
UNIVERSITAT AUTÒNOMA DE BARCELONA
DEPARTAMENT D’INFORMÀTICA
UNITAT DE PROCESSAMENT D’IMATGES

I INTEL·LIGÈNCIA ARTIFICIAL

TESI DOCTORAL

Modularization, Uncertainty, Reflective
Control and Deduction by Specialization

in MILORD II, a Language
for Knowledge–Based Systems.

Blanes, Abril de 1994

Memòria presentada per en Josep Puyol i Gruart per optar
al t́ıtol de Doctor en Informàtica per la Universitat Autònoma de
Barcelona sota la direcció del Dr. Jaume Agust́ı i Cullell.
El treball contingut en aquesta memòria ha estat realitzat a
l’Institut d’Investigació en Intel·ligència Artificial (IIIA) del
Consell Superior d’Investigacions Cient́ıfiques (CSIC).

Als meus pares.
A Carme i Pau.

Resum

Milord II és una arquitectura per al desenvolupament de sistemes basats
en coneixement. En particular estem interessats en els Sistemes Experts
reals, o sigui, en aquells que són útils en els entorns reals i que els seus
objectius també són reals. Per això es proposa un llenguatge de programació
basat en mòduls com un mitjà per a desenvolupar grans programes. La
base d’aquest llenguatge són els mòduls, els mòduls genèrics i un conjunt
d’operacions entre mòduls. Un programa desenvolupat amb Milord II
és una estructura jeràrquica de mòduls. Els mòduls són components
encapsulats amb una interf́ıcie ben definida. Els components de cada mòdul
són: el coneixement deductiu (fets i regles amb incertesa), la lògica local
(la declaració d’un àlgebra de valors de veritat) i un component de control
local (metaregles del tipus clausules de Horn).

Cada mòdul conté la seva propia lògica local per al tractament del
raonament aproximat. Proposem una àlgebra de valors de veritat per a
la deducció en un llenguatge basat en regles amb incertesa (coneixement
deductiu). Es proporciona un mecanisme per a obtenir una traducció vàlida
dels termes que es comuniquen entre mòduls que tenen lògiques diferentes.

La deducció a Milord II està basada en l’Especialització. Això ens
permet dissenyar un nou motor d’inferència que permet millorar els motors
d’inferència basats en Modus ponens. Aquestes millores estan relacionades
amb la comunicació amb l’usuari, la validació i la comprensibilitat dels
Sistemes Experts.

Finalment es presenten un conjunt d’applicacions desenvolupades amb
Milord II.

i

ii

Abstract

Milord II is an architecture for developing knowledge–based systems. In
particular we are interested in real Expert Systems, that is, those that are
useful in a real environment and that have real purposes. To do that we
propose a language based on modules as a method for programming in the
large. Modules, generic modules and a set of operations among them are
the basis of this language. A program in Milord II is then a hierarchi-
cal structure of modules. Modules are encapsulated components with a
well defined interface. Each module is composed of deductive knowledge
(weighted facts and rules), local logic (an algebra declaration) and a local
control component (Horn–like metarules).

Each module contains its own local logic to deal with approximate rea-
soning. An algebra of truth–values is proposed to make deductions in a
weighted rule–based language (deductive knowledge). A mechanism is pro-
vided to find valid translations of the terms communicated between modules
with different logics.

Deduction of Milord II is based on Specialization. This leads to a
new inference engine providing improvements with respect to the engines
based on Modus ponens. These improvements affect the communication,
the validation and the understanding of Experts Systems.

Finally we explain a set of applications and examples developed using
Milord II.

Acknowledgments

This work has been influenced by many people. I specially thank Jaume
Agust́ı, who introduced me in research activities and who has provided
guidance and support in the development of this work.

Carlos Sierra has influenced a lot this work because this thesis is the
natural extension of his previous work, Milord. He has provided me ex-
tensive support by means of large discussions on Milord II improvements,

iii

development advise and assistance in the applications with experts.
As usual Llúıs Godo has collaborated in all the questions dealing with

uncertainty management.
I am in debt with the experts that have related Milord II with the real

world. Pilar Barrufet, Marta Domingo, Clara Barroso and Llúıs Murgui
have been patient and constant users of my system.

Finally I would thank all the IIIA colleagues and friends for their collab-
oration and support, specially Francesc Esteva, IIIA Director, and Ramón
López de Mántaras, head of our group.

iv

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Real Expert Systems 2
1.2 From Milord to Milord II 3

1.2.1 Milord Characteristics 4
1.2.2 Differences and Improvements 5

1.3 Related Work . 7
1.3.1 Purpose . 8
1.3.2 Modularity . 9
1.3.3 Approximate Reasoning 9
1.3.4 Inference Engines . 11
1.3.5 Control . 11

1.4 Main Contributions . 12
1.5 Scheme of the Thesis . 15

2 Modularity 17
2.1 Introduction . 19

2.1.1 Previous Work . 19
2.1.2 Modular System . 20

2.2 Primitive Components . 22
2.2.1 Interfaces of modules 24
2.2.2 Modular hierarchy 27
2.2.3 Semantics of modules 29

2.3 Generic modules . 32
2.4 Refinement, Expansion and Contraction 36

2.4.1 Refinement . 38

v

2.4.2 Expansion and Contraction 44
2.5 Special declarations . 47

2.5.1 Inherit and Open . 47
2.5.2 Sharing . 49
2.5.3 Dynamic Modules 49

2.6 Conclusions . 50

3 Approximate Reasoning 51
3.1 Algebra of truth–values . 53

3.1.1 Modus Ponens Operator 57
3.2 Uncertainty and Imprecision 59

3.2.1 Intervals of Truth–values 61
3.2.2 Working with intervals 64
3.2.3 Fuzzy Sets . 65

3.3 Local Logics . 69
3.3.1 Mappings between different local logics 69
3.3.2 Example . 71

3.4 Logic Declaration . 73
3.4.1 Truth values . 74
3.4.2 Connectives . 75
3.4.3 Renaming . 76

3.5 Conclusions . 77

4 Deduction by Specialization 79
4.1 Enriched Behavior . 80

4.1.1 Communication . 81
4.1.2 Solutions . 82
4.1.3 Validation . 88
4.1.4 Summary . 89

4.2 Specialization Calculus . 90
4.2.1 Syntax . 90
4.2.2 Semantics . 92
4.2.3 Specialization Calculus 95
4.2.4 Soundness and Completeness 97

4.3 Implementation . 97
4.3.1 Inference Engine Design 98
4.3.2 Internal Representation of Deductive Knowledge . . 99
4.3.3 Specialization . 101

4.4 The Deductive Knowledge Language 104
4.4.1 Facts . 106
4.4.2 Rules . 112
4.4.3 Predicates on Facts 113

vi

4.5 Conclusions . 117

5 Control 119
5.1 Implicit Control . 122

5.1.1 Subsumption . 122
5.1.2 Unnecessary Rules 128

5.2 Threshold . 129
5.3 Evaluation Strategy . 130

5.3.1 Lazy . 131
5.3.2 Eager . 133

5.4 Reification and Reflection Mechanisms 133
5.4.1 Static Reification . 135
5.4.2 Dynamic Reification 136
5.4.3 Deductive Control 138
5.4.4 Structural Control 138

5.5 Conclusions . 141

6 Applications 143
6.1 Introduction . 143
6.2 Terap-IA . 144

6.2.1 Motivation and Goals 144
6.2.2 Architecture . 144
6.2.3 Implementation . 147

6.3 Spong–IA . 153
6.4 Ens–AI . 153
6.5 Fuzzy Control Example . 156

6.5.1 Simulation Process 157
6.5.2 Controller . 159
6.5.3 Results . 163

6.6 Propagation Rules for Polytrees 164
6.6.1 Introduction . 164
6.6.2 Implementation over Milord II 168

6.7 Future Applications . 174
6.8 Conclusions . 174

7 Conclusions 177
7.1 Future Work . 179

A Syntax of Milord II 181
A.1 Notation . 181
A.2 Modular System . 182
A.3 Deductive Knowledge . 183

vii

A.3.1 Dictionary . 183
A.3.2 Rules . 184

A.4 Inference System . 185
A.5 Control Knowledge . 186

A.5.1 Evaluation Type . 186
A.5.2 Truth Threshold . 186
A.5.3 Deductive Control 186
A.5.4 Structural Control 187

B Proofs 189
B.1 Proposition . 189
B.2 Soundness Theorem . 191
B.3 Restricted Completeness . 191

B.3.1 Literal Completeness 191
B.3.2 Restricted Literal Completeness Theorem 194

C Examples 197
C.1 Terap–IA Example . 197
C.2 Fuzzy Control Example . 216

C.2.1 Controller . 216
C.2.2 Simulator . 223
C.2.3 Whole Process . 223

C.3 Polytrees Example . 225

Index 237

viii

List of Figures

2.1 Example of module declaration. 23
2.2 Syntax of interfaces. 25
2.3 Example of module declaration. 26
2.4 Syntax of modules. 27
2.5 Hierarchy example. 30
2.6 Example of generic module definition and application. . . . 33
2.7 Syntax of generic modules. 34
2.8 Example of module used as parameter of a generic module. 35
2.9 Kernel declaration scheme. 37
2.10 Syntax of refinement, contraction and expansion. 38
2.11 Example of generic module definition and application. . . . 39
2.12 Example of module refinement. 43
2.13 Example of module refinement. 45
2.14 Visibility example (hidden modules are written in italic). . 46
2.15 Syntax of submodule declarations. 48
2.16 Example of open module. 48
2.17 Syntax of sharing. 49

3.1 Example of Local logic declaration. 56
3.2 Fuzzy set representing the concept tall. 60
3.3 Imprecision Ordering on Int(A4). 62
3.4 Weak Uncertainty Ordering on Int(A4). 63
3.5 Mapping example. 73
3.6 Logic declaration. 74
3.7 Trapezoidal approximation of a fuzzy interval. 75
3.8 Truth table declaration for TA5

. 76
3.9 Renaming declaration example. 77
3.10 Example of logic declaration. 78

4.1 Standard Behavior of an ES. 80
4.2 Inference Engine Architecture. 83

ix

4.3 Example of specialization of a KB 88
4.4 Deductive declaration into the modules. 105
4.5 Example of dictionary declaration 106
4.6 Example of function attribute 110
4.7 Example of characteristic function. 111
4.8 Syntax of the rules. 113
4.9 Syntax of the conditions of rules. 114
4.10 Syntax of the conclusion of rules. 117

5.1 Control declaration . 121
5.2 Example of subsumption. 127
5.3 Control cycle. 134
5.4 Syntax of the premises of metarules. 138
5.5 Syntax of the deductive control. 139
5.6 Syntax of the structural control. 139

6.1 Architecture of Terap–IA application. 145
6.2 Example of filtering. 149
6.3 Module Renal Failure. 150
6.4 Module Pneumonia Mycoplasma Treatment. 152
6.5 Example of module tree. 154
6.6 Case example. 155
6.7 Coupled tanks example. 157
6.8 Scheme of the process. 158
6.9 Fuzzy control modules. 159
6.10 Fuzzification process. 160
6.11 Defuzzication by mean of the gravity center. 163
6.12 Results for h2, dQ and Q. 164
6.13 Detailed dQ. 165
6.14 Phase plane result. 166
6.15 Node example. 166
6.16 Comparations among applications. 175

x

List of Tables

1.1 Main differences between Milord and Milord II. 5

3.1 TS5
Table. 55

3.2 N5 Table. 57
3.3 ITS5

(x, y) Table. 57
3.4 MPTS5

(x, y) Table. 58
3.5 TGram7

Table. 72

4.1 Main differences between Milord and Milord II inference
engines . 90

4.2 Valid models of the example. 95
4.3 Operations between expressions. 116

6.1 Mac Vicar–Wheland’s initial set of rules. 161

xi

xii

Chapter 1

Introduction

To introduce the content of this thesis it is necessary first to talk about
what are the problems we want to handle, and what is the kind of solutions
we propose. Here it is very important to fix the type of problems, its
environment, what kind of solutions we are interested in, where, and who is
the user of those solutions. In this Chapter the motivation, the history and a
summed up description of Milord II modular language and its environment
are presented.

