal to O(2n).

However, the temporal complexity is determined by the algorithm behavior and
needs more careful analysis. Since the three nested loops in Algorithm 1 are
bounded, we can compute the work effectively done inside every loop. The tem-
poral complexity is O(3n), according to [8].

In fact, the number of iterations inside the internal loop can be determined by
having the bounds of every loop:

• bound for the external loop: m = n− 1

• bound for the middle loop :

(
n

m

)
• bound for the internal loop: 2m−1 − 1

therefore the total number of iterations executed in the internal loop is defined
by the expression:

n∑
m=2

(
n

m

)
2m−1 − 1,

which can be rewritten as

3n − 2n+1 + 2

2
. (2.1)
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Coalition size Coalition Coalition Splittings Value of Stored value

selection Generation (A) Value (v[A]) Generation splittings (vs) max(v[A], vs)

m=2
{a1,a2} 87 {a1},{a2} v[{a1}]+v[{a2}]=72 87

{a1,a3} 87 {a1},{a3} v[{a1}]+v[{a3}]=46 87

{a1,a4} 73 {a1},{a4} v[{a1}]+v[{a4}]=73 73

{a2,a3} 36 {a2},{a3} v[{a2}]+v[{a3}]=52 52

{a2,a4} 52 {a2},{a4} v[{a2}]+v[{a4}]=53 53

{a3,a4} 67 {a3},{a4} v[{a3}]+v[{a4}]=53 67

m=3
{a1,a2,a3} 97 {a1},{a2,a3} v[{a1}]+v[{a2,a3}]=85 97

{a2},{a1,a3} v[{a2}]+v[{a1,a3}]=126 126

{a3},{a1,a2} v[{a3}]+v[{a1,a2}]=100 126

{a1,a2,a4} 111 {a1},{a2,a4} v[{a1}]+v[{a2,a4}]=98 111

{a2},{a1,a4} v[{a2}]+v[{a1,a4}]=112 112

{a4},{a1,a2} v[{a4}]+v[{a1,a2}]=127 127

{a1,a3,a4} 100 {a1},{a3,a4} v[{a1}]+v[{a3,a4}]=100 100

{a3},{a1,a4} v[{a3}]+v[{a1,a4}]=112 112

{a4},{a1,a3} v[{a4}]+v[{a1,a3}]=127 127

{a2,a3,a4} 132 {a2},{a3,a4} v[{a2}]+v[{a3,a4}]=106 132

{a3},{a2,a4} v[{a3}]+v[{a2,a4}]=78 132

{a4},{a2,a3} v[{a4}]+v[{a2,a3}]=92 132

m=4
{a1,a2,a3,a4} 151 {a1},{a2,a3,a4} v[{a1}]+v[{a2,a3,a4}]=165 165

{a2},{a1,a3,a4} v[{a2}]+v[{a1,a3,a4}]=166 166

{a3},{a1,a2,a4} v[{a3}]+v[{a1,a2,a4}]=140 166

{a4},{a1,a2,a3} v[{a4}]+v[{a1,a2,a3}]=166 166

{a1,a2},{a3,a4} v[{a1,a2}]+v[{a3,a4}]=154 166

{a1,a3},{a2,a4} v[{a1,a3}]+v[{a2,a4}]=152 166

{a1,a4},{a2,a3} v[{a1,a4}]+v[{a2,a3}]=125 166

Table 2.4: Trace of execution of a problem of size 4.
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2.3.4 The Improved Version (IDP)

In [8] Rawal & Jennings presented an improved version of the DP Algorithm.
The Improved Dynamic Programming Algorithm (IDP) proposes two different
improvements:

• A technique to save memory.

• A technique to skip the evaluation of some nodes.

The original DP algorithm uses three matrices in order to represent different
information: one for storing the initial values, another for storing calculated
values, and a third one to store the configuration of the coalitions. In IDP we
can see that all the information can be represented using only one table. This
table will be the input data and it will be updated until all the search space is
explored. This technique made the algorithm use only a 33.3% of the memory
resources. On balance, the algorithm needs to make an extra computation once
the search space is explored, but this computation is not relevant since it has a
small complexity O(2n).

The other tecnique is the evaluation avoidance of some nodes, at it is based on
the fact that DP explores the search space doing some redundant calculation.
More specifically, let A be a set of elements, and Fx be the splitting func-
tion. We have two possible splitings of A determined by F1(A) = {S1, S2} and
F2(A) = {S3, S4} where S1, S2, S3, S4 6= ∅ and S1, S2 6= S3;S1, S2 6= S4. IDP
considers that there is a split of Fx({S1, S2}) that leads us to the same result as
Fx({S3, S4}). Therefore, the same result can be reached through different paths.

IDP proposes a method to avoid the paths that will lead us to a state that can
be reached by other paths. This method evaluates only the splittings of certain
sets of data. In other words, IDP reaches the same result evaluating less com-
binations. According to their results, IDPonly needs 38,7% of DP operations to
get the same results.

Algorithm 2 Pseudo-code of the IDP Algorithm

1: for m← [2 . . . n] do
2: for coalition← coalitionsOfSize(m) do
3: max value← value[coalition]
4: (S1, S2)← init()
5: for (S1, S2)← nextSplit(coalition, (S1, S2)) do
6: if (sizeOf(S1) ≥ n−m) then
7: if (max value < value[S1] + value[S2] then
8: max value← value[S1] + value[S2]
9: end if

10: end if
11: end for
12: value[coalition]← max value
13: end for
14: end for
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2.3.5 Where does IDP improve DP?

Figure 2.1 presents a scheme of how the DP and IDP algorithms execute the
internal loop. t1 represents the cost of generating and evaluating a single split-
ting for a coalition, t2 stands for the cost of the operation of evaluating if the
splitting is evaluated and t3 represents the cost evaluating a coalition in IDP.

The basic idea behind IDP is to add a small computation overhead in order to
save operations.

Figure 2.1: Scheme of the internal loop execution for DP, IDP, FSDP and
FSIDP.

If fact, it is possible to define when IDP improves DP. We define p as the prob-
ability of entering in the conditional. With this, we can conclude that IDP will
improve DP while the following in-equation is satisfied:

p <
t1 − t2

t3

Ideally, t2 is small and t1 and t3 have to be similar, meaning that IDP is likely to
improve DP since the fraction is close to one. This model is revised and updated
as the algorithms are analyzed, and a revision for this model is presented in
section 4.4.2.



Chapter 3

Coding DP and IDP

In the previous chapter, different algorithms to solve the CSGP were presented
putting the stress on the DP and IDP algorithms.

In the present chapter we evaluate and measure the existing DP and IDP algo-
rithms and also discuss the need to migrate the codification of the IDP algorithm
from JAVA to ANSI C.

Since we need to work with different algorithmic implementations, we propose
a software platform able to host and manage CSGPs. This enable us to run
different versions and compare results.

This platform will be hosting the different implementations we propose along
this report.

This chapter concludes with a section dedicated to experiments, where the ex-
ecution pattern of the DP and IDP algorithms is widely measured and charac-
terized.

3.1 Rewriting existing algorithms

From the different algorithms of the Dynamic Programming family, the one
which presents less complexity is IDP. This algorithm is written in JAVA.

Our objective is improving DP and IDP performance as much as we can. To
this end, we have rewritten the existing IDP Java implementation into ANSI C.

There are a number of reasons for having chosen ANSI C as our working pro-
gramming language, but we can highlight:

• Using ANSI C allows us to access low-level instructions.

• We are interested in parallelism. There are some important developments
for ANSI C which provide APIS in order to use different parallel program-
ming paradigms.
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• Migrating a program from JAVA to ANSI C can be done relatively fast.

One of the characteristics of JAVA is automatic memory management provided
by the Garbage Collector. Again, this can be very helpful for the programmer
but delegates more responsibility to the Virtual Machine.

During the migration to ANSI C, the memory management migration is the
biggest source of errors. The automatic management provided by Java has to
be implemented and defined explicitly in ANSI C. For this purpose, we have
used the Valgrind [5] profiling tool, which is very useful for detecting memory
leaks and segmentation faults.