1.1 Motivation

We say that somebody is an expert when he is skilled in some matter by
practice. Examples of human experts are physicians, biologists, mechanics,
engineers, and so on. They are able to solve problems by using knowledge
obtained by practice, despite they also have somewhat deep knowledge
about their knowledge domain. Expert Systems (ESs) have proved to be
useful tools to automate this kind of problem solving.

The goal of this thesis has been the design and implementation of a
modular language named Milord II, that offers a powerful, simple and
friendly environment to develop ESs. We should notice that the starting
point of this thesis was the previous language Milord. This language and
their applications allowed us to experience new problems, which guided us
to the design of a new language based on the previous one.

First we should fix what kind of Expert Systems Milord II is intended
for, and who are the expected programmers and users of Milord II and
its applications.

1

2 Chapter 1. Introduction

1.1.1 Real Expert Systems

One of the main characteristics of Milord II is that it addresses the de-
velopment of real ESs, that is, the problems we want to solve are not toy
examples, and both the programmers and the users are professionals inter-
ested in obtaining good results from the system.

Below we present the main characteristics of our work environment, that
lead us to the actual design and implementation of Milord II.

• We think that the programmers of ES applications with Milord II are
experts in some knowledge domain. Normally they are not knowledge
engineers or artificial intelligence specialists. In general, they deal
with application domains where expertise is required, for instance
medical or biological domains. That means that they need simple
tools and simple languages to develop their applications1. Milord II
has been designed to be an easy to use system.

• Experts are qualified and busy professionals, then we should offer
friendly tools to them. Simplifications of problems would lead us to
good examples, but the interest of experts in them will be poor. This
implies the need to handle non simplified real problems to motivate
the use of the system by experts. In this case programming an ES
becomes a useful work being able to structure, understand and diffuse
the own knowledge the expert has. Experts have used Milord II to
develop ES applications as biological classification, medical diagnosis,
etc.

• Notice that our applications are highly interactive and that this inter-
action is done with humans. We consider users of Milord II people
who works with the ESs generated by programmers. Users have differ-
ent levels of expertise. They can be experts in the domain knowledge
of the system, or non expert users. It both cases they need a good
communication with the system and a high level of confidence on it.
Specialization is a key concept introduced in Milord II to produce
a good communication with the users.

• Some features of the real applications are the big size, and the in-
complete, imprecise and uncertain knowledge they have. To match

1Considering the experts as programmers do not mean that applications are totally
developed by experts. In our case experts have continuous advising from us, we take then
the role of knowledge engineer. It is easy to see that if experts have a good knowledge
of the tools they are using, the communication between the expert and the knowledge
engineer is easier.

1.2. From Milord to Milord II 3

these characteristics we needs an expressive language that provides
structuration tools, incremental design, reutilization of components
and approximate reasoning. These characteristics are very important
in the design of Milord II. Modularity and uncertainty treatment
are the key points of the system together with specialization.

• Most of the problems we want to handle are classification tasks. We
consider classification the task of finding solutions in a known and
finite search space. Milord has been applied mostly to this kind of
applications, and Milord II follows the same way. Examples of clas-
sification applications are medical diagnosis, biological classification,
and so on.

• Finally we think that real applications should work in real environ-
ments. The lack of informatic resources in the environments where
the applications could be tested and used is a common problem. This
contributes to isolate the system. We should accommodate and we
did it the resource requirements and the efficiency of Milord II shell
to the most normal machines usually present in the environment of
the application.

We have explained the main features and problems that experts and
users2 of Real ESs must face. In this thesis we will propose solutions for
that. At this point we should talk about the previous experience with Mi-

lord and the improvements that Milord II introduces to handle the kind
of ESs described above.

1.2 From Milord to Milord II

Notice that the development of Milord II was possible thanks to the pre-
vious experience acquired in ES design. The acceptance of Milord Shell
(Godo et al., 1988; Sierra, 1989) and the applications developed allowed us
to think in a second version much renewed of the Shell we named Milord II.
This experience and all the considerations above lead us to the design and
implementation of Milord II Shell, keeping in mind that the programs
should be useful in the real environment of the application domain.

The transition from Milord to Milord II was a natural one directed by
the applications. The main applications developed with Milord were in the

2Notice that in the following, when there is no ambiguity, we will use experts meaning
the programmers of Milord II applications. When it is necessary we will distinguish
between users and expert users.

4 Chapter 1. Introduction

medical environment, as Pneumon–IA (diagnosis of pneumonia) (Verda-
guer, 1989) and RENOIR (rheumatic disease diagnosis) (Belmonte, 1991).
Furthermore Milord was the starting point of new works on validation
(Meseguer, 1992) and case–based reasoning (López, 1993).

The new applications we are developing with Milord II are: Pneu-

mon–IA II (a modular version of Pneumon–IA, a system for pneumonia
diagnosis), Terap–IA (treatment of pneumonia), Spong–IA (sponge classi-
fication) and Ens–AI (psycho–pedagogical diagnosis).

To see the improvements and differences of Milord II with respect to
the previous version we summarize Milord characteristics in the following.
The needs detected during the development of applications have guided the
improvements of the system. Then, they will be presented from a historical
point of view.

1.2.1 Milord Characteristics

It is not our purpose here to describe exhaustively the Milord system. Here
we want to point out those elements that had a close relation to the new de-
sign. We can summarize the main characteristics of Milord in the following
points:

Multi–level Architecture: One of the main purpose of Milord was the
clear separation among different sorts of knowledge, that is, associa-
tive, structural, hypothetic and heuristic. That architecture allowed
the experts to give a good structuration of his knowledge providing a
clear separation between domain and control knowledge.

Uncertainty Treatment: A good effort was done to approach and repre-
sent the type of uncertainty the experts normally use to express their
knowledge. Milord used fuzzy logic with linguistic labels to repre-
sent uncertainty. Experts were able to define their own logic in the
applications.

Modularity: A first proposal (design not implementation) of modularity
was done in Milord in order to support programming in the large.
This proposal was based in the modularization of the domain knowl-
edge only as a static structuration tool. Before the interpretation of
a program, it had to be compiled to a flat structure, that is, to an
equivalent and non modular program. The multilevel architecture of
control was outside this modular structuration.

Communication: The behavior of Milord was the standard of many Ex-
pert Systems. The user gives a goal to the ES, and the ES asks to the

1.2. From Milord to Milord II 5

user for the values of the facts which are relevant to obtain a solution.
Finally the ES answers the value of the goal, or unknown if it was not
able to obtain a solution.

Implementation: The versions of flat3 Milord was implemented and tested
with the applications mentioned above. Because of the great amount
of resources that symbolic computation consumes (Milord was pro-
grammed in Common Lisp), the current technological state forced the
use of mini computers to implement and run Milord.

Following the above points we can give a brief analysis of the main
differences and improvements of Milord II with respect to Milord.

1.2.2 Differences and Improvements

Milord and Milord II have many common points, going from the charac-
teristics of the language to the applications programmed with them. It is
very difficult to analyze in depth these points without making an exhaus-
tive explanation of both systems. For that reason here we only describe
the main conceptual and architectural differences between Milord and Mi-
lord II leaving the details of the common points and the differences to
be explained along this thesis. The points we will take into account are:
modularity, approximate reasoning, behavior and communication. A sum-
mary of these differences between Milord and Milord II are given in the
Table 1.1.

Milord Milord II

structuration multi–level architecture modularity + local control

control propositional meta–rules first–order meta–rules

uncertainty linguistic labels intervals of linguistic labels

logic default logic local logics

inference engine backward, forward specialization

communication standard behavior enriched communication

Table 1.1: Main differences between Milord and Milord II.

Modularity and Control

The first point we studied in the design of Milord II was the modularity.
The final proposal of modularization was more radical than that of Mi-

3Modular Milord was not implemented.

6 Chapter 1. Introduction

lord in the sense of encapsulating all the components of an ES. A module
contains both the object level and the control level. There are no global
components in Milord II.

The first consequence of that decision is that the control is local instead
of global. We consider that control is a component of the problem solving
task tied to the domain knowledge. Modularity allows us to decompose a
problem into simple subproblems. Following this kind of structuration of
problems, it is easy to see that, when we decompose a problem, we know
how to control its subproblems. Global control would confuse this kind of
structuration.

The second consequence is that we substitute the multilevel architecture
of control of Milord with a structure composed by a hierarchy of modules
with local control. It is well known that we can think in multiple levels
of control. Finally the question ”Who controls the control?” is frequent.
Despite the multilevel control of Milord showed to be useful in the appli-
cations, it is limited. The modules with local control of Milord II are
more flexible, they allow us to build other multilevel architectures with the
numbers of levels required. The critical point is that there is no a prepro-
grammed architecture of control as in Milord and then the programming
task could be more difficult.

From the implementation point of view another difference between Mi-
lord II and Milord is that, before run time, Milord compiles the modular
object level of the program to a flat one. Milord II preserves the modular
structure, the modules are objects with a permanent entity. Another char-
acteristic of Milord II is that it provides dynamic modules, that is, the
modular structure can be created at run time.

Approximate Reasoning

After the definition of the modular language, the second topic that was
treated in the design of Milord II was the approximate reasoning.

Programmers of Milord were able to define the logic that would be
used in their applications. Taking into account the modular structure of
Milord II we studied the possibility of defining different logics into the
different modules. This means we can use different languages of represen-
tation in the different modules (Harper et al., 1989). Then, in Milord II
the definition of logics is local to the modules and there are mechanisms of
communication between the local logics of the modules.

Another improvement of Milord II over the uncertainty treatment of
Milord is the introduction of imprecision. This is made by means of the
extension of the uncertainty calculus of linguistics labels to the intervals of
linguistics labels and the use of fuzzy sets.

1.3. Related Work 7

Behavior and Communication

One of the main goals of this thesis is to enrich the behavior of ESs. A
standard ES receives queries from the user, asks questions to the user, and
finally answers the queries of the user. We are interested in improving the
way the system ask the user, and in enriching the sort of answers the system
gives to the user. Remember that normally our applications are interactive
and the users are human. Then the following points are very important:

• It should be clear to the user that the sequence of questions he is
answering actually drives the system to the solution he is interested
in, and that the information he gives to the system is properly used
to find this solution.

• The solutions found by the system to the queries of the user should
be informative enough. For instance, the answer unknown is not
informative at all, it only says that the system was not able to find a
solution.

To solve these problems Milord II introduces an inference engine based
on specialization of KBs. This kind of inference engine allows us to make
independent the search and the deductive processes instead of the classical
interleaved search and deductive processes of the standard inference engines
as backward and forward ones. This allows us to implement different con-
trol strategies in order to improve the quality of the process of obtaining
information from the user. Furthermore the inference engine of Milord II
is able to obtain conditional answers and deal with unknown answers from
the user.

Finally notice that Milord II Shell runs over personal computers to
facilitate its use by experts in the environment of the applications. This is
not a merit of the implementation but of the new advances introduced in
the current personal computers.

1.3 Related Work

After the first experiences with ESs at seventies (for instance, MYCIN
(Shortliffe, 1976)) knowledge–based systems, and artificial intelligence in
general, have experimented a continuous evolution of the ideas, styles and
techniques.

Artificial Intelligence have been more and more specialized and a great
number of new disciplines have come out. Knowledge representation, prob-
lem solving methods, approximate reasoning, methodologies for knowledge

8 Chapter 1. Introduction

engineering, formal methods, learning, and so on, are examples of topics
that have generated a lot of work.

We will give a brief explanation of some aspects we consider they are
the most relevant to relate with Milord II. The languages appeared in
this Section are from the classical ones to other actual languages that we
consider are interesting to be related with Milord II now, and in the
future. You can find a very interesting description of some of these systems
(including Milord II) through a common example in (Treur and Wetter,
1993). In the same book there is a comparison study of these languages
(vanHarmelen et al., 1993).

1.3.1 Purpose

The first criteria for the comparison of languages is the purpose the lan-
guages pursue. We can distinguish between the languages that are designed
to build executable systems for some concrete applications from those that
find formal specifications of general tasks, problem solving methods, do-
main models and so on.

The purpose of the language determines the sort of development task
used to design and implement a concrete language for knowledge engineer-
ing. The languages directed to the applications are designed following a
bottom–up methodology. There is a feedback cycle between the language
designers and the experts with their applications. Then, this kind of lan-
guages are incrementally designed and implemented on demands of the
applications and the experts. The second type of languages are devoted
to the modelization of more general problems and they follow a top–down
methodology of development.

The resultant languages designed with these approaches differ on their
expresivity power. Those languages designed with the first type methodol-
ogy are more expressive and easy to use for the specific kind of problems
they has been designed. The others can cope a wider set of problems, but
the expresivity power becomes poor.

As explained in the introduction we are interested in the implementa-
tion of real ESs, then the development of Milord II was directed by the
applications it was involved in. We have designed a language the more
adapted to the kind of problems it is applied. AIDE (Gréboval and Kassel,
1992) language has a similar approach to develop real ESs and it is oriented
to give good explanations. Milord II is able to build real size applications.

1.3. Related Work 9

1.3.2 Modularity

All the language designers agree with the need of providing programming
constructs for the modularization of the programs. Some languages encour-
age more than others this technique and the architectures of the modular
systems are different.

In some cases the current methodologies for knowledge engineering, as
components of expertise (Steels, 1990), KADS (Wielinga et al., 1992) or
generic tasks (Chandrasekaran, 1987), determine the kind of modularization
used in the languages.

Several languages are related with KADS methodology such as (ML)2

(vanHarmelen and Balder, 1992), AIDE (Gréboval and Kassel, 1992), KARL
(Fensen et al., 1991), and KBSSF (Veld et al., 1993). These systems imple-
ment the global layering of KADS methodology, that is, domain, inference,
task and strategy layers. The modularization is limited to be used into each
layer, i.e. a modular structure in the task layer or in the strategic layer.

The language COMMET (Jonckers et al., 1992) uses the components of
expertise methodology based on tasks, models and methods.

Other languages as DESIRE (Langevelde et al., 1993) and the language
MC (Giunchiglia et al., 1993) do not have this limitation and the specifica-
tions are a set of interconnected reasoning modules, where each module is
treated as an independent unit. These languages are used to define different
kind of modules, such as domain and control modules.

The approach of Milord II is different in the sense that each module
contains the domain knowledge (object level) and the local control knowl-
edge (meta level) of the module. The interaction between modules is limited
to object–object only, thus forcing purely local application of the meta–
knowledge.

No one of the previous modularization techniques is based on the idea
of a module as a specialist like in Milord II.

Mostly of the languages (including Milord II) encourage the user to
encapsulate the local knowledge into modules. Other systems as AIDE has
programming constructs but they do not force the user to exploit them.
The modularization techniques of Milord II are based on theories used in
the language ML (Harper et al., 1986).

1.3.3 Approximate Reasoning

Usually the information contained in the KBs is imperfect. Experts manage
uncertain, imprecise, and incomplete information. Approximate reasoning
is then an important topic in the development of ESs.

There are three main approaches to deal with uncertainty, that is, the

10 Chapter 1. Introduction

probabilistic, the evidential, and the possibilistic approach. Let us to give
a brief vision of these approaches in order to situate that of Milord II.

There are several models based on probability. We can consider Bayesian
Networks (Pearl, 1986), Nilsson’s Probabilistic Logic (Nilsson, 1986), Sub-
jective Bayesian Networks of PROSPECTOR (Duda et al., 1976), and Cer-
tainty Factors of MYCIN (Shortliffe and Buchanan, 1975).

The lack of expressiveness is the main problem of the models based on
probability. They can not express vague predicates (for instance, tall). We
must specify probabilities but in practice they represent subjective appre-
ciations that are not based on statistical analysis. In this case it is very
difficult that experts are able to represent these probabilities with enough
precision by means of real numbers. Finally notice that the models based
on bayesian networks are computationally expensive.

The evidential theory of Dempster–Shafer (Dempster, 1967; Shafer,
1976) has its main problem in the computational complexity, despite it
is very useful to manage uncertainty.

Both Milord and Milord II are based on possibilistic approaches. Zadeh
introduced fuzzy logic to manage uncertainty and vagueness (Zadeh, 1975).
We think that this approach provides an understandable and computation-
ally efficient method to deal with imperfect information. Milord uses a lin-
guistic approximation based on linguistic terms as fuzzy intervals (Godo et al.,
1988; Sierra, 1989). The expert declares the linguistic terms as fuzzy inter-
vals by defining a trapezoidal characteristic function. From these declara-
tions Milord computes the truth tables of the conjunction, disjunction and
implication operations. In the Milord approach still remains the problem
of the numerical representation of the linguistic terms.

Milord II uses multi–valued propositional logic. The expert can choose
a set of linguistic terms and define a set of logical operations directly on
the set of linguistic values.

Milord II uses this kind of logic because multi–valued propositional
sentences are easy to understand and to use for the kind of applications we
are normally involved. The lack of first order constructs is compensated by
multi–valuedness of the logic (for instance, DESIRE use three–valued first
order logic).

It is very important to notice that we extend the multi–valued logic to
intervals of linguistic terms and that the modules of Milord II contain its
own local logic (Agust́ı et al., 1991; Agust́ı et al., 1992) . Milord II provides
the constructs of the language and a set of utilities to define different local
logics adapted to the different problems represented by different modules.
Furthermore we provide the method to find valid mappings between these
logics in order to communicate different modules with different local logics
without loss of consistency.

1.3. Related Work 11

1.3.4 Inference Engines

A lot of systems based on first order logic use the Prolog technology. In
other cases the classical inference engines like that backward and forward
ones are used. For instance, Teiresias (Davis, 1982) has simple control
strategies based on forward or backward engines.

As cited above the inference engine used in the modules of Milord II
is based on the specialization of KBs (Puyol, 1992a; Puyol et al., 1992b).
Specialization is based on the notion of partial evaluation expressed in the
well known Kleene’s Theorem (Kleene, 1952). Briefly, if we have a function
of n arguments and we know the value of an argument we can specialize
this function obtaining a new one with the same arguments that before
but the known one. We can consider a KB as a function with arguments
the set of facts needed to reach the goal of the KB. We specialize the KB
with a known fact obtaining a new KB specialized by the new domain that
contains the known fact.

Milord II is based on logic, then we use the term partial deduction
instead of partial evaluation following the suggestion of Komorowski (Ko-
morowski, 1981; Komorowski, 1990). Partial deduction algorithms have
been intensively used in logic programming (Venken, 1984; Gallagher, 1986;
Komorowski, 1981; Takeuchi and Furukawa, 1986; Lloyd and Shepherson,
1991) mainly for efficiency purposes. Our approach is different for instance
from the logic programming one used in (Lloyd and Shepherson, 1991).
There, partial evaluation was goal driven, whereas here partial evaluation
is data driven.

Milord II inference engine is also related to other work on conditioned
answers (Demolombe, 1990; Vasey, 1986; Sakama and Itoh, 1986) and on
the treatment of unknown information (Wolstenholme, 1987). Specializa-
tion used in Milord II allows us to obtain conditioned answers after the
specialization of a KB with the known information. Our system is able to
answer a useful result even in the case of partially unknown information.

The main difference of Milord II specialization with respect to other
uses of partial deduction, is that it is based on a multi–valued propositional
language and it is oriented to the improvement of the communication of ESs.

1.3.5 Control

The first type of production rule languages like OPS5 (Forgy, 1981) used to
define a single level of production. Milord II as DESIRE have declarative
control through a reflection mechanism. Other systems use procedural,
functional or guided by the user control.

12 Chapter 1. Introduction

Milord II uses Horn–like rules to define the control knowledge of a
module. Remember that the interaction between modules is limited to
object–object interaction, then the meta–knowledge is local to each module
(DESIRE and MC have metamodules).

Milord II does not use global control and all the components of control
are local to the modules. This allows us to clarify the problem structuration
giving a easy idea of the way control is implemented in an application.

1.4 Main Contributions

The main contribution of this thesis is the integration and implementa-
tion of a set of techniques, like specialization in multi–valued logics, and
theoretical results, some of them introduced here, into a language for the
development of ESs. The language has been implemented and a set of real
size applications has been developed.

The structure of this thesis is aimed at a deep, exhaustive and under-
standable description of the Milord II system. Then we summarize the
contributions of the thesis following the same scheme of the thesis Chapter
by Chapter.

Chapter 2. A modular language which allows a top–down and incremental
methodology of ESs programming.

Classical software engineering approves top–down design as a good
programming methodology. The modular language of Milord II al-
lows experts to develop programs with a disciplinated methodology
based on the decomposition of problems into simpler subproblems.

Each module of Milord II contains all the components that usually
define a whole ES, that is, the domain knowledge, the control knowl-
edge, the logic and so on. The idea of a module as a local expert or
specialist distinguishes our modular system from others. Then we can
consider an ES as composed of a set of ESs modules, one for each sub-
problem to solve. Modules are organized into a hierarchical structure
that provide the form of integrating the solutions of the subproblems
to build the solution of the whole problem.

Incremental programming is another interesting feature of top–down
programming. It consists in defining problems at different level of
detail, initially by means of a partial description which is successively
refined obtaining more concrete definitions of the problem. We stop
when the level of detail is the required one.

1.4. Main Contributions 13

The modules have a well defined interface, and the language also
provides generic modules and a set of operations devoted to the in-
cremental programming of modules.

The contributions of this Chapter to the development methodology
of knowledge–based systems are the following:

• A methodology of programming based on problem decomposi-
tion.

• An homogeneous language based on modules, generic modules
and operations between them. The primitive component of Mi-
lord II are the modules. Relational, functional, logic, and con-
trol knowledge, are encapsulated into modules. All the compo-
nents are local to modules.

• A methodology of incremental programming for knowledge–based
systems.

Chapter 3. Managing imperfect information. Local logics.

The knowledge that experts manage is imperfect, it is incomplete, im-
precise and uncertain. Milord II deals with this kind of information
by means of an object level language of order 0+ based on many–
valued logics. The use of linguistic terms as truth–values makes the
language closer to the experts.

Milord II allows the experts to define the local logic that will be
used in each module, this allows us to use in each module the logic
more adequate to the problem that the module represents. The expert
can also define the mapping between the terms of the different local
logics of modules. A mechanism to find valid mappings between these
terms is provided. The terms of a module are in this way put into
correspondence with the different terms of another module.

The contributions of this Chapter are of different types:

• An empirical contribution to the use of multi–valued logics based
on intervals of truth–values to deal with uncertainty and impre-
cision.

• An empirical and development methodology contribution by the
introduction of fuzzy sets into the data types of Milord II.

• A contribution to the theory of local logics mappings and a prac-
tical formulation of the algorithms to find morfisms between dif-
ferent logics.

14 Chapter 1. Introduction

• A development methodology contribution by the introduction in
the language of the local logic declarations and the translations
of terms of different modules with different logics.

Chapter 4. A new behavior of ESs based on Specialization of Knowledge
Bases.

We consider a module as an entity capable of solving a concrete prob-
lem in a well defined domain. Then we say that a module is a spe-
cialist. When we introduce a new piece of information into a module
we are specializing the module for a new and more restricted domain
(the previous one plus the new information). The inference engine
for the object level language of Milord II is based on this concept of
specialization. As we will see this gives us an enriched behavior that
allows conditioned answers.

The contributions of this Chapter are of different types:

• An empirical contribution to the interpretation of deductive pro-
cesses as the specialization of KBs, and its applications to the
improvement of the whole behavior of an ES.

• A theoretical contribution to the development of the Specializa-
tion Calculus or deduction by specialization with uncertainty.

• An empirical contribution to the separation of the control and
logic semantics of the deduction by the separation of the search
and deductive processes in the inference engine.

• An empirical contribution to the design of the deductive process.

• A development methodology contribution by the definition of a
language to declare the deductive knowledge of modules.

Chapter 5. Control adapted to the modular structure.