Moreover, coding the program into ANSI C implies decoupling all the classes
programmed in Java in the corresponding variables and functions. As a conse-
quence, this codification is not a blind process, but implies a knowledge of what
the algorithm is doing.

IDP is a more restrictive version of DP. It is possible to extract the DP algo-
rithm from the IDP code by removing some constraints from the original code.
Figure 3.1 shows the different versions implemented.

Figure 3.1: Rewriting IDP Java version to IDP and DP.

3.2 A framework for running experiments

Along this work, different versions for the DP and IDP algorithms are pro-
posed, as we want to measure the behavior of the different implementations.
These measurements have to be taken in fair conditions, that is to say, different
algorithms must be able to solve the same problem given the same input data.

To this end, we develop a solver, which has different functionalities.

• Generate a CSGP Dynamically.

• Write a CSGP to disc.

• Read a CSGP from disc.

• Solve a CSGP selecting the algorithm used to solve the problem (algo-
rithms can be easily added).
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• Generate execution statistics, such as execution time or hardware counters.

Our solver can be called from the command line where different arguments can
be specified, such as: the size of the CSGP to be solved, the location of the
input data (either dynamically generated or read from disk) or the algorithm
used to solve the CSGP with additional parameters.

The solver computes the solution using the specified algorithm and also gives
statistics of use, such as the real time spent. In addition, the solver can be
compiled with access to hardware counters which provide a wide range of CPU
performance statistics. We use the Performance Application Programming In-
terface (PAPI) [1].

3.3 Measuring DP and IDP

One of the most important decisions of this work is the appropriate measure-
ment of the application performance. Having good metrics allows doing a better
analysis of what the application does and how it can be optimized

We characterize the behavior of the application using tools like the GNU Pro-
filer or metrics such as total execution time, cycles per instruction, or number
of executed instructions per read operation.

Our experiments have been performed on a computer with two six-core Intel
Xeon E5645 Processors at 2.40GHz & 96GB RAM. Each processor has three
different cache levels:

• L1 cache: 32KB for data and 32KB for instructions

• L2 cache: 256KB for each cores

• L3 cache: 12MB shared by all cores

The server runs a CentOS 6.2 Linux (kernel 2.6.32) OS and programs are com-
piled with gcc 4.7.0 enabling the -O3 option (optimize code).

3.3.1 Analyzing the impact of the programming language

The first measure taken is the improvement produced by reprogramming the
IDP algorithm in ANSI C. The same program running in the same machine
performs around 5% faster by only translating the program in ANSI C.

3.3.2 Profiling DP and IDP

Once we have obtained measures referring to the total time the application needs
in order to solve the algorithm, profiling can provide us with more information
about where the application can be optimized. We use the GNU profiler to
identify the portions of the code that are executed the most. The experiment
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is performed running a CSGP of size n = 19

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

99.92 31.84 31.84 524287 0.00 0.00 evalSplits

0.13 31.88 0.04 524287 0.00 0.00 CombinatorialIterator_nextSet

0.03 31.89 0.01 1 0.01 31.89 runDP_original

0.00 31.89 0.00 19 0.00 0.00 CombinatorialIterator_firstSet

0.00 31.89 0.00 3 0.00 0.00 IDPprintCoalition

0.00 31.89 0.00 2 0.00 0.00 findCS_DP

0.00 31.89 0.00 2 0.00 0.00 sampleTime

0.00 31.89 0.00 1 0.00 0.00 CombinatorialIterator_init

0.00 31.89 0.00 1 0.00 0.00 GenerateProblem

0.00 31.89 0.00 1 0.00 0.00 check_params

0.00 31.89 0.00 1 0.00 0.00 findSolution

Figure 3.2: Output of the GNU profiler

Figure 3.2 shows a portion of the output provided by the GNU profiler utility,
where 99.9% of the execution is done inside a function called evalSplits. As
a consequence, we determine that the best option to achieve a significant im-
provement is to optimizing the function evalSplits. Next chapter presents a
complete analysis of the split mechanisms and how to optimize them.

3.3.3 Measuring the number of iterations

DP IDP p

17 64439010 32285040 0.501

18 193448101 96855121 0.501

19 580606446 290565366 0.500

20 1742343625 871696099 0.500

21 5228079450 2615088300 0.500

22 15686335501 7845264901 0.500

23 47063200806 23535794706 0.500

24 141197991025 70607384119 0.500

25 423610750290 211822152360 0.500

26 1270865805301 635466457081 0.500

Table 3.1: Number of coalitions evaluated by DP and IDP.

We introduce counters in the algorithms in order to measure experimentally the
number of times that a splitting is evaluated. The results are presented in Table
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3.1.

We verify what our analytical findings. The number of iterations of the internal
loop determines the number of splittings evaluated and can be computed using
a formula. Moreover, we find that IDP evaluates approximately half of them,
and when incrementing the CSGP size, this value gets closer to 0.5.

We define p as the probability of evaluating a splitting by the IDP. We use this
value along this report, and for the sake of simplification we approximate this p
to 0.5 regardless of the problem size. Thus we consider that DP evaluates twice
of the splittings evaluated by IDP.

3.3.4 Verifying DP-IDP performance.

Our next experiment verifies that IDP effectively improves the performance of
DP. The DP and IDP algorithms are executed varying the problem size from a
range of [17..26]. As shown in Table 3.2, we register an average improvement of
3.12 with a low standard deviation (0.13), which means that IDP improves DP
regardless of the size of the problem.

n 17 18 19 20 21 22 23 24 25 26

DP 3.21 10.04 31.54 98.41 306.63 1048.36 4109.69 15642.50 59684.42 220278.64

IDP 1.09 3.27 9.97 29.67 96.38 343.00 1354.53 5169.44 19168.2 71519.04

SpeedUp 2.94 3.07 3.16 3.32 3.18 3.06 3.03 3.02 3.11 3.08

Table 3.2: Time spent by DP and IDP for solving problems of size n (in seconds)

This SpeedUp of 3x confirms what we found in the literature [8], so we are able
to reproduce the results of the state of the art approaches.

In addition, the problem has a predictable behavior, since when incrementing
the problem size in one, the time is multiplied approximately by three plus an
overhead. These values are presented in Table 3.3.

This overhead starts to be significant when the problem grows from n = 21 to
n = 22. In the following chapters we analyze why this overhead happens.

17 →18 18→19 19→20 20→21 21→22 22→23 23→24 24→25 25→26

DP 3.13 3.14 3.12 3.12 3.42 3.92 3.81 3.82 3.69

IDP 3.00 3.05 2.98 3.25 3.56 3.95 3.82 3.71 3.73

Table 3.3: Time increment when increasing the problem size
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Chapter 4

Optimized Implementation

In this chapter we study how the data is represented in the CSGP and we ex-
plore how to optimize the operation that is performed most frequently, which is
the coalition split.

Thus we propose an alternative method for calculating the splittings of a coali-
tion using binary operations with the objective of making this operation as fast
as possible; we call it method the Fast Split Method (FSM).

Using this method we propose a new implementation for the DP and IDP al-
gorithms, using FSM. Our versions are called Fast Split DP (FSDP) and Fast
Split IDP (FSIDP). They are presented in Figure 4.1.

After presenting the theoretical background, we evaluate their performance and
we find that

• FSDP produces an average of 19.9 SpeedUp over DP.

• FSIDP produces an average of 23.9 SpeedUp over DP and an average of
1.15 over FSDP.

Figure 4.1: FSDP and FSIDP
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4.1 Data representation

The CSGP has as an input a collection of values for each possible combination
of a group of elements (coalitions) namely 2n valuations. It is needed to store
both the coalition and the value. There exist different alternatives for repre-
senting the coalition, but probably the optimal and most compact option is to
use a binary representation.

Given a number of agents n, a binary word of n bits is enough to represent all
possible coalitions where one agent is represented by one bit. Table 4.1 shows
how to encode four coalitions whose elements belong to a set of size eight. In
this case, it is enough with one byte to represent all possible coalitions.

Coalition Binary Decimal Coalition Binary Decimal

{a1} 00000001 1 {a4, a6, a7, a8} 11101000 232

{a1, a2, a3, a4} 00001111 15 {a1, a3, a5, a7} 01010101 85

Table 4.1: Coalition representation samples given 8 elements

Every coalition has associated its coalition value. The DP and IDP algorithms
require storing both values for every coalition. IDP proposes using the coali-
tion as an index of a matrix of size 2n. Using this technique, the entire data
presented in Table 2.3 can be stored as a vector with these contents [33, 39,
87, 13, 87, 36, 97, 40, 70, 52, 111, 67, 100, 132, 155]. This way of storing both
coalitions and coalition values provides high compactness, which is very useful
when having problems with a large input.

4.2 Optimizations in the internal loop

As seen in section 2.3.3, DP’s complexity is exponential and it is characterized
by three nested loops. The code executed inside the inner loop is critical in the
sense that it is the one most frequently executed. As an example, consider the
execution of a problem of size 30. The number of iterations per loop are shown
in Table 4.2 where the last two columns show the number of times that the code
in the inner loop is executed.

As a reminder, the pseudocode is again presented in Algorithm 1, shown fur-
ther in the chapter. Along this chapter, we are interested in the internal loop
behavior (lines 5-10).

Inside this loop, two logical groups of operations can be identified. First, the
calculation of the splittings using the nextSplit() function. Second, the memory
accesses in order to evaluate the coalition values and, in some cases, update it.
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Size of # of coalitions # splitting of a single #splittings of all coalitions of size m

coalition (m) of size m coalition of size m value log10

2 435 1 435 2.64

3 4060 3 12180 4.09

4 27405 7 191835 5.28

5 42506 15 2137590 6.33

6 593775 31 18407025 7.26

7 2035800 63 128255400 8.11

8 5852925 127 743321475 8.87

9 14307150 255 3648323250 9.56

10 30045015 511 15353002665 10.19

11 54627300 1023 55883727900 10.75

12 86493225 2047 177051631575 11.25

13 119759850 4095 490416585750 11.69

14 145422675 8191 1191157130925 12.08

15 155117520 16383 2541290330160 12.41

16 145422675 32767 4765064791725 12.68

17 119759850 65535 7848461769750 12.89

18 86493225 131071 11336753493975 13.05

19 54627300 262143 14320164303900 13.16

20 30045015 524287 15752210779305 13.20

21 14307150 1048575 15002119811250 13.18

22 5852925 2097151 12274467516675 13.09

23 2035800 4194303 8538762047400 12.93

24 593775 8388607 4980945121425 12.70

25 142506 16777215 2390853800790 12.38

26 27405 33554431 919559181555 11.96

27 4060 67108863 272461983780 11.44

28 435 134217727 58384711245 10.77

29 30 268435455 8053063650 9.91

30 1 536870911 536870911 8.73

Table 4.2: Number of coalitions and splittings in DP for a problem of size 30
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Algorithm 1 Pseudo-code of the Dynamic Programming Algorithm

1: for m← [2 . . . n] do
2: for coalition← coalitionsOfSize(m) do
3: max value← value[coalition]
4: (S1, S2)← init()
5: for (S1, S2)← nextSplit(coalition, (S1, S2)) do
6: if (max value < value[S1] + value[S2] then
7: max value← value[S1] + value[S2]
8: end if
9: end for

10: value[coalition]← max value
11: end for
12: end for

4.2.1 The nextSplit function

This function generates a new splitting given a coalition and the previous split-
ting. Note that, as defined in section 2.3.1, a split is the action of dividing a
coalition in two subsets, while splitting is the result of the application of a split.

The total number of splittings is defined by the number of elements of the coali-
tion. If m is the size of the actual coalition, the total number of splittings will
be 2m−1 − 1.

Let T = {a1, .., am} be an element set from which we have a coalition formed by
a subset of elements S ⊂ T . The split function has to be understood as the se-
lection of two disjoint subsets S1 and S2, such that S = S1∪S2, and S1, S2 6= ∅.

The initial set of elements to split is encoded by a binary number. Consider for
instance a set T = {a1, a2, a3, a4, a5, a6, a7, a8} of size 8 and S = {a1, a2, a3
,a5} a subset of T. As shown in section 4.1, this selection can be represented as
a number s = 00010111/b (in decimal 23).

The internal loop will go through all the possible splittings of this subset. That
is, iterate through all the possible ways of selecting two subsets containing 1 and
3 elements of S respectively and all the possible ways of selecting two subsets
containing 2 and 2 elements of S.

We propose a method in order to calculate this in a computationally efficient
way. We call it Fast Split Method.

The Fast Split Method

Let C be the binary representation of the coalition to be splitted.

• First we calculate the two’s complement of C, denoted by C∗∗.

• Then we can compute the first splitting performing the operation:
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S1 ← (C∗∗ AND C)
S2 ← (C − S1).

• For the next iterations we need the previous S1 (denoted by S′1). The
calculation of the new splitting can be performed as :

S1 ← ((C∗∗ + S′1)ANDC).
S2 ← (C − S1).

Note that if we initialize S1 as zero the the first split can be obtained using the
general term calculation.

Example

We want get all the splittings for the coalition {a1, a2, a3, a5} represented by
the bitmask 00010111

Initializations:
C = 00010111
C∗∗ = 11101001
S1 = 0

Since the number of elements in the coalition is 4 we can compute the number
of splittings as 24−1 − 1 = 7. Applying our Fast Split Method we will obtain
the splittings shown in Table 4.3.

Iteration 1 2 3 4

Subset 1
{a1} {a1} {a1, a2} {a3}

00000001 00000010 00000011 00000100

Subset 2
{a2, a3, a5} {a1, a3, a5} {a3, a5} {a1, a2, a5}
00010110 00010101 00010100 00010011

Iteration 5 6 7

Subset 1
{a1, a3} {a2, a3} {a1, a2, a3}

00000101 00000110 00000111

Subset 2
{a2, a5} {a1, a5} {a5}

00010010 00010001 00010000

Table 4.3: Fast Split Method trace

4.2.2 Memory accesses

Once one splitting is calculated, the pair forming the splitting determines the
two memory positions where the coalition values are stored. The algorithm ac-
cesses those positions in order to evaluate what is better: the coalition value
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associated with the initial coaliton or the one associated with the current split-
ting.

4.3 The IDP Algorithm

The IDP Algorithm introduces some extra computation in order to avoid the
evaluation of some nodes where in fact there are redundant calculations. The
basic idea behind this approach is to introduce a little overhead in order to
avoid a significant amount of calculation. This algorithm can be implemented
following the schema presented in Algorithm 2, which only differs from DP in
the sixth line where a condition is added.

Algorithm 2 Pseudo-code of the IDP Algorithm

1: for m← [2 . . . n] do
2: for coalition← coalitionsOfSize(m) do
3: max value← value[coalition]
4: (S1, S2)← init()
5: for (S1, S2)← nextSplit(coalition, (S1, S2)) do
6: if (sizeOf(S1) ≥ n−m) then
7: if (max value < value[S1] + value[S2] then
8: max value← value[S1] + value[S2]
9: end if

10: end if
11: end for
12: value[coalition]← max value
13: end for
14: end for

In our implementation we coded this extra conditional in a very efficient way,
specifically, the function sizeOf() which is in charge of counting how many
members a coalition has, can be implemented in a computationally efficient
way, since in the data representation we use, this number is determined by the
number of bits equal to 1. Counting this number of bits is an operation that
is actually implemented in most of the modern processors and it is, in conse-
quence, very fast.

4.4 FSDP and FSIDP performance analysis

Our optimized algorithms are called FSDP and FSDP respectively. The objec-
tive of these algorithms is to reduce the total number of instructions executed.
Therefore, they do not modify the behavior and the complexity of the existing
algorithms. We perform some experiments in order to contrast our algorithms’
results with the results obtained using DP and IDP.
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4.4.1 Measuring execution time.