Milord II has no global components, all the components are en-
capsulated into modules. That is the same for control. When we
decompose a problem into subproblems we rely on strategies to fo-
cus the problem solving behavior to the more adequate subproblem
in each moment. Local control allows us to define a set of control
parameters and a set of metarules. These metarules control the exe-
cution of the module that contains them and also are responsible of
the hierarchical structure of the submodules.

We can summarize the contributions of this Chapter:

1.5. Scheme of the Thesis 15

• An empirical contribution to the control. Implicit control takes
advantages of the specialization allowing to save questioning,
computation and using the more specific knowledge.

• A development methodology contribution by introducing the ex-
plicit local control into modules. It is composed of static declara-
tions (threshold, evaluation) and dynamic ones based on Horn–
like metarules.

Chapter 6. A set of applications developed using Milord II.

The applications developed using Milord II and the set of new prob-
lems they have raised ensures that Milord II can be used to model
complex problems that belong to the category of real ESs.

• Contributions to the development methodology by advising and
giving support to experts during the development of real appli-
cations and some examples.

1.5 Scheme of the Thesis

This thesis is composed of seven Chapters and three Appendixes. Each
Chapter is devoted to a key concept of Milord II. They are ordered to
provide an incremental introduction to the language Milord II and its
semantics.

Chapter 2: contains the description of the modular component of the lan-
guage. It presents the syntax and the semantics of modules, generic
modules and the operations between modules like refinement, con-
traction and expansion.

Chapter 3: is devoted to the approximate reasoning. We present the alge-
bra of truth–values used in Milord II and the set of operations which
defines a logic language of order 0. After that the extension of that
algebra to an algebra of intervals of linguistic terms is introduced. It
allows us to introduce imprecision in Milord II. We present fuzzy
sets as a method to talk about sets in Milord II. Finally we deal with
local logics and the form to find valid mappings among the different
logics of modules.

Chapter 4: addresses to the concept of specialization of KBs. We de-
fine the specialization calculus for a multi–valued logic language. We
present the definition of the inference engine that implements that
calculus. Finally we introduce the concrete syntax of the deductive
knowledge of Milord II and all the extralogical components.

16 Chapter 1. Introduction

Chapter 5: considers the local control of Milord II that is composed of
the implicit control and the explicit one declared by the user.

Chapter 6: is devoted to the applications and examples that have been
developed using Milord II system.

Chapter 7: summarizes the conclusions of this work.

After that we include three appendixes. Appendix A contains a com-
plete BNF description of the syntax of the language Milord II. Appendix B
contains the proofs of the theorems appeared in Chapter 4. And Ap-
pendix C contains complete coded examples of applications developed using
Milord II.

Constructs of the language are introduced by means of examples of real
applications developed using Milord II mainly from Terap–IA and Spon-

g–IA expert systems4. We try to give simple descriptions of the components
of the system.

4For the sake of simplicity examples from applications are simplified to give only an
idea of the constructs introduced. A general view of these applications is presented in
Chapter 6 and Appendix C.

Chapter 2

Modularity

Classical software engineering approves top–down design as a good pro-
gramming methodology. Decomposition of the whole problem into simple
subproblems allows us to have a clear gain in clarity, simplicity, complexity
degree and debugability of programs. Milord II is a programming envi-
ronment that offers all the advantages of the structured problem solving.

The experience of our group in Knowledge Based Systems (KBSs) design
and development, specially using knowledge acquisition techniques (Plaza
and López de Mántaras, 1989), have allowed us to detect a number of needs
that can be tackled with the methodology we propose here. Among them
we can emphasize: Modularity, multilanguage representation, local control,
reusability, incremental development and validation. Let us briefly discuss
the meaning of all these:

Modularity. The usual way of understanding a complex problem is to de-
compose it into simple subproblems using simple operations. To make
a useful decomposition of problems, subproblems must have a simple
and well defined interaction. The determination of the adequate na-
ture of modules, or partial Knowledge Bases (KB’s), that represent
the subproblems and the definition of the combination operations of
these partial KB’s, are key points in the design of a language for
Knowledge Engineering.

Multilanguage representation. The basic operations of modularization
and modification of modules are independent from the underlying
language used to define the bodies of the modules. This independence
allows the use of different representation languages in the different
modules (Harper et al., 1989). A simple example of this is the use

17

18 Chapter 2. Modularity

of different multi–valued logics in each module (Sierra and Agust́ı,
1991).

Local Control. Control is a component of the problem solving task tied to
the domain knowledge. Thus it must be a component of each module.

Reusability. In the building process of a KB it is important to be able
to reuse existing partial KB’s of problems solved beforehand (Chan-
drasekaran, 1986; Goguen, 1986). For instance, although the diagno-
sis of infectious chest illness and that of chest tumors are essentially
different, they could share the knowledge of an analysis of a thorax
radiography. This is an example of two modules that share the same
submodule. There are many examples of this. Gram analysis is a
task that is independent of the type of sample we are considering.
We can program gram analysis as a generic task instead of a specific
gram analysis for every type of sample. So, as a requirement of our
language, we need generic program units that could be instantiated,
or reused, in different contexts. These are the generic modules.

Incremental modification of KB’s. The KB building methodology is
an iterating two–step process. First a prototype is build (or modi-
fied), then it is validated. Thus, it is convenient to have some safe
refinement operations in the language that support this process of
incremental KB building (modification). These operations have to
preserve the adequacy of the KB behavior with respect to the behav-
ior required by the expert as stated in the export interface of each
module.

Validation. Normally KB validation is applied only to the KB considered
as a whole and after it has been completely build. We think validation
should be done during the KB building process in each module, i.e., in
the different and successive partial KB’s or modules that, conveniently
combined and progressively refined, will result in the total KB. The
validation should not be just a final quality control test, but it must
be integrated into the building process of the system. We can use any
validation method for every module that belongs to a whole ES. Thus
the complexity degree of the validation task diminishes considerably.

All the above issues can be grouped taking into account the classical cy-
cle of software. Modularity, local control and multilanguage representation
are then tied to the development process of an ES. These are related to the
decomposition of problems and the encapsulation of information. We can
build each problem unit using the information, control and representation

2.1. Introduction 19

language more adapted to it. Reusability and incremental modification of
KB’s are related to the modification of an existing system. The techniques
that help in the modification of KB’s are very useful. After a first design
we should validate it and modify it if necessary.

2.1 Introduction

All these considerations have determined the design of Milord II. Now we
introduce some precedents of Milord II and the main constructs that the
language provides to satisfy the above needs.

2.1.1 Previous Work

The construction of modular expert systems started with the work in Milord

(Agust́ı et al., 1989; Sierra and Agust́ı, 1991). The main idea was to adapt
to ES’s the modularization techniques of the language ML (Harper et al.,
1986), and use them to make modular the rule language Milord. A key
feature of these techniques is that the modular language is independent of
the underlying language. Similar work was previously done with functional
and logic programming languages (Sannella and Wallen, 1987; O’Keefe,
1985; Miller, 1986).

We should consider two aspects of this first attempt. The first one is
about the modular language of Milord, and the second one is about its
implementation.

Milord modular language provided a tool based on modules and generic
modules to structure the domain knowledge of an application. Notice that
modularization affected only the domain knowledge (control knowledge was
a global component). This sort of technique was useful for the Milord goals,
that was: to grow down the design difficulty using a discipline of structura-
tion, to control the possible errors, etc. The control and the declaration of
the multi–valued logic for the applications remained global.

In Milord II we propose a more radical modularization technique
(Puyol et al., 1991) in the sense that we avoid global components in the
system. As explained above local control and multilanguage representation
are desirable characteristics of a modular expert system. Then Milord II
introduces local control and local multi–valued logics into the modules.

Now we come to the implementation aspect. An application written in
Milord modular language was compiled to a flat1 structure (a set of Milord

rules, the core language of Milord) as described in (Agust́ı et al., 1989).
Milord modularity was based in a compiler to translate a modular program

1We consider that a structure is flat when it is no modular .

20 Chapter 2. Modularity

to an equivalent flat one, and then using the Milord interpreter for the flat
program. This solution was taken to keep the rule interpreter of Milord.

The modular language of Milord II is not compiled to a flat one.
The proposal of Milord II is not just adding some syntactic modular
facilities to the rule–based language but gives a semantic approach close to
object oriented languages. Modules of Milord II have its own entity at
runtime and we are able to give a semantic interpretation of the modules
as specialists (Sticklen et al., 1987) in some aspect of an application. The
interpreter of Milord II is oriented to the execution of the modules and
the communication among them.

2.1.2 Modular System

In this Chapter we explain the modular components of Milord II, that is,
the concepts of modules, submodules, generic modules and the refinement,
expansion and contraction of modules. The internal components of modules
(deductive knowledge, local logics, local control, etc) will be explained along
this thesis.

Before to enter in the concrete syntax and semantics of Milord II
modular language let us to introduce informally the main concepts by means
of an example from Bacter–IA application (microbiological analysis for the
diagnosis of pneumoniae) that will be used along this Chapter.

Modular Hierarchy

One of our main goals is to design a language that allows us program-
ming in the large. The normal method is to divide the problem in a set of
simpler subproblems. This leads us to the notion of modules and submod-
ules hierarchically organized, representing the modules problems, and its
submodules the decomposition of these problems into subproblems. Every
subproblem can be recursively decomposed to its subproblems resulting in
a hierarchical structure of modules.

First we should clarify which is the notion of problem used in Milord II.
To define a problem we must precise first what we consider is a solution
for that problem, which are the useful data we need to know in order to
obtain that solution and how to obtain that solution from that data. For
instance, consider a very simplified problem of pneumoniae diagnosis. The
solution to that problem is to find the germ causing pneumoniae. The data
is relative to the patient. The solution to that problem is then to give
certainty degrees to a set of concepts (in this case germs): pneumococcus,
haemophilus, staphylococcus, and so on. A possible solution could be pneu-
mococcus is very possible and staphylococcus is slightly possible. Obviously

2.1. Introduction 21

we need to know relevant data (input) about a concrete case to be able to
find those solutions, for instance the parameters of a microbiological anal-
ysis of a sputum sample of the patient, or data about the kind of infection
he has.

The specification of a problem then consists in identifying a set of goals
to achieve, and the elements needed to solve them. Modules implement
functional abstraction, in the sense that we can see a module as a blackbox,
and we know which are the requirements of the module (input) to reach
exported results (output). The notion of module is based on the concepts of
encapsulation and information hiding. Encapsulation consists in grouping
the components that are useful to reach a concrete set of goals. Information
hiding is realized declaring inside a module which components are visible
from outside the module. All the other components are effectively hidden.
From the problem specification of the previous example we can build a
module with outputs the germs and as input the necessary data to give a
certainty value to the germs.

The above problem is a complex one, it may be decomposed in a set
of subproblems. For instance, the problem of finding the germs causing
pneumoniae can be simplified by decomposing it in four submodules: the
first one is devoted to obtain a respiratory diagnosis of the patient; the
second one finds the kind of infection the patient has; the third one informs
about the previous treatment that has been administrated to the patient
and finally the last one consist in a gram analysis of a sample of the sputum
of the patient.

All these subproblems provide useful data for giving certainty values to
the set of germs cited above.

Generic Modules

We have structured the problem in subproblems and the system would be
more powerful if it allows the reutilisation of these units in the case of
similar subproblems. For instance, we can think on the previous problem
of finding the germ causing pneumoniae. We have seen that the solution for
the problem depends on the solutions of a set of subproblems. Remember
that one of the subproblems was a gram analysis of a sample of the sputum
of the patient.

However some data obtained from a gram analysis of the sputum could
be obtained from different gram analysis over different samples. In this case
it is not necessary to define a different problem solution for each type of
analysis, it would be enough to define a generic problem solution depending
on the kind of analysis. We incorporate generic modules in the language,
which are modules depending on other modules as parameters (module vari-

22 Chapter 2. Modularity

ables or inputs) or also called parameterized modules. Then we can obtain
the concrete subproblems (modules) through the instantiation of generic
modules by substitution of parameters with concrete modules. In the ex-
ample it is shown the instantiation of a generic problem with a concrete
laboratory analysis of a sample.