DP IDP FSDP FSIDP

n Time Time SpeedUp Time SpeedUp Time SpeedUp

17 3.21 1.00 3.21 0.17 18.77 0.17 19.09

18 10.04 3.28 3.06 0.50 20.04 0.47 21.39

19 31.54 10.01 3.15 1.50 21.02 1.36 23.22

20 98.41 29.64 3.32 4.51 21.81 3.98 24.73

21 306.64 96.35 3.18 13.49 22.73 11.75 26.10

1048.37 349.08
22

(17 min) (5:49 min)
3.00 55.84 18.77 43.83 23.92

4109.69 1426.23 270.56 179.21
23

(68 min) (23 min)
2.88

(4:30 min)
15.19

(3 min)
22.93

15642.51 5395.69 980.01 609.43
24

(4:20h) (1:30h)
2.90

(16 min)
15.96

(10 min)
25.67

59684.43 20978.75 3121.13 1965.43
25

(16:30h) (5:50h)
2.84

(52 min)
19.12

(32 min)
30.37

Table 4.4: Time in seconds and SpeedUp for DP, IDP, FSDP, FSIDP algorithms .
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Figure 4.2: Execution time in seconds for DP, IDP, FSDP, FSIDP algorithms.

We run problems varying their size from 17 to 25 and solve them using the dif-
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ferent algorithms: DP, IDP, FSDP, FSIDP. The results are presented in Table
4.4 and Figure 4.2.

The first conclusion we obtain from the results is that FSM significantly im-
proves the performance of both DP and IDP. We also find that the improved
version of the original algorithm (IDP), improves DP on a significant factor
(3X), whereas FSIDP improves FSDP only on an average of (1.15X).

Another interesting conclusion that can be obtained from our experiment is
that for problems bigger than n = 21 there is a degradation of the performance,
which is more accented in the FSDP algorithm. As we detail in the next chap-
ter, this degradation is basically due to the memory system latency.

4.4.2 Reviewing the analytical model

In Section 2.3.5 we presented a model to determine when IDP is improving DP
and in Section 3.3.3 we found a value for the probability of evaluating a spitting
by IDP (p = 0.5).

Figure 4.3: Scheme of the internal loop execution for DP, IDP, FSDP and FSIDP
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With this data we are able to compute more precisely when IDP improves DP.
As seen before, it will be determined by t1, t2 and t3. Figure 4.3 gives an idea of
the different strategies used by the algorithms in order to obtain performance.
While IDP reduces the number of executions for the block t3, FSDP tries to
reduce the total number of executed instructions. FSIDP combines both tech-
niques.

From Figure 4.3, and considering the probability of satisfying the conditional
as p = 0.5, we can deduce that IDP will improve DP while

2t2 + t3 < 2t1.

In addition it is possible to compute the SpeedUp expected from IDP and FSIDP
as

SpeedUp =
2t1

2t2 + t3
.

If we suppose that t1 ≤ t2 + t3, we find that the SpeedUp has an upper bound
that is equal to 2. But we found experimentally that IDP improves DP in a
factor of 3. The consequence of this is that our model is not valid for DP and
IDP algorithms, which require more computational effort when operating with
bigger coalitions than for smaller ones. In Section 5.2.1 we present a more de-
tailed discussion about this behavior.

However, FSDP and FSIDP can be approximated by this analytical model which
is a simplified version of the real execution pattern.
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Chapter 5

Performance analysis

In the previous chapters we have presented and measured four algorithms for
solving the Coalition Structure Generation Problem (CSGP). Those algorithms
are DP, IDP, FSDP and FSIDP.

Until now, we measured them using the total execution time. In the present
chapter we perform a deeper analysis, taking more measurements which allow
us to have a better characterization of the different algorithms’ behavior.

5.1 Experiments

We use the Performance Application Programming Interface [1] (PAPI) in order
to have access to the CPU hardware counters. This library allows us to know
more precisely how the different algorithms are using the hardware resources
and allow us to analyze the application’s execution pattern.

The use of PAPI requires to adapt the application including calls to the PAPI
libraries. Once PAPI is instrumented we have access to different measures such
as total number of instructions executed, total number of CPU cycles or number
of accesses to different cache levels.

The computer used for running the experiments is a six-core Intel Xeon E5645
Processor at 2.40GHz (already presented in Section 3.3).

5.2 Characterizing algorithms

We instrumented the different algorithms with PAPI and we took measurements
of the application’s performance.

5.2.1 Total instructions per complexity

The complexity of the algorithm is an objective measure that gives us an idea
of how the computation grows when increasing the problem size. Thanks to the
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Hardware counters, we are able to know how many instructions the algorithm
executes.

In Table 5.1 we present the results of executing the measure varying the problem
size.

n 17 18 19 20 21 22 23 24 25

DP 142.87 146.55 150.23 153.89 157.54 161.16 164.75 168.28 171.76

IDP 44.09 47.46 48.45 47.34 50.48 51.49 50.52 53.54 54.56

FSDP 6.55 6.53 6.52 6.51 6.51 6.51 6.50 6.50 6.50

FSIDP 6.05 6.03 6.02 6.02 6.01 6.01 6.00 6.00 6.00

Table 5.1: Total instructions per 3n (complexity).

From the results obtained, we can draw two conclusions: First, that the original
DP and IDP algorithms need much more instructions per unit of work than
the FS versions. This overwork is especially significant in the case of the DP.
Second, that in the DP and IDP versions, when incrementing the complexity
of the problem, the number of instructions per complexity grows. This growth
over the complexity means that there must be some inefficiencies in the imple-
mentation.

Given a CSGP size, the complexity is constant, therefore this measure allows
us to establish a fair comparison between algorithms in terms of instructions
executed. A reduction of the number of instructions executed usually leads to
a reduction of the final execution time.

DP and IDP clearly use more instructions and need more CPU time than FSDP
and FSIDP for solving the same CSGP. They are far from FSDP and FSIDP
and in consequence we will focus our analysis only on the FSDP and FSIDP
algorithms.

5.2.2 Instructions per memory access

This metric provides an estimation of how many instructions need to be exe-
cuted in order to fetch a single value from memory. We obtain the value of the
total number of instructions reading them from the hardware counters, while
the number of access to memory is obtained in Section 3.3.3. Results are pre-
sented in Table 5.2.

On the one hand, FSDP requires an average of 6.52 instructions to fetch a value
from memory, while FSIDP needs around 12. On the other hand, FSIDP is
faster than FSDP. The fact is that FSIDP executes approximately half of the
memory accesses. Therefore, even though the computation of the addressing
for FSIDP is expensive, it is balanced by the reduction of memory access.
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n 17 18 19 20 21 22 23 24 25 26

FSDP 6.56 6.54 6.53 6.52 6.51 6.51 6.51 6.50 6.50 6.50

FSIDP 12.10 12.07 12.04 12.03 12.02 12.01 12.01 12.01 12.00 12.00

Table 5.2: Instructions per memory access

Figures 5.1, and 5.2, present the code executed inside the internal loop for FSDP
and FSIDP, and Figures 5.3 and 5.4 show their corresponding translation to as-
sembler.

01 set1=(ca2 + set1) & bitMask;

02 set2=bitMask-set1;

03 tmp=values[set1]+values[set2];

04 if (tmp>max) max=tmp;

Figure 5.1: Internal loop FSDP
(ANSI C)

01 set1=(ca2 + set1) & bitMask;

02 if (__builtin_popcount(set1) >=m) {

03 set2=bitMask-set1;

04 tmp=values[set1]+values[set2];

05 if (tmp>max) max=tmp;

06 }

Figure 5.2: Internal loop FSIDP
(ANSI C)

.L72:

01 addl %r10d, %edx

02 movl %eax, %ecx

03 andl %eax, %edx

04 subl %edx, %ecx

05 movslq %edx, %r9

06 movslq %ecx, %rcx

07 movl (%r8,%rcx,4), %ecx

08 addl (%r8,%r9,4), %ecx

09 cmpl %ecx, %esi

10 cmovl %ecx, %esi

11 addl $1, %edi

12 cmpl %r13d, %edi

13 jbe .L72

Figure 5.3: Internal loop
FSDP (ASSEMBLER)

.L61:

01 addl %r9d, %ecx

02 andl %eax, %ecx

03 popcntl %ecx, %edi

04 cmpl %edi, %ebx

05 ja .L60

06 movl %eax, %edi

07 movslq %ecx, %r15

08 subl %ecx, %edi

09 movslq %edi, %rdi

10 movl (%r8,%rdi,4), %edi

11 addl (%r8,%r15,4), %edi

12 cmpl %edi, %edx

13 cmovl %edi, %edx

.L60:

14 addl $1, %esi

15 cmpl %r13d, %esi

16 jbe .L61

Figure 5.4: Internal loop
FSIDP (ASSEMBLER)

FSDP code analisys

The assembly code corresponding to the FSDP uses thirteen instructions that
include two memory access operations (instructions 7 and 8). These numbers
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verify the results found experimentally. That is, the average number of instruc-
tions per access is 6.5.

For small CSGPs this ratio value is slightly over 6.5 due to the rest of instruc-
tions executed, but the bigger the CSGP is, the relevance of the internal loop
overshadows any other measure.

FSIDP code analisys

The assembly code generated for the FSIDP algorithm is quite more complex.
It is formed by 8 instructions that are always executed (instructions 01, 02, 03,
04, 05, 14, 15, 16) and other 8 that are only executed if the condition in line 06
is satisfied (instructions 06, 07, 08, 09, 10, 11, 12, 13). According to the data
obtained in Experiment 3.3.3, the conditional in line 06 is satisfied in around
50% of the executions and, when it is satisfied it will lead to the execution of the
two load operations at 10 and 11. Performing some basic calculation, we find
that the average memory access is done every 12 cycles. This value confirms
what we found in the experimental data.

5.2.3 Cycles per Instruction (CPI)

The ratio between the total number of cycles and the total number of instruc-
tions can reveal useful information about the application’s behavior. The mean
time per instruction in CPU cycles expresses how fast the processor executes
instructions. A high CPI indicates that the Processing unit is waiting for some-
thing, typically a memory access or a data for a calculation.

Table 5.3 and Figure 5.5 reflect the CPI measured for the different algorithms
varying the data size from n = 17 to n = 25.

n 17 18 19 20 21 22 23 24 25

Problem size (MB) 0.5 1 2 4 8 16 32 64 128

FSDP 0.49 0.51 0.53 0.54 0.54 0.75 1.22 1.48 1.57

FSIDP 0.51 0.51 0.51 0.51 0.51 0.64 0.88 1.00 1.07

Table 5.3: Different algorithm CPI & growing CSGP size.

Examining the results, we can see that there are two different regions hav-
ing similar behavior. For CGSP executions having an input data smaller than
n = 22, a growth in the problem has no significant impact on the CPIs. There
are no important differences between algorithms in terms of CPIs both algo-
rithms need around 0.5 cycles per instruction. When the CGSP is bigger, the
number of CPI starts growing extensively.

In this case, the most important factor affecting the CPI is the effect of cache
misses. For small CSGP, all the required data fit in the cache, so when the
program performs a LOAD operation, the data is probably hitting in the cache.
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Figure 5.5: CPI for DP,IDP,FSDP,FSIDP algorithms.

However, when the CSGP is bigger, memory accesses randomly hit or miss in
the cache, producing a slower average memory latency.

In addition, FSIDP needs less CPIs than FSDP. This is a consequence of what
we found in Section 5.2.3, the ratio of memory instruction per iteration is ap-
proximately one-to-six in the case of FSDP and one-to-twelve in the case of the
FSIDP.

5.2.4 Cache misses

We computed the percent of last level cache misses, shown in Table 5.4. This
measurement is calculated having the total number of access and the total num-
ber of cache misses.

n 17 18 19 20 21 22 23 24 25

Problem size (MB) 0.5 1 2 4 8 16 32 64 128

FSDP (%) 0.001 0.005 0.010 0.008 0.060 21.023 61.693 77.613 88.815

FSIDP (%) 0.014 0.023 0.033 0.026 0.085 22.219 61.840 79.908 88.267

Table 5.4: % Cache misses for FSDP and FSDIP and problem memory requirements

This cache miss ratio verifies that the CPI curve is related to the memory access
instructions. Cache misses are not significant for problems smaller than n = 22,
whilst for bigger problems this ratio of cache misses grows. Moreover, this cache



misses curve presents a high correlation with the CPIs, meaning that has a clear
influence on the average cost of the instructions.

Another interesting consideration is that both FSDP and FSIDP present a sim-
ilar cache miss ratio, meaning that there are no big differences between the
memory access patterns for both algorithms.

5.2.5 Memory Bandwidth

We measure Memory Bandwidth by using the total number of cycles needed for
the algorithm, the clock frequency specified for our processor, which is 2,40GHz
and the number of memory accesses.

n 17 18 19 20 21 22 23 24 25

Problem size (MB) 0.5 1 2 4 8 16 32 64 128

FSDP (MB/s) 2860 2751 2668 2615 2596 1868 1150 951 895

FSIDP (MB/s) 1479 1479 1482 1489 1496 1193 871 766 712

Table 5.5: Memory Bandwidth (MB/s) for FSDP and FSIDP algorithms
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Figure 5.6: Memory Bandwidth (MB/s) for FSDP and FSIDP algorithms.

The provided results shown in Table 5.5 and Figure 5.6 are according to what
we found in previous sections. Data is obtained fast for small problems, and



when the problem size exceeds the cache, there is a fall in Memory Bandwidth.

FSDP fetches data with more frequency than FSIDP, thus it gets a higher mem-
ory bandwidth ratio.

We took measurements of the capacity of our memory system using a tool for
benchmarking memory [15]. The measurements we get is that our memory sys-
tem maximum bandwidth is 42540.1 MB/s. This result is far from the results
we obtain with our algorithms. Which means that Memory Bandwidth is not
limiting our application performance.

5.3 Conclusions

After analyzing the behavior of the DP and IDP algorithms in front of the FSDP
and FSIDP, we find that our FS versions are considerably faster. There is a big
difference between the DP and IDP algorithms and the FSDP and FSIDP ones.
In consequence, we will focus on the study of the FS versions, analyzing their
performance and their characterization.

FSDP and FSIDP are behaving equally when the problem is bigger, that is to
say the number of instructions executed is increasing according to the complex-
ity.

The memory access pattern is irregular, this lack of locality when accessing
memory system becomes relevant when the problem representation does not fit
in the last level cache, producing a high cache miss ratio which is expensive in
terms of CPU cycles. Therefore when CSGP representation in memory is bigger
than the memory cache, the performance of the algorithm decreases.

FSIDP avoids the half of the memory access adding an extra computation. For
minor CSGPs, this extra computation is scarcely balancing the savings in time
due to the memory access avoidance. Nevertheless, when the problem is bigger,
this saving has more relevance as memory access are expensive. We are rein-
forcing the original IDP article idea of saving operations when these are costly
memory accesses.

Another consequence of the disfavorable access pattern is the small memory
bandwidth consumed, around a 2.5% of the peak bandwidth of the system.
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Chapter 6

Shared Memory Approach

In the previous chapter we saw how the DP algorithm works using a sequential
paradigm and we discussed how to optimize the execution to run as fast as
possible in one processing core. Those optimizations were made in the portion
of code inside the deepest loop (coalition evaluation loop), which is both com-
putation and memory intensive.

However, solving a CSGP implies that a lot of CPU time is required, and nowa-
days typical processors are provided with two or more cores.

In this chapter we propose a new algorithm to parallelize a CSGP using a Shared
Memory paradigm: the SMIDP algorithm.

Our proposal is based on the FSIDP algorithm (See Figure 6.1). The main idea
behind this approach is dividing a CSGP in different threads which are executed
in different processing cores.

Figure 6.1: Roadmap for SMIDP

Nevertheless, dividing the problem in a way that achieves good performance
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(high efficiency) is not easy. CSGPs require the evaluation of all possible Coali-
tion Structures, which are highly coupled and interrelated, i.e. there may exist
a high amount of dependencies. Thus ,it is not possible to simply divide the
input data between different threads.

This chapter presents the algorithm analysis made to parallelize CSGP and the
rationale behind the methods used to distribute the work along different pro-
cessor units.

6.1 Algorithm analysis

Our objective is to distribute the work between different computation nodes,
therefore in this case we focus on how the data is generated and the execution
scheduled. The optimizations done for the sequential part remain unchanged
whereas the code responsible for orchestrating the execution will be modified.