Refinement, Expansion and Contraction of Modules

In the introduction we talked about providing tools to the user to facilitate
the construction of knowledge bases. One of the facilities of the modular
language is that it allows us to decompose a problem in a set of modules.
Furthermore we can introduce other tools to aid the construction of each
module. We introduce in the language the notion of refinement, a sort of
incremental programming. We can specify a module incrementally, that is,
from the first version of a module to other versions of the same module that
are refinements of the previous version (more detailed problem description).
Then we can incrementally build more concrete versions of the module
until a final version is achieved. Similarly we can say that a module is an
expansion or a contraction of a previous module (we expand or contract
the set of problems that the previous module was able to solve). In the
example above we can say that the description of a sample of sputum is a
more refined version that the general description of a sample.

We introduce the syntax of modules progressively. We only describe the
simplified syntactical categories as they are needed in each Section. For a
complete description please consult in the Appendix A.

2.2 Primitive Components

Now we explain the concrete syntax of the declaration of modules that
allows us to declare the concepts we have introduced informally. For that
we will use the same example.

Modules are composed of a set of declarations: import and export in-
terfaces, dictionary, submodules, rules, control, metarules, logic and so on.
The declaration of the submodules settles the hierarchic structure of the
module. The declaration of submodules is identical in every aspect to the
declaration of the modules.

The components of modules are the following (see the example from
Bacter–IA for the module Gram in Figure 2.1):

Interface: The interface of a module has two components: the import and
the export interface. They implement the external requirements (from
the user) and the results of a module. All the facts inside a module

2.2. Primitive Components 23

Module Gram =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
Deductive knowledge

Dictionary: ; not defined here.
Rules:

R001 If S/DCGP then conclude Pneumococcus is possible
R002 If S/DCGP and D/Bact Pneumonia

then conclude Pneumococcus is very possible
R003 If S/BGN and D/Aspiration Pn and T/Nosocomial

then conclude Enterobacteria is quite possible
R004 If S/CBGN and P/Penicilin

then conclude Haemophilus is sure
Inference system:

Truth values= (impossible, few possible, sligh possible, possible,
quite possible, very possible, sure)

Renaming

D/False ==> impossible
D/True ==> sure
T/False ==> impossible
T/True ==> sure
P/impossible ==> impossible
...

Connectives:

Conjunction =

((impossible impossible impossible impossible,
impossible impossible impossible)

...
(impossible few possible sligh possible possible

quite possible very possible sure))
end deductive

Control knowledge

Evaluation Type: Lazy
...
end control

end

Figure 2.1: Example of module declaration.

24 Chapter 2. Modularity

not declared in the export interface are hidden to the outside of the
module. In the current example the export interface of the module
Gram is the set of germs cited above. In this case this module has
not import interface because it does not need data from the user.

Hierarchy: The hierarchy of a module is a set of submodule declarations.
A module has visibility over all the facts exported by its submodules.
In the example the module Gram has four submodules (D, T, P and
S). They are declared in Figures 2.3 and 2.8.

Kernel: The kernel allows modules to deduce the components of its ex-
port interface from the components of its import interface and those
of the export interfaces of its submodules. The kernel of a module
is made up of two components called deductive knowledge and con-
trol knowledge. Deductive knowledge includes the declarations of the
object language which in our current implementation is a rule–based
language. Control knowledge is represented by means of a meta–
language which acts by reflection over the deductive knowledge and
the hierarchy of the module. A module with an empty kernel can be
considered to be a pure interface. In our case the main components
of the code of a module are basically a set of rules and meta–rules to
be interpreted by an inference engine.

The language provides three basic mechanisms of module manipulation:

1. Composition of modules through the declaration of submodules.

2. Composition of modules through operators defined by the user via
generic modules definition.

3. Refinement, expansion and contraction of modules.

In this Chapter we will introduce the module declarations and the mech-
anisms of module manipulation mentioned above. The components of the
kernel of a module as the deductive and the control declarations will be
presented in Chapters 4 and 5 respectively.

2.2.1 Interfaces of modules

Figure 2.2 contains the syntax of the interface declarations, that consist in
a list of facts for each interface.

Imported facts are those facts whose values can be obtained from the
user during the execution of a module. For instance, the module Previ-
ous Treatment of the Figure 2.3 has the following declaration:

2.2. Primitive Components 25

interface ::= [import]
[export]

import ::= Import predicateidlist
export ::= Export predicateidlist
predicateidlist ::= predid , predicateidlist | predid

Figure 2.2: Syntax of interfaces.

Import Prev Treat

Imported facts like Prev Treat are asked when needed in the evaluation
of a module2. The code of a module containing an import declaration will
be allowed to ask to the user for values of imported facts only. For instance
the module of the previous example can only ask to the user for the value
of the fact Prev Treat.

Exported facts are those facts that are visible outside the module. They
can be asked by the user or by other modules. For instance, the module
Previous Treatment of the Figure 2.3 has the following export interface
declaration:

Export Penicilin, Tetracycline

All the exported facts like Penicilin either have to be deduced by the
kernel of the module or have to be imported by the module (obtained from
the user). In this example the facts of the export interface are deduced by
the kernel by means of the rules R001 and R002. Notice that the facts of
the export interface of the module Type of Infection of the Figure 2.3 are
imported directly from the user (Nocosomial and Extrahospitalary are facts
that belong both to the export and import interface of the module). Facts
deduced and imported facts not mentioned in the export declaration of the
module are hidden to the rest of the modules including the user, i.e., they
cannot be used in the body of the rest of the modules. A module with no
exported facts is meaningless. However we can access to the exported facts
of its submodules as explained in subsection access names below. The code
of a module containing an export declaration will provide means to answer
questions about the values of the exported facts only.

2When and in which order the imported facts are asked to the user is determined by
the type of evaluation of the module. See the Section 5.3.

26 Chapter 2. Modularity

Module Respiratory Diagnosis =
Begin

Import Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Export Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Deductive knowledge

Dictionary: not defined here
Inference system:

Truth values = (false, true)
Connectives:=

Conjunction = ((false false) (false true))
End deductive

End

Module Type of Infection =
Begin

Import Nosocomial, Extrahospitalary
Export Nosocomial, Extrahospitalary
Deductive knowledge

Dictionary: not defined here
Inference system:

Truth values = (false, true)
Connectives:=

Conjunction = ((false false) (false true))
End deductive

End

Module Previous Treatment =
Begin

Import Prev Treat
Export Penicilin, Tetracycline
Deductive knowledge

Dictionary: not defined here
Rules :

R001 If Prev Treat = (Peni) then conclude Penicilin is sure
R002 If Prev Treat = (Peni) then conclude Tetracycline is impossible
Inference system:

Truth values = (impossible, sure)
Connectives:=

Conjunction = ((impossible impossible) (impossible sure))
End deductive

End

Figure 2.3: Example of module declaration.

2.2. Primitive Components 27

2.2.2 Modular hierarchy

Writing a Milord II program implies to start defining modules. The prim-
itive syntax of module declarations is described in Figure 2.4. A module
declaration (moddecl) is composed of a module identifier (amodid) and a
body (bodyexpr). The body of a module can contain other module decla-
rations (hierarchy). We say that the modules in the hierarchy declaration
are submodules of the module that contains the declaration. For instance
the module Respiratory Diagnosis is a submodule of the module Gram (see
Figure 2.1).

moddecl ::= Module amodid = bodyexpr
bodyexpr ::= pathid |

begin decl end |
pathid ::= amodid | amodid/pathid

decl ::= [hierarchy]
[interface]
[deductive]
[control]

hierarchy ::= moddecl |
hierarchy hierarchy

Figure 2.4: Syntax of modules.

The language provides two types of module declarations, depending on
the type of body declaration. We will use as an example the set of modules
in Figures 2.1 and 2.3.

Encapsulated declarations

Encapsulated declarations are the most primitive module declarations. They
associate a module identifier to a body. The body declaration gives a com-
plete description of the module. The module declaration between keywords
begin and end contains the hierarchy, interface and kernel declarations
(deductive and control knowledge) of the module.

Module Gram = Begin ... End

For instance, the module Gram (Figure 2.1), and the modules Respira-
tory Diagnosis, Type of Infection and Previous Treatment (Figure 2.3) are
examples of encapsulated declarations.

28 Chapter 2. Modularity

Declarations by reference

Module identifiers are used to refer to modules3. For instance in Figure 2.1,
the hierarchy declaration in the module Gram references the module iden-
tifier Respiratory Diagnosis with the following declaration:

Module D = Respiratory Diagnosis

In this case D is the internal name of the module Respiratory Diagnosis
used in the module that contains this declaration (Gram).

Access names

With the declarations contained in the above examples we obtain the mod-
ule Gram which has four submodules: Respiratory Diagnosis, Type of Infection,
Previous Treatment and Gram of Sputum. The internal names D, T, P and
S correspond to these submodules. They are used to reference the facts ex-
ported by each of this submodules.

Paths of module names (pathid) indicate how to access a module in
the hierarchy of modules. A path to a module is composed by module
names separated by a slash character ”/”. For instance the path Gram/D
references the module Previous Treatment.

The access to exported facts of modules is composed of a path to a
module, the slash character and the name of the exported fact. For instance,
to access the exported fact Extrahospitalary of module Type of Infection we
can use the following equivalent names4.

Type of Infection/Extrahospitalary
≡ Gram/T/Extrahospitalary

Given a module we can access to the exported facts of that module and
to the exported facts of its submodules, using the adecuate paths.

We can use encapsulated declarations or declarations by reference de-
pending on the structure we want to give to our problem. If we use only
encapsulated declarations we will produce a structure with only a top level
module. All the other modules have to be accessed by means of paths of
module names.

3The referred modules may not have been created in the moment when their names are
used, expediting thus a top down design. In the following we consider for simplicity that
symbols exist when they are referenciated, that is, there are already all the encapsulated
declarations that are required.

4At the moment we consider that all the modules are visible. In the following Sections
we will see cases where not all the possible paths are allowed. For instance, the submodule
T could be hidden outside the module Gram.

2.2. Primitive Components 29

2.2.3 Semantics of modules

At this point it is interesting to give a formal description of the modular
environment of Milord II. After that we will extend this description with
new elements. We will keep the same example of Figure 2.1.

A program is a table P from system module identifiers IdM to the set
of modules M:

P = IdM → M

The set of system module identifiers IdM is a set of internal names to
distinguish the different modules (we will use names like mod1, . . . ,modi

for the set M and > for the top module). The set of modules M = M ∪
{>} is composed by the set of modules M that are created from all the
encapsulated module declarations (begin ... end), plus a virtual module
named > (top module).

In our example (Figures 2.1 and 2.3) there are five declarations of this
type. They create a set of six module identifiers.

IdM = {>,mod1,mod2,mod3,mod4,mod5}

Each module m ∈ M is composed of the hierarchy (H), export (E),
import (I) and kernel (K) components. The top module only contains the
top level hierarchy of modules (export5, import and kernel components are
empty).

M = H × E × I × K

In the following to simplify the notation we will use Hm as the hierarchy
component of a module m ∈ M6. Similarly for the export, import and
kernel components (Em, Im and Km respectively). The hierarchy of a
module m ∈ M is a function Hm from local submodule identifiers of the
module m, Im, to identifiers of the modules M (IdM) and a visibility
module qualifier (visible, hidden or open7).

Hm : Im → IdM × {visible, hidden, open}

Each module has its own function that points to its submodules. Fol-
lowing the same example, we will show the hierarchy components of those
modules (see the Figure 2.5). The top level module contains all the modules
declared by means of encapsulated declarations at top level:

5As noticed above a module with empty export interface has no sense. In that case
the top module is a special module and we are only interested in accessing the exported
facts of its submodules.

6For instance the hierarchy of a module m could be expressed as Hm = first(P (m)),
the first component of the tuple corresponding to identifier m.

7In Section 2.5.1 we will see open declarations of submodules. Now we consider all
the modules are visible.