A good parallel algorithm must:

• Reduce synchronization between threads. Assigning big chunks of work
to every thread is desirable when possible.

• Balance the work. The workloads of each thread have to be balanced.
Having different workload for each thread leads to an infra-utilization of
hardware resources.

• Reduce the use of shared resources, typically memory.

Having these three points in mind, we analyze the algorithm in order to see
when it is possible to execute different parts of the code in different threads.
These parts have to be as big as possible, as balanced as possible and sharing
the least possible amount of resources.

In Section 2.3.2 we said that the execution of DP is characterized by three nested
loops:

• Coalition size selection (outer loop).

• Coalition generation (middle loop).

• Coalition evaluation (internal loop).

We start trying to parallelize the most external loop. We see that the coalition
size selection loop (outer loop) is responsible for establishing what the size of
the coalitions to be evaluated is (defined as m). DP imposes an unbreakable
dependence condition: it is necessary to compute all the coalitions of size m−1
in order to process all the coalitions of size m. Consequently, it is not possible
to divide the execution of this loop among different threads. The iterations have
to be processed sequentially.

The coalition selection loop (the middle loop) selects the coalitions that must be
evaluated. As we will see, the coalitions selected by this loop can be executed
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in parallel. We will next analyze the behavior of this loop.

A single iteration of this loop can be described as:

• Each iteration of the loop is responsible for evaluating a group of elements
A = {a1, ..., am}. It reads the coalition value from memory.

max value← v[A].

• The set of elements is split in all possible subsets S1, S2 where S1∪S2 = A
and S1, S2 6= ∅. For each pair (S1, S2) there are two read operations
v[S1] and v[S2]. On each internal loop iteration max value is updated as
max value← max(max value, v[S1] + v[S2]).

• The final value in max value is written back to memory. This writing
can be skipped if max value = v[A].

v[A]← max value.

Every iteration of this loop performs a number of read operations and only
one writing. It is important to stress that every iteration stores a value in the
memory position, the one corresponding to the coalition A. Thus every write
operation for a given coalition is performed only once. From this, we ensure
that the operations performed in the selection loop can be executed in parallel,
without altering the final result.

Table 6.1 illustrates a trace of one iteration for the coalition selection loop for a
size-3 coalition on a size-4 problem. We notice that for every different coalition
A, there is a block calculating and storing its max value. Indeed, it is possi-
ble to perform this computation independently from the data calculated in the
other coalitions’ blocks. In this example, the calculation of the best split for the
coalition {a1, a2, a3} can be performed at the same time as the one for coalitions
{a1, a2, a4},{a1, a3, a4} and {a2, a3, a4}.

To sum up, the behavior of the DP algorithm implies first calculating the coali-
tion values for the smallest possible coalitions (size two), then calculating the
coalitions of size three, using the coalitions calculated in the previous step, then
coalitions of size four, and so on. This way of proceeding guarantees that after
the calculation of a coalition of size m, this data will not be modified in the
future, and it will only be needed for coalitions bigger than m. Accordingly, it
is possible to carry out the coalition generation and evaluation distributed in
different threads without any risk of overwriting useful data.

6.2 Distributing work

In order to distribute the execution among different CPUs, we need to develop
a novel method of computing how the coalitions are generated.
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m A v(A) S1,S2 Evalutation max value

3 {a1,a2,a3} 97 {a1},{a2,a3} v({a1})+v({a2,a3})=85 97

{a2},{a1,a3} v({a2})+v({a1,a3})=126 126

{a3},{a1,a2} v({a3})+v({a1,a2})=100 126

{a1,a2,a4} 111 {a1},{a2,a4} v({a1})+v({a2,a4})=98 111

{a2},{a1,a4} v({a2})+v({a1,a4})=112 112

{a4},{a1,a2} v({a4})+v({a1,a2})=127 127

{a1,a3,a4} 100 {a1},{a3,a4} v({a1})+v({a3,a4})=100 100

{a3},{a1,a4} v({a3})+v({a1,a4})=112 112

{a4},{a1,a3} v({a4})+v({a1,a3})=127 127

{a2,a3,a4} 132 {a2},{a3,a4} v({a2})+v({a3,a4})=106 132

{a3},{a2,a4} v({a3})+v({a2,a4})=78 132

{a4},{a2,a3} v({a4})+v({a2,a3})=92 132

Table 6.1: Parallel distribution analsys for a problem of size 4

We propose two different functions to generate coalitions.

• the getCombination function. Computes the k-th coalition of m members
(bits) from a group of n. It is slow.

• the getNext function. Computes the k-th +1 coalition from the kth coali-
tion. It is considerably faster.

Generating a coalition means selecting m elements from a group of n. It is
known that they are

(
n
m

)
possible options, and what is needed is to define a way

to generate all the different possibilities and distribute them without repeating
work. In fact, we will need to define an order in which the coalitions are gener-
ated. Using a fixed order it is easy to schedule which thread is going to process
each range of coalitions.

Table 6.2 shows all the possible combinations of 4 elements having a total num-
ber of n = 8 elements in lexicographical order. Although there are a number of
alternatives, the lexicographical order enables us to construct the direct access
method implemented in the getCombination function.

In the original version of the DP algorithm, coalitions are computed in a se-
quential way. We required a coalition in order to compute the next. This data
dependency was hindering the possibility of parallelizing the coalition selection
loop. This is the method used by FSDP and FSIDP, because it is both efficient
and fast.

The function getCombination is ideal for distributing the job in different com-
putational units. Let us take in consideration the case of having to evaluate the
coalitions of size 4 for a problem of size 8, as shown in Table 6.2; and let us sup-
pose that we dispose of two computational units to perform the work. We have
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Order Encoding Combination Order Encoding Combination
(k) Bin Dec (k) Bin Dec

1 ....1111 5 {a1, a2, a3, a4} 36 ...1111. 30 {a2, a3, a4, a5}
2 ...1.111 23 {a1, a2, a3, a5} 37 ..1.111. 46 {a2, a3, a4, a6}
3 ..1..111 39 {a1, a2, a3, a6} 38 .1..111. 78 {a2, a3, a4, a7}
4 .1...111 71 {a1, a2, a3, a7} 39 1...111. 142 {a2, a3, a4, a8}
5 1....111 135 {a1, a2, a3, a8} 40 ..11.11. 54 {a2, a3, a5, a6}
6 ...11.11 27 {a1, a2, a4, a5} 41 .1.1.11. 86 {a2, a3, a5, a7}
7 ..1.1.11 43 {a1, a2, a4, a6} 42 1..1.11. 150 {a2, a3, a5, a8}
8 .1..1.11 75 {a1, a2, a4, a7} 43 .11..11. 102 {a2, a3, a6, a7}
9 1...1.11 139 {a1, a2, a4, a8} 44 1.1..11. 166 {a2, a3, a6, a8}

10 ..11..11 51 {a1, a2, a5, a6} 45 11...11. 198 {a2, a3, a7, a8}
11 .1.1..11 83 {a1, a2, a5, a7} 46 ..111.1. 58 {a2, a4, a5, a6}
12 1..1..11 147 {a1, a2, a5, a8} 47 .1.11.1. 90 {a2, a4, a5, a7}
13 .11...11 99 {a1, a2, a6, a7} 48 1..11.1. 154 {a2, a4, a5, a8}
14 1.1...11 163 {a1, a2, a6, a8} 49 .11.1.1. 106 {a2, a4, a6, a7}
15 11....11 195 {a1, a2, a7, a8} 50 1.1.1.1. 170 {a2, a4, a6, a8}
16 ...111.1 29 {a1, a3, a4, a5} 51 11..1.1. 202 {a2, a4, a7, a8}
17 ..1.11.1 45 {a1, a3, a4, a6} 52 .111..1. 114 {a2, a5, a6, a7}
18 .1..11.1 77 {a1, a3, a4, a7} 53 1.11..1. 178 {a2, a5, a6, a8}
19 1...11.1 141 {a1, a3, a4, a8} 54 11.1..1. 210 {a2, a5, a7, a8}
20 ..11.1.1 53 {a1, a3, a5, a6} 55 111...1. 226 {a2, a6, a7, a8}
21 .1.1.1.1 85 {a1, a3, a5, a7} 56 ..1111.. 60 {a3, a4, a5, a6}
22 1..1.1.1 149 {a1, a3, a5, a8} 57 .1.111.. 92 {a3, a4, a5, a7}
23 .11..1.1 101 {a1, a3, a6, a7} 58 1..111.. 156 {a3, a4, a5, a8}
24 1.1..1.1 165 {a1, a3, a6, a8} 59 .11.11.. 108 {a3, a4, a6, a7}
25 11...1.1 197 {a1, a3, a7, a8} 60 1.1.11.. 172 {a3, a4, a6, a8}
26 ..111..1 57 {a1, a4, a5, a6} 61 11..11.. 204 {a3, a4, a7, a8}
27 .1.11..1 89 {a1, a4, a5, a7} 62 .111.1.. 116 {a3, a5, a6, a7}
28 1..11..1 153 {a1, a4, a5, a8} 63 1.11.1.. 180 {a3, a5, a6, a8}
29 .11.1..1 105 {a1, a4, a6, a7} 64 11.1.1.. 212 {a3, a5, a7, a8}
30 1.1.1..1 169 {a1, a4, a6, a8} 65 111..1.. 228 {a3, a6, a7, a8}
31 11..1..1 201 {a1, a4, a7, a8} 66 .1111... 120 {a4, a5, a6, a7}
32 .111...1 113 {a1, a5, a6, a7} 67 1.111... 184 {a4, a5, a6, a8}
33 1.11...1 177 {a1, a5, a6, a8} 68 11.11... 216 {a4, a5, a7, a8}
34 11.1...1 209 {a1, a5, a7, a8} 69 111.1... 232 {a4, a6, a7, a8}
35 111....1 225 {a1, a6, a7, a8} 70 1111.... 240 {a5, a6, a7, a8}

Table 6.2: Combinations generated using lexicographical order

up to 70 coalitions to be evaluated, so we can schedule the work distributing 35
to first processor, and the other 35 to the second processor.

While the first processor is calling the function getCombination(8, 4, 1), the sec-
ond one is calling the same function but with k = 35, i.e. getCombination(8, 4, 35).
Both processors make the appropriate computation and update the results if
it is needed. After finishing, they calculate the next coalitions by using the
getNext() function.
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6.2.1 The getCombination(n,m, k) function

getCombination(n,m, k) calculates the kth coalition. It receives parameters n,
m and k, where n is the total number of agents, m is the desired size of the
coalitions and k is the cardinality of the desired coalition according to the lexi-
cographical order (first column of Table 6.2).

This function computes the coalition bit by bit. Algorithm 3 presents this pseu-
docode.

Algorithm 3 getCombination(n,m, k) pseudocode

1: ret← 0
2: for current bit← [1..n] do
3: if (m > 0) then
4: unassigned bits← n− current bit

5: highb←
(
unassigned bits

m− 1

)
6: if (k ≤ highb) then
7: ret← setBitOn(ret, currentbit)
8: m← m− 1
9: else

10: k ← k − highb
11: end if
12: else
13: return ret
14: end if
15: end for
16: return ret

The rationale behind the algorithm is described as dollows:

• At the beginning the coalition is still undefined, and there are
(
n
m

)
possible

coalitions that could be formed by n bits with m of them activated. Half
of the combinations have the less significant bit selected, the other half do
not.

• For each consecutive bit, the algorithm checks how many bits have been
selected so far, and how many elements are still unassigned. These two
values can be used to compute a new binomial coefficient which determines
whether the next bit is selected or not.

Example
n=8,m=4,k=2.

First iteration, current bit← 1
We compute unassigned bits← current bit−1 and then

(
unassigned bits

m−1
)
=
(
7
3

)
=

35. Since k ≤ 35 (k = 2) the first bit is set to 1.
ret ← 00000001
m ← 3
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Second iteration, current bit← 2
We compute unassigned bits← current bit−1 and then

(
unassigned bits

m−1
)
=
(
6
2

)
=

16. Since k ≤ 16 (k = 2) the second bit is set to 1.
ret ← 00000011
m ← 2

Third iteration, current bit← 3
We compute unassigned bits← current bit−1 and then

(
unassigned bits

m−1
)
=
(
5
0

)
=

5. Since k ≤ 5 (k = 2) the third bit is set to 1.
ret ← 00000111
m ← 1

Fourth iteration, current bit← 4
We compute

(
n−1
m−1

)
=
(
4
0

)
= 1.

Since k > 1 (k = 2), we decrement k in
(
5
0

)
.

k ← k−1 = 1

Fifth iteration, current bit← 5
We compute unassigned bits← current bit−1 and then

(
unassigned bits

m−1
)
=
(
3
0

)
=

1. Since k ≤ 1 (k = 1) the fifth bit is set to 1.
ret ← 00010111
m ← 0

In the next iteration m=0, therefore the returned value is 00010111.

The cost of calling the function getCombination(n,m, k) is high, since for every
bit it is needed to compute a binomial coefficient calculation.

6.2.2 The getNext(m,n, previous) function

Given a specific coalition, it is possible to compute the next coalition in lexico-
graphical order at a lower cost (in an efficient way). This work will be done by
the getNext(m,n, previous) function.

Function getNext(m,n, previous) first looks at the most significant bit.

• If the most significant bit is zero, the next coalition is computed by adding
one bit in the position of the highest bit, e.g.

getNext(8, 4, 00110101/b) will return 00110101/b+00100000/b=01010101/b

• If the most significant bit is one, the first 01 sequence has to be found
starting from the most significant bit. We need to count all the 1s we
skip. Once the sequence 01 is found it will be replaced by 10. All the 1s
found so far are added to the left of the substituted sequence. e.g.

getNext(8, 4, 11100001/b) will return the substituted sequence 00000010/b

+ the skipped ones 00011100/b = 00011110/b
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Algorithm 4 getNext(n,m, previous) pseudocode

1: p1← msb position(previous)
2: if p1 6= n then
3: ret← previous + 1 shl (p1− 1)
4: else
5: p2← first 01 position(previous)
6: mask ← 1 shl (p2 + 1)− 1
7: sequence 01 plus 01← (mask AND previous) + 1 shl (p2− 1)
8: skipped ones← count bits(NOT mask AND previous)
9: ret← sequence 01 plus 01 + ((1 shl skipped ones)− 1) shl p2

10: end if
11: return ret

This method can be efficiently implemented using processor builtin instructions
like population count or count leading zeros, which are available in modern
processor instructions set. A pseudo-code for this algorithm is presented in
the figure Algorithm 4.

6.3 The Shared Memory FSIDP
Algorithm (SMIDP)

As shown in the present chapter, it is possible to effectively distribute the exe-
cution of the CSGP in different computation units a sharing memory paradigm.
In order to do this distribution we were forced to introduce some changes in the
original FSIDP conception about how to generate the coalitions.

The functions getCombination(n,m, k) and getNext(m,n, previous) can be
used in the sequential version with no impact . Once they are added to the
FSIDP Algorithm implementation, the transition to the parallel version is done
by adding the appropriate directives to execute the FSIDP in parallel.

Algorithm 5 shows the algorithm MSIDP, where the appropriate calls to the
functions getCombinations and getNext are, as well as the definition of the
parallel section. In the in real implementation it is needed to define the scope
of the variables. Some of them are global (m, n, value, total coalitions), and
others are private to each Core (coreID, coalition, i, max value, S1, S2).

Each thread receives as a parameter the combination number where it must

start, computed as threadID
total coalitions

total threads
+ 1.