30 Chapter 2. Modularity

I> = {Gram,Respiratory Diagnosis, Type of Infection,
Previous Treatment,Gram of Sputum}

H>(Gram) = (mod1, visible)
H>(Respiratory Diagnosis) = (mod2, visible)
H>(Type of Infection) = (mod3, visible)
H>(Previous Treatment) = (mod4, visible)
H>(Gram of Sputum) = (mod5, visible)

The module Gram has four submodules declared by reference:

Imod1
= {D,T, P, S}

Hmod1
(D) = (mod2, visible)

Hmod1
(T) = (mod3, visible)

Hmod1
(P) = (mod4, visible)

Hmod1
(S) = (mod5, visible)

@
@

@R

�
�

�	

?

HHHHHHHHHHj

@
@

@
@

@
@

@
@

@@R

�
�

�	

�
�
�

�
�

�
�

�
�
�

�
�

�
�

?

�
�

�
�

�
�

�
�

��	

Type of Infection

mod3

Gram of Sputummod5

Previous Treatment

mod4

Respiratory Diagnosis

mod2

Gram

mod1

>

DT P
S

Figure 2.5: Hierarchy example.

After the definition of the semantical structure of a program and given
the functions that allow us to access the elements of that structure, we
define the main function that is used to execute a program.

2.2. Primitive Components 31

Let us introduce the function to query an ES. Query is a command
that given a path name (a question prefixed by a path) returns an answer
to that question. It will be the main function of the system that allows us
to start the execution of an ES. The syntactical form is the following:

Query query
query ::= factid | moduleid/query

For instance, with the set of modules introduced above we can start the
execution with the following query from the user:

Query(Gram/P/Peniciline)

The functions Querym(x) are internal queries to the modules, they rep-
resent a query, of fact x to the module m. Its definition is the following:

Querym : query → Answer

Querym(moduleid/query) =







Queryx(query) ∃x,Hm(moduleid) =
(x, visible)

error otherwise

Querym(factid) =

{

deducem(factid) if factid ∈ Em

error otherwise

Notice that when we query a module for a fact belonging to a submodule
of that module, this module has to be visible. The execution of a query
always starts on the top module. For instance, consider the command
above, where the Milord II interpreter (INT) makes a query to the top
module of the current ES.

INT [[Query(Gram/P/Peniciline)]]
Query>(Gram/P/Peniciline) =
QueryH>(Gram)(P/Peniciline) =
Querymod1

(P/Peniciline) =
QueryHmod1

(P)(Peniciline) =
Querymod4

(Peniciline) = deducemod4
(Peniciline)

Finally the interpreter starts the deduction in the module mod4 (ex-
pressed by deducemod4

) in order to give a value to the fact Peniciline. We
will return to this point along the thesis. We have introduced the modular
structure of a program from the semantic point of view. In the following
we will extent this semantical description adding new components that we
will progressively introduce.

32 Chapter 2. Modularity

2.3 Generic modules

The instantiation of a generic module is considered as a module declara-
tion. The definition of generic modules opens to the user the possibility
of defining specific operations of composition of modules. Generic modules
are then operations (or functions) on modules. This standard technique to
define generic modules is the one to define functions, that is, it consists of
isolating a piece of program, or module, from its context and then abstracts
it by specifying:

1. Those modules upon which the abstracted module may depend (re-
quirements or parameters of the generic module).

2. The contribution of the abstracted module to the rest of the program
(results or export interface of the generic module).

As we said the obvious example of this technique is functional program-
ming, where such abstractions (functions) form the basic program units.
The functional body defines how to compute the output (results) in terms
of the input (requirements). The method for building large KB systems
consists of applying generic modules to previously built particular mod-
ules.

An example of definition of generic modules is presented in figure 2.6.
Remember the example used until now. The module Gram (Figure 2.1) has
four submodules (Figures 2.3 and 2.8). The submodule S corresponds to the
gram analysis of sputum. Now the generic module Global Gram (Figure 2.6)
represents a general gram analysis over different samples. Global Gram can
now be applied to different modules to produce new modules analyzing
different types of samples. For instance, an equivalent of module Gram
(named New Gram) can be obtained by instantiating the generic module
Global Gram with the module Gram of Sputum.

Keeping the common parts in a generic module we can save code and
time and make the code much more understandable. Finally when a module
is needed to make the gram analysis of a sputum sample, it is only necessary
to put both modules together by a generic module application, for instance
Global Gram(Gram of Sputum).

In Figure 2.7 we extend the syntax of modules declaration of Figure 2.4
adding the generic modules declarations.

The declaration of a generic module is like a normal module except that
in the hierarchy component of that module there are submodules with lo-
cal names the parameters of the generic module. These submodule names
point nothing until the instantiation of the generic module. Then the in-
stantiation of a generic module consists in:

2.3. Generic modules 33

Module Global Gram (X) =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Export Pneumococcus, Haemophilus, Enterobacteria
Deductive knowledge

Dictionary: ; not defined here.
Rules:

R001 If X/DCGP then conclude Pneumococcus is possible
R002 If X/DCGP and D/Bact Pneumonia

then conclude Pneumococcus is very possible
R003 If X/BGN and D/Aspiration Pneumonia and T/Nosocomial

then conclude Enterobacteria is quite possible
R004 If X/CBGN and P/Penicilin then conclude Haemophilus is sure
Inference system:

Truth values= (impossible, few possible, sligh possible, possible,
quite possible, very possible, sure)

Renaming =

D/False ==> impossible
D/True ==> sure
T/False ==> impossible
T/True ==> sure
P/impossible ==> impossible
P/sure ==> sure
X/false ==> impossible
X/unlikely ==> [impossible, possible]
X/may be ==> possible
X/likely ==> [possible, sure]
X/true ==> sure

Connectives:

Conjunction: ; the same table defined in Figure 2.1.
end deductive

end

Module New Gram = Global Gram(gram of sputum)

Figure 2.6: Example of generic module definition and application.

34 Chapter 2. Modularity

moddecl ::= Module modbind
modbind ::= amodid [([paramlist])] [= bodyexpr]

bodyexpr ::= pathid[([iparamlist])] |

begin decl end
paramlist ::= amodid | paramlist ; paramlist
iparamlist ::= bodyexpr | iparamlist ; iparamlist

Figure 2.7: Syntax of generic modules.

• Making a copy of the generic module.

• Solving the hierarchy component of that copy.

For instance, we can add to our current system the generic module
Global Gram, as the new module mod6. The hierarchy component of that
module is:

Hmod6
(D) = (mod2, visible)

Hmod6
(T) = (mod3, visible)

Hmod6
(P) = (mod4, visible)

Hmod6
(X) = ∅

To compute Global Gram (Gram of Sputum) we make then a copy of
that module (mod7) and solve the hierarchy component linking the submod-
ule X with the module Gram of Sputum. This is the module New Gram.
It is equivalent to the previous one (Gram), except that the submodule X
(Gram of Sputum) is hidden outside Global Gram.

Hmod7
(D) = (mod2, visible)

Hmod7
(T) = (mod3, visible)

Hmod7
(P) = (mod4, visible)

Hmod7
(X) = (mod5, hidden)

The parameters of a generic module are considered as submodules. If
we want to refer to exported facts of these submodules we must build a
path with the parameters names (for instance in the rules of the module
Global Gram we have X/CBGN).

The parameters of a generic module are submodules hidden outside
the generic module. For instance, notice that the submodule X is hidden
outside the new module New Gram. The following query is then wrong
because the submodule X is hidden (Hmod7

(X) = (mod5, hidden)):

2.3. Generic modules 35

Module Gram of Sputum =
Begin

Import Sputum Clas, Sputum Gram
Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here
Rules :

R001 If Sputum clas=(Grup 1,Grup 2,Grup 3)
then conclude Sputum ok is true

R002 If Sputum clas=(Grup 4,Grup 5,Grup 6)
then conclude Sputum not ok is true

R003 If Sputum ok then conclude Gram yes is true
R004 If Sputum not ok then conclude End is true
R005 If Sputum Gram=(DCGP MC) then conclude DCGP is true
R006 If Sputum Gram=(DCGP MC) then conclude CGPC is unlikely
R007 If Sputum Gram=(CGPC MC) then conclude CGPC is likely
R008 If Sputum Gram=(CGPC MC) then conclude DCGP is unlikely
R009 If Sputum Gram=(CGPR MC) then conclude CGPR is true
R010 If Sputum Gram=(BGN MC) then conclude BGN is likely
R011 If Sputum Gram=(CBGN MC) then conclude CBGN is likely
Inference system:

Truth values = (false, unlikely, may be, likely, true)
Connectives: ...

End deductive

End

Figure 2.8: Example of module used as parameter of a generic module.

36 Chapter 2. Modularity

INT [[Query(New Gram/X/CBGN)]]
Query>(New Gram/X/CBGN) =
QueryH>(New Gram)(X/CBGN) =
Querymod7

(X/CBGN) = error

A generic module can use the exported facts of its module parameters, so
the instantiation of a parameter can not be made with any module, but only
those exporting the needed facts. For instance the module Gram of Sputum
exports the facts needed in the rules if the generic module Global Gram.
In the following we will see how to make save the instantiations of generic
modules by means of declaring the parameters as refinements of another
module (like giving a type to the parameters).

We want to support the process of incremental KB building by means of
generic modules. So whenever the definition of a generic module changes,
these changes must be reflected in the rest of the program. The way to
do it is just to repeat the module applications that refer to the modified
module. This re–linking process can be automatised by the compiler, so
that the user gets rid of this task.

2.4 Refinement, Expansion and Contraction

Before explaining these operations on modules we need to know which are
the main components of the kernel of modules. It is not our purpose here
to explain in detail the kernel of modules. We only give a short descrip-
tion of the main semantical components of the kernel which are needed to
understand the explanations of the current Chapter.

The kernel of modules is composed of the deductive and the control
knowledge (see the Figure 2.9) . Deductive knowledge is composed of the
definition of facts (dictionary), the rules and the definition of the local logic
(inference system). At the moment we consider the kernel of a module
composed of the following set8: dictionary, rules, logic and control.

The kernel of a module m ∈ M is composed by the dictionary (Dm),
the rules (Rm), the logic (Lm) and the control (Cm).

K = D × R × L × C

So far we have described modules and generic modules. These decla-
rations are enough to write programs. Now we introduce the operations

8The complete explanation of the deductive and control knowledge will be done in
Chapters 4 and 5 respectively. Here we only explain what is needed to understand the
concept of inheritance which is closely related to modularity and affects mainly the kernel
of modules.

2.4. Refinement, Expansion and Contraction 37

Deductive knowledge

Dictionary: ...

Rules: ...

Inference system: ...

end deductive

Control knowledge

Evaluation Type: ...

Truth Threshold: ...

Deductive Control: ...

Structural Control: ...

end control

Figure 2.9: Kernel declaration scheme.

that allow us to deal with incremental programming in Milord II. These
operations are the refinement, expansion and contraction of modules.

Top–down programming methodology is related to an incremental speci-
fication of problems. We have seen that modular decomposition of problems
is a useful technique to simplify the programming task. We can think in
a program as a hierarchy of modules, but we are interested in including
in the language a set of operations for assisting experts in the process of
development, from the first prototype to the final version of the program.

The task of incremental programming consists in writing a first proto-
type, then a second one, and so on until a final version is achieved. This
imposes two requirements to our system. The first one in that the partial
specifications of modules must be executable to test them. The second one
is that we need to define a set of operations for overseeing this process of
incremental building of programs.

If you observe the concrete syntax of modules in Appendix A you can
notice that many components of modules are optional. Semantically any
module declaration has sense, for instance, we can declare modules without
control component, or without import interface, etc. In some cases we do
not declare some components of modules because we want to define them
incrementally. For instance, if we execute a module which contains only an
export interface, it will answer to all the questions unknown.

When we program a new version of a previous program we are interested
in checking and declaring what is the relation with the old version. In Mi-
lord II this relation can be a refinement, contraction or expansion of the
previous one. Milord II provides these set of operations at modular level,
then we say that a module is a refinement of another one when the set

38 Chapter 2. Modularity

of accessible9 facts is the same that the previous one and these facts can
be obtained with more or equal precise values10. When we expand the
accessible facts in the next version or reduce them then we talk about
expansion and contraction operations respectively.