In the previous example we have 70 total coalitions and 2 threads. The first
one (threadID=0) would start by the coalition number 1, the second thread
(threadID=1) would start by the coalition number 36.
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Algorithm 5 Pseudo-code of the SMIDP Algorithm

1: for m← [2 . . . n] do
2: PARALEL SECTION BEGIN

3: coalition← getCombination(n,m, threadID
total coalitions

total threads
+ 1)

4: for i← [1 . . . total coalitions] do
5: max value← value[coalition]
6: (S1, S2)← init()
7: for (S1, S2)← nextSplit(coalition, (S1, S2)) do
8: if (sizeOf(S1) ≥ n−m) then
9: if (max value < value[S1] + value[S2] then

10: max value← value[S1] + value[S2]
11: end if
12: end if
13: value[coalition]← max value
14: end for
15: coalition← getNext(n,m, coalition)
16: end for
17: PARALEL SECTION END
18: end for

6.4 Experimentation

We have run different CGSP using the SMIDP algorithm with different confi-
gurations. CSGPs size ranges from n = 18 to n = 26, and we have tested the
configuration using 6, 12, 24 threads.

The computer executing the experiments is defined in Section 3.3. It has two
six-core Intel Xeon X5645 Processors at 2.4GHz and 96GB RAM. The Proces-
sors have the Hyper-Threading Technology enabled.

Figure 6.2 presents the results of the different executions and the SpeedUps
reached compared to the FSIDP version.

Execution using 6 threads

In the 6-threaded version, the operating system ideally schedules the 6 threads
in the same physical processor, i.e. one thread per core.

We can appreciate a growing speedup until the problem size is n = 21. The
algorithm uses the 6 cores available in the first physical processor, therefore the
cache memory is shared between all the cores.

In the sequential versions the cache was used by only one core. When the CSGP
fits in the cache (n ≤ 21) there is no negative impact on sharing cache space.
On the contrary, bigger CSGPs decrement locality producing higher miss ratios.

In addition, there are a number of factors that explain not reaching the top
SpeedUp of 6X:
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Figure 6.2: Speedup obtained for different thread configurations

• First, the synchronization barriers drive the execution, making some cores
to be idle whilst others are computing. Within every iteration of the
external loop, all the threads must be synchronized. Even though the
distribution of instructions between the different threads is balanced, the
execution time of the different threads is unknown.

• Second, according to Amdahl’s Law, the SpeedUp is constrained by the
portion of sequential code executed. And in fact, there is a portion of
sequential code in charge of making the corresponding initializations and
the computation for driving the execution. The sequential part is less
relevant when the CSGP is bigger.

• Third, the effect of the turboBoost. When the processor uses only one
core, it can work at a higher clock frequency than when it uses all the
cores.

• Finally, the effect of sharing the last level cache between all the cores.

Execution using 12 threads

In the experiment run with 12 threads, the OS scheduler maps each thread to
a single core across the two processors.

The behavior follows the same pattern as in the 6-thread execution, but this
time SpeedUp is around 6, far from the ideal 12 provided by the 12 cores.
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Our computer has a Non-Uniform Memory Access (NUMA) architecture, which
means that the memory system does not provide the same latency for the two
physical processors. In our case, the memory allocation is done by the master
thread in the first processor of the system, so all the memory is attached to
the first physical processor. Threads executed in the second processor have to
access the memory through the first one, reducing the potential gain provided
by the parallelization.

Execution using 24 threads

Executing CSGP using 24 threads takes advantage of the Hyper-Threading
Technology. This technology allows a single core to execute two threads using
the same computational units. Hyper-Threading multiplexes physical resources
to hide instruction latencies.

From the results, we can observe that for small CSGPs (less than n = 21), the
algorithm perform worse than in the 6-thread and the 12-thread configuration.
This is caused by the effect of having too many threads for that small amount of
work (barely 2-3 seconds of total execution). The OS scheduler does not assign
threads correctly to cores and there is a high context switching which is killing
the performance. However, when CSGP is bigger, threads have more work and
this effect disappears.

Moreover, Hyper-Threading performs better when the CPI is higher and, as
seen in Figure 5.5, CPI increments when the problem is bigger than n = 21. A
high CPI means some computational units are underused, therefore the multi-
plexing produced by the Hyper-Threading Technology increment the utilization
of the hardware resources.

As seen in the previous chapter, one of the main constrains to reach more per-
formance is the memory access pattern. In the case of the parallel versions, a
higher number of Threads imply more memory requests per unit of time, and
it leads to a big Memory Bandwidth. Hyper-threading is getting benefit of this
situation.

However, we can appreciate that the SpeedUp is decreasing when the problem
size increases. This effect is present for all thread configurations. When using
threads, some resources such as the last level cache or the memory buses are
shared between all the cores. In consequence, it is reducing the performance of
each individual core.
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Chapter 7

Summary, Conclusions and
Future Work

7.1 Summary

The main objective of this work is to solve CSGPs faster than current state of
the art approaches. To this end, we have studied different existing methods to
solve CSGPs. We have chosen the DP and IDP algorithms. They are the best
when working with random input distributions.

We have studied both algorithms, defined the bounds they have, then coded
and measured them.

We have found the main bottlenecks that algorithms have, and we propose an
alternative method to solve this bottleneck: the Fast Split Method.

By virtue of the Fast Split Method we have proposed two new algorithms. FSDP
and FSIDP. Both increment the SpeedUp considerably. We have analyzed the
performance of the FSD and FSIDP algorithms extensively.

Finally, we have studied the possibility of implementing a version of the FSIDP
in a multicore environment. Hence, we propose a new algorithm which enables
the division of the CSGPs in different threads.

Figure 7.1 shows the different versions with their corresponding SpeedUp ob-
tained.

7.2 Conclusions

In this work we have studied how to optimize and parallelize an algorithm to
solve the Coalition Structure Generation Problem (CSGP). CSGPs are prob-
lems which need a large computation effort to be solved. Different techniques
have been developed in order to solve them and, in order to be able to deal
with bigger CSGPs, some of them only work with CSGPs that present a given
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Figure 7.1: Roadmap with corresponding SpeedUps compared to DP

pattern or distribution.

Our efforts are focused on solving any kind of CSGPs and doing it as fast as
possible. For this reason we have studied DP and IDP algorithms and we have
characterized both algorithms analytically and experimentally.

We found that existing implementations neglect the underlying architecture
where the algorithms are executed, and that seems to be a common factor in
the related literature we found.

We have proposed a novel method (FSM) to split coalitions faster. This op-
eration is key to increasing the performance when solving CSGPs. Hence, we
have developed two different implementations: FSDP and FSIDP, which run
considerably faster than DP (up to 30 times faster).

CSGPs require a high amount of memory to be represented. In addition, DP
and IDP algorithms access the memory without presenting any ordered pattern.
This lack of spatial locality has a clear impact on the performance of the appli-
cation.

We have also developed a technique to divide the execution in different threads,
using a Shared Memory paradigm. We have reached a SpeedUp of 6x (com-
pared to FSIDP) in a multicore environment due to parallelization on a 12-core,
2 socket processor.

Last version obtained (SMIDP) reaches a high SpeedUp compared to other state
of the art algorithms. We have analyzed the causes that constrain the execution:
address computation and memory latency. These problems are associated with
our multicore processor, therefore a migration to GPU can help us to deal with
both problems.
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7.3 Future Work

The analyzed algorithms present a high cache miss ratio which degrades the
performance of the solver. An interesting future line of research is to study the
possibility of altering how the CSGP is mapped to memory.

The technique used to implement the Shared Memory parallelization can be
reused to divide the execution among different computation nodes connected
by a network using a Message Passing Parallel Language (e.g. MPI). This new
approach is very interesting in terms of the potential scalability.

As was pointed in the Conclusions section, building an implementation of our
algorithms for a GPU environment can lead to a big SpeedUp. Modern GPUs
offer the possibility of massive parallelization which can lighten the computa-
tion phase and enable higher memory bandwidths, offering a good scenario for
running our algorithms.

Alternatively, our algorithms do not consider any distribution in the input data.
This is positive in the sense that the algorithms can solve any kind of CSGP.
However, for those CSGPs whose data does have a concrete distribution, some
techniques can be applied in order to skip computation. FSDP and FSIDP can
be adapted to work with different input data distribution.

As a final consideration, we found that there is a considerable number of existing
algorithms working with analog concepts which not prepared for exploiting par-
allelization. We can export and reuse the techniques used in FSDP and FSIDP
and especially the methodology and apply them to other similar algorithms.
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