In Figure 2.10 we extend the previous syntactical declarations of mod-
ules with these new module operations. The symbols ”:”, ”>” and ”<”
stand respectively for the module refinement, expansion and contraction
operations. They can be used in all the module declaration including the
parameter declaration of generic modules.

moddecl ::= Module modbind
modbind ::= amodid [([paramlist])] [modoper modexpr]

[= modexpr]
modexpr ::= bodyexpr | bodyexpr modoper modexpr
bodyexpr ::= pathid[([iparamlist])] |

begin decl end
paramlist ::= amodid modoper modexpr |

paramlist ; paramlist
iparamlist ::= modexpr | iparamlist ; iparamlist
modoper ::= : | > | <

Figure 2.10: Syntax of refinement, contraction and expansion.

All these modular operations are based in three functions: the enriche-
ment verification, the inheritance and the information hiding. Now we
explain the refinement of modules that is the operation that uses these
three functions. The other operations are modifications of this refinement
operation.

2.4.1 Refinement

When we design a module the first decision is which is the set of goals of
that module. These goals are represented by the set of accessible facts of
that module, those of its export interface and those of the export interfaces
of its submodules. When we design by refinement a new version of that
module we must maintain the same set of goals. Furthermore we must

9Remember that the accessible facts of a module are the facts belonging to its export
interface and those of the export interfaces of its submodules.

10Precision is a topic that will be explained in Section 3.2.

2.4. Refinement, Expansion and Contraction 39

guarantee that these goals will be obtained with better or equal precision
in the new version.

Consider the example of Figure 2.11. The module Sample only contains
an export interface. The expression Module Gram of Sputum : Sample =
begin ... end declares11 that the module Gram of Sputum is a refinement
of the module Sample. This is the idea of incremental programming, all the
modules that are refinements of the module Sample (they represent sam-
ples) must keep the same export interface. The module Gram of Sputum
is a refinement of the module Sample because it has the same export inter-
face and other components (for instance, the deductive one) that allows the
module to obtain better results for the exported facts (different from un-
known as was the case for the module Sample because it has not deductive
component).

Module Sample =
Begin

Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
End

Module Gram of Sputum : Sample =
Begin

Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here
Rules :

R001 If Sputum clas=(Grup 1, Grup 2, Grup 3)
then conclude Sputum ok is true

...
End

Figure 2.11: Example of generic module definition and application.

This is specially useful when we declare generic modules. Remember
that the instantiation of a generic module implies to assign submodules to
the generic module. The resultant module should use the exported facts of
the submodules assigned. It is obvious that not all the modules can be used
to instantiate a generic module. For instance, we can modify the previous
declaration of the generic module Global Gram as following:

11There is an equivalent notation for it: Module Gram of Sputum = begin ... end

: Sample.

40 Chapter 2. Modularity

Module Global Gram (X : Sample) =
Begin the same declarations than in Figure 2.6 End

This kind of declaration assure us that the modules used to instantiate
the generic module Global Gram are refinements of the module Sample hav-
ing the same export interface (for instance, we can assure that these module
will export the fact X/CBGN needed in the evaluation of the module).

We obtain a new module from two modules by means of a refinement
operation. We obtain the module Gram of Sputum refining the second dec-
laration of Figure 2.11 by the module Sample. A refinement operation is
composed by three operations: the enrichement verification, the inheritance
and the information hiding.

We will explain these components by considering the following equiva-
lent declarations:

Module M = M 1 : M 2 ≡ Module M : M 2 = M 1

In the following consider that the internal identifier of the modules M 1
and M 2 are mod1 and mod2 respectively. The internal identifier of the new
module M is mod. For instance if we consider that all the declarations are at
top level, then: H>(M) = mod, H>(M 1) = mod1 and H>(M 2) = mod2.

Enrichement Verification

Given a refinement step it is necessary to verify the enrichement of in-
formation. We take the following definition of enrichement between two
modules.

Definition 2.1 (Enrichement) We say that the module M 1 is an en-
richement of the module M 2, if and only if:

1. Emod2
⊆ Emod1

2. Imod2
⊆ Imod1

and ∀x ∈ Imod1
∩ Imod2

. Hmod1
(x) is an enrichement

of Hmod2
(x) or Hmod1

(x) = ∅

3. ∀x ∈ Emod1
∩ Emod2

. V (x,mod1) is more precise than V (x,mod2).

4. Lmod1
= Lmod2

or Lmod1
= ∅.

That means that the module M 1 can extend the export interface and
the submodules of M 2. When a submodule is declared in both modules
M 1 and M 2, they must preserve the enrichement relation. Finally we
must obtain more precise values for the facts that belong to both export
interfaces (precision will be the topic of Section 3.2, at the moment we can
consider better values).

2.4. Refinement, Expansion and Contraction 41

Inheritance

When we declare a module as a refinement of another one we can maintain
several components of the last version, to avoid the expert write twice the
common components. Copy inheritance acts over submodules, facts defined
in the dictionary and the local logic of the module.

When we declare the new version of a module by refinement we could
declare new submodules and we must declare the same submodules that in
the previous version (remember that Imod2

⊆ Imod1
). In these declarations

we could omit the body of some of them. That means that the module M
will inherit the bodies of the submodules of M 2 that not are present in the
declaration of M 1. In the case of declaring a body in M 1 for a module
declared yet in M 2 then a refinement relation is performed between the
two submodules.

For all the submodules x that are in Imod1
∩ Imod2

, the submodules of
the resultant module are:

Hmod(I) =















Hmod2
(I) Hmod1

(I) = ∅

(first(Hmod1
(I)) : first(Hmod2

(I))
, second(Hmod2

(I))) otherwise

The refinement operation makes a copy of the non modified elements of
the dictionaries.

Dmod = {x|x ∈ Dmod1
or x ∈ Dmod2

and x 6∈ Dmod1
}

In the case of the logic, the module inherits the logic of module M2 if
that module contains a logic declaration.

Lmod =

{

Lmod2
if Lmod1

= ∅
Lmod1

if Lmod1
6= ∅

Information Hiding

The first component of the refinement operation was the enrichement ver-
ification. One of the conditions to obtain a refinement relation between
two modules is that the accessible facts of both modules must be the same.
Then after checking the enrichement of information we must hide the new
accessible facts of the refined module if any.

In a refinement operation information hiding affects the export interface
and the modular structure of the module created by the refinement. All
the exported facts of M 1 not present in the export interface of M 2 are

42 Chapter 2. Modularity

hidden in the resulting module M. Similarly all the submodules of M 1 not
present in the hierarchy of M 2 are hidden in the resulting module M.

Until now we have considered that all modules are visible except for the
parameters of generic modules. Here we introduce the concept of hidden
submodules. When a module contains a submodule that is a hidden, this
submodule can not be referenced outside the module. The new module can
reference the facts in the export interface of all its submodules, but from
outside the module we can not access the hidden submodules.

Finally the components of the module M , after checking the enrichement
of information, considering inheritance and information hiding will be the
following:

• Emod = Emod2

• Imod = Imod1

• Imod = Imod1
∪ Imod2

Hmod(I) =






































Hmod2
(I) If Hmod1

(I) = ∅
and I ∈ Imod1

∩ Imod2

(first(Hmod1
(I)) : first(Hmod2

(I)) I ∈ Imod1
∩ Imod2

, second(Hmod2
(I)))

(first(Hmod1
(I)), hidden) I ∈ Imod1

− Imod2

• Dmod = {x|x ∈ Dmod1
or x ∈ Dmod2

and x 6∈ Dmod1
}

• Lmod =

{

Lmod2
if Lmod1

= ∅
Lmod1

if Lmod1
6= ∅

• Rmod = Rmod1

• Cmod = Cmod1

We have a small example of the refinement operation in Figure 2.12
and 2.13. Consider the first version of the program in Figure 2.12. It is
composed of three modules that only contain submodule declarations and
the interfaces. The module Global Culture S has two submodules named
Gram S and Respiratory Diagnosis. The module Gram S has only the sub-
module Respiratory Diagnosis.

In the next version of the program in Figure 2.13 we can see how the
module Global Culture is defined as a refinement of the previous module
Global Culture S. It is easy to see that the module Global Culture is a re-
finement of the module Global Culture S because they have the same export

2.4. Refinement, Expansion and Contraction 43

Module Global Culture S =
Begin

Module G = Gram S
Module D = Respiratory diagnosis
Export Pneumococcus isolation, Haemophilus isolation,

Staphylococcus isolation, No microorganism isolation, antibiogram
Import Multiresistant microorganism
End

Module Gram S =
Begin

Module D= Respiratory Diagnosis
Import Nosocomial, Extrahospitalary, Prev Treat, Sputum clas,

Sputum Gram
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
End

Module Respiratory Diagnosis =
Begin

Import Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
Export Bact Pneumonia,Influenz superinf, Aspiration Pn, Cronic Pn
End

Figure 2.12: Example of module refinement.

44 Chapter 2. Modularity

interfaces and the same submodules. Then the enrichement verification test
success and there is no information hiding. The only operation is the in-
heritance of components, in particular the bodies of the submodules D and
G.

The declaration of the module Gram is a little different because this
module contains more submodule declarations than module Gram S.

IH>(Gram S) = {D}

IH>(Gram) = {D,T, P, S}

Then information hiding acts over the submodule structure and the
new modules Type of Infection, Previous Treatment and Gram of Sputum
become hidden from outside the module Gram. Notice that the import
interface of that module has changed because the facts imported by the
module Gram are now imported by its submodules.

Finally we can see in Figure 2.14 the modular structure of the program.
The modules Type of Infection, Gram of Sputum and Previous Treatment
are hidden into module Gram. For instance, the paths

Global Culture/Gram/Type of Infection/Nosocomial
Global Culture/Gram/Previous Treatment/Penicilin

are incorrect, but the paths

Global Culture/Respiratory Diagnosis/Bact Pneumonia
Global Culture/Gram/Respiratory Diagnosis/Bact Pneumonia

are correct and equivalent. Another equivalent modular structure could be
to declare the submodule D of module Global Culture S as:

Module D = Gram S/D

2.4.2 Expansion and Contraction

Expansion and contraction operations are based on the refinement one.
Expansion allows to build modules that are an expansion of a previous
version. We can extend the set of accessible facts or add submodules to
the previous version. As in the refinement case to expand modules we test
that the new module is an enrichement of the previous one. Inheritance of
components is performed as in the refinement operation, but information
hiding is not applied because we allows the expert to program an expansion
of a previous module. Consider the following declaration:

Module M = M 1 > M 2

2.4. Refinement, Expansion and Contraction 45

Module Global Culture : Global Culture S =
Begin

Module G
Module D
Export Pneumococcus isolation, Haemophilus isolation,

Staphylococcus isolation, No microorganism isolation, antibiogram
Import Multiresistant microorganism
...
End

Module Gram : Gram S =
Begin

Module D
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
...
End

Module Type of Infection =
Begin

Import Nosocomial, Extrahospitalary
Export Nosocomial, Extrahospitalary
...
End

Module Previous Treatment =
Begin

Import Prev Treat
Export Penicilin, Tetracycline
...
End

Figure 2.13: Example of module refinement.

46 Chapter 2. Modularity

@
@

@R

�
�

�	

?

HHHHHHHHHHj

@
@

@
@

@
@

@
@

@@R

�
�

�	

Type of Infection

Gram of Sputum

Previous Treatment Respiratory Diagnosis

Gram

Global Culture

Figure 2.14: Visibility example (hidden modules are written in italic).

2.5. Special declarations 47

The components of a module M created by means of the above declara-
tion are the following (we represent only the components that are different
of a refinement operation):

• Emod = Emod1

• Imod = Imod1
∪ Imod2

Hmod(I) =






































Hmod2
(I) if Hmod1

(I) = ∅
and I ∈ Imod1

∩ Imod2

(first(Hmod1
(I)) > first(Hmod2

(I)) I ∈ Imod1
∩ Imod2

, second(Hmod2
(I)))

Hmod1
(I) I ∈ Imod1

− Imod2

Contraction only test an inverse enrichement verification. Given the
declaration Module M = M 1 < M 2 we only test that M 2:M 1 holds.
Inheritance and information hiding are not applied.

2.5 Special declarations

We complete in this Section the set of module declarations allowed in Mi-
lord II. Open and Inherit submodule declarations are only programming
facilities and they do not belong to the primitives of the modular language.
Dynamic modules is an important characteristic of Milord II that allows
us to execute submodule declarations at run time.

One form of the composition of modules is achieved by mean of the
declaration of submodules. This declarations defines the hierarchical com-
ponent of a module. The complete syntax of the hierarchy component of
modules is given in Figure 2.15.

2.5.1 Inherit and Open

When we use by reference submodule declarations we usually declare a local
name for the submodule. If we want to preserve the previous name of the
submodule we can use the following submodule declaration:

Inherit B ≡ Module B = B

Obviously this type of declaration can only be used in by reference decla-
rations of modules.

The last type of submodule declaration is a special kind of submodule
declaration, the notion of a submodule as open.

48 Chapter 2. Modularity

hierarchy ::= moddecl |
Inherit pathid |
Open bodyexpr |
Sharing patheq |
hierarchy hierarchy

Figure 2.15: Syntax of submodule declarations.

Open B

In this case it is not necessary to use paths to access the facts exported by
the submodule B. All the facts exported by the submodule belongs to the
module. It is valid with encapsulated or by reference declarations.

It is easy to see that name clashes can occur when we use declarations
of type open. If a module has more than one opened submodule, the names
of the exported facts must be different12.

The submodules of the open module are visible directly without the path
to the open module. Consider the following abstract example in Figure 2.16.
We can access to the facts C/c, C/a and C/B/b. The paths C/A/a and
C/A/B/b are not valid.

Module A =
Begin

Module B = Begin Export b ... End

Export a
... End

Module C =
Begin

Open A
Export c
... End

Figure 2.16: Example of open module.

12Milord II Compiler detects all these conflicts.

2.5. Special declarations 49

2.5.2 Sharing

Considering that Milord II allow us to define applications incrementally,
in some cases we are interested in giving to the compiler information about
which modules will be finally the same module. These declarations assure
that in the building process the compiler will detect the violations of this
previous declarations. Syntax declaration of sharing is given in Figure 2.17.

sharing ::= Sharing patheq
patheq ::= pathid = patheq | pathid = pathid |

patheq ; patheq

Figure 2.17: Syntax of sharing.

For instance in the current example we can declare:

Sharing Respiratory Diagnosis = Gram/D

This declaration means that the module Respiratory Diagnosis has to
be the same module that the submodule D of the module Gram.

Sharing declaration can be used at top level or in the hierarchy declara-
tions of modules. In the last case local names are used. The last declaration
implies that:

H>(Respiratory Diagnosis) = H>(Gram/D)

Sharing declaration can also be used in generic module declarations.
In the declarations above sharing was only to give the information that
some modules will be the same. In the case of generic modules sharing
declarations affect the future instantiations of those generic modules. For
instance, consider the following declaration:

Module G(X : X S; Y : Y S; Sharing X/A = Y/B) =
Begin ... End

This declaration means that when we instantiate the generic module G
with two modules, the first module X must contain a submodule named A
and the second one Y a submodule named B, and these two submodules
must be the same.

2.5.3 Dynamic Modules

Milord II deals with dynamic modules by means of dynamic links among
modules at run time. This characteristic allows us to implement powerful
particular control strategies.

50 Chapter 2. Modularity

Despite the creation of dynamic modules belongs to the control knowl-
edge of modules (see Section 5.4.4) we introduce briefly those declarations.
We can use as conclusions of metarules module declarations only composed
by reference declarations. For instance, we can write in the control knowl-
edge of a module a metarule which conclusion is the module declaration
Open A. This means that when this metarule is fired then the module that
contains it will stablish a dynamic link with the module A. Now this module
has a new submodule.

2.6 Conclusions

All the ES programming activity with Milord II language is based on
modules. Modules are the primitive components of the language. The
applications programmed with Milord II start by structuring the whole
problem in a hierarchy of modules. It is a language adapted to the pro-
gramming in the large, that is, to program real applications.

Milord II has not global components in the system. Each module con-
tains a complete ES specialized in a part of the whole application. Modules
has its own deductive knowledge (dictionary, rules and so on), its own local
logic (particular multi–valued logic used to cope the concrete subproblem)
and the local control. Modules has well defined interfaces to interact with
the user and the other modules of the system.

Milord II modular language is based on modules and generic modules.
Generic modules allows us to save code and to make more understandable
the code of an application.

A set of operations deals with incremental programming of applica-
tions. Refinement, contraction and expansion of modules allows the expert
to build several versions of modules that are progressively refined and mod-
ified. Milord II considers all the versions are executable entities allowing
an incremental validation and testing of the applications.

After the description of the modular language the following Chapters are
devoted to the internal components of the modules giving an incremental
description of the syntax and semantics of the complete Milord II system.

Chapter 3

Approximate Reasoning

We have seen in Chapter 2 that the natural form of describing and solving
problems was by means of the decomposition of the problems into sub-
problems. As shown Milord II deals with structured problem solving
integrating and adapting known modularization techniques into a reach ES
shell.

A module of Milord II contains the necessary components to describe
the domain and control knowledge relative to a problem, by means of facts,
rules, metarules, and so on. Till now we have not described these internal
components of a module. We only have considered that a module is able
to produce items of information (export interface) from others items of
information that has been provided by the user (import interface) or by
the submodules of that module (hierarchy).

This Chapter is devoted to explain the nature of those items of infor-
mation that we name facts in ES’s terminology. For that we can consider
that an item of information is composed of four components, that is, object,
attribute, value and confidence (Dubois and Prade, 1988). The attribute
is a function that attaches a value or a set of values to an object. The
confidence indicates the reliability of an item of information.

Now we analyze the concepts of imprecision and uncertainty of an item
of information. The imprecision is a concept attached to the value compo-
nent of an item of information, and the uncertainty to the confidence one.
For instance, we can say It is very possible that the temperature of the pa-
tient is between 36◦ and 38◦. In this example the object is the patient and
the attribute is the temperature. The value of the temperature is imprecise
and it belongs to the interval [36◦, 38◦] with a confidence degree of very
possible. This is an example of an imprecise and uncertain proposition. We
can think in other examples, a precise and certain proposition: The tem-

51

52 Chapter 3. Approximate Reasoning

perature of the patient is 36.7◦; an imprecise and certain proposition: The
temperature of the patient is between 36◦ and 38◦; and finally a precise and
uncertain proposition: It is very possible that the temperature of the patient
is 36.7◦.

The management of uncertainty and imprecision becomes essential to
modelize real problems. Usually the kind of knowledge domains treated by
ES’s contains imperfect knowledge. We can find many sources of impreci-
sion and uncertainty. For instance, measurement devices have imprecise re-
sults (the corporal temperature depends on which part of the body we take
the measure); subjective appreciations are imprecise (the valuation of the
temperature touching the patient with the hand); the incomplete knowledge
added to the natural language ambiguity produce uncertain propositions (If
the patient has headache it is possible that his temperature could be greater
than 37◦).

In this Chapter we will explain how Milord II manages uncertainty
and imprecision. As we will see it is limited to manage uncertain data or
imprecise data. It is not possible to express at the same time the uncertainty
and the imprecision of an item of information.

When we want to manage uncertainty by means of linguistic terms (for
instance, likely, possible, false, and so on) we must decide how many terms
to use and which they are. Usually these questions are problem dependent
and they are related to the concrete meaning that the expert associates to
these linguistic terms. Some problems could need five terms to express its
uncertainty and another problem could need seven terms. Furthermore it is
possible that the term possible would have a different meaning for different
experts, or that one expert prefers to use another term such as likely. The
concrete set of terms used to express uncertainty and its granularity will
depend on the expert criteria and on the concrete problem he is considering.

As seen in Chapter 2 each module is used to specify a subproblem. It
could be very useful to change the language of representation of uncertainty
in function of the type of subproblem. The modular structure of Milord II
together with its approach to uncertainty management, allows to define
in a natural way local uncertainty calculus attached to each module, in
such a way that the knowledge adequation process can also be applied to
the uncertainty management. The interest in having different uncertainty
calculus in an ES becomes clearer when expert systems involving several
human experts have to be built. Milord II system allows us to define
local uncertainty logics in the modules and mechanisms of communication
among these logics(Agust́ı et al., 1992).

This Chapter is divided in four parts. The first one is devoted to the
definition of algebras of truth–values. The expert must define which is
the logic more adecuated to his problem. This implies to define a set of

3.1. Algebra of truth–values 53

linguistic terms useful to express his knowledge (for instance, he would say
The confidence degree that the patient has pneumonia is very possible or
The treatment with ciprofloxacine is good). Furthermore the expert can
express some control to the meaning of the logic operators. An example of
this is to find the confidence degree of the fact fever from two sentences: It
is slightly possible that the patient has headache ; If the patient has headache
it is possible that he has fever.

The second part contains an explanation in depth of the treatment given
by Milord II of the concepts of uncertainty and imprecision. This is
reached by extending the algebra of truth–values to an algebra of intervals
of truth–values (we can say that The evidence that the patient has pneu-
monia is between possible and very possible) and introducing fuzzy sets
(for instance, The degree of membership of the patient to the set of the tall
people is quite).

The third part is devoted to the communication between the local logics
of modules. When two modules use different logics (linguistic terms and
operators) we must find a mechanism of translation of the linguistic terms to
make compatible the communication between those modules (for instance,
what is the meaning of the sentence Fever is possible for another module
that do not use this term, maybe Fever is likely?). Finally we introduce all
the constructs of the language Milord II that allow the experts to define
the local logics of modules.

3.1 Algebra of truth–values

Psychological experiments (Kuipers et al., 1988; Fox, 1989) show that hu-
man problem solvers do not use numbers to deal with uncertainty and that
the way they manage it is situation dependent. These requirements were
partially satisfied in the Milord system in the sense that the treatment of
uncertainty was based in different operators defined over a set of linguistic
terms describing the global verbal scale the experts use to express degrees
of uncertainty (Godo et al., 1989).

The approach used in Milord II to manage uncertainty is based on
many–valued logics. The use of many–valued logics has been criticized
(Pearl, 1990; Hàjek et al., 1992) because of the confusion between uncer-
tainty and imprecision. We do not enter in depth in this kind of problems
that has been extensively treated in the literature. Despite this, many–
valued logics have been proved to be useful in ESs (Turner, 1984; Bonis-
sone et al., 1987; Godo et al., 1989; López de Mántaras, 1990). We justify
the use of many–valued logics because they have an efficient and simple
deduction from the computability point of view. We will extend these log-

54 Chapter 3. Approximate Reasoning

ics with intervals of truth–values (Esteva et al., 1994) as a technique to
manage uncertainty or imprecision. As we will see intervals of truth–values
allow us to deal with uncertain or imprecise information and to introduce
negative evidence in the sentences.

Here we present the definition of a family of many–valued logics which
deductive system is based on a new kind of inference rule called specializa-
tion (it will be presented in the next Chapter). Some aspects of these logics
have been already described in (Agust́ı et al., 1991; Agust́ı et al., 1992).
Each logic is determined by a particular algebra of truth–values from a
parametric family that is described next.

Definition 3.1 (Algebra of Truth–values) An algebra of truth–values
is a finite algebra

An
T =< An,Nn, T, IT >

such that:

1. The ordered set of truth–values An is a chain of n elements:

0 = a1 < a2 < · · · < an = 1

where 0 and 1 are the boolean False and True respectively.

2. The negation operator Nn is the unary operation defined as

Nn(ai) = an−i+1

the only one that fulfills the following properties:

N1: If a < b then Nn(a) > Nn(b), ∀a, b ∈ An

N2: N2
n = Id.

3. The conjunction operation T is a binary operation such that the fol-
lowing properties hold ∀a, b, c ∈ An:

T1: T (a, b) = T (b, a)

T2: T (a, T (b, c)) = T (T (a, b), c)

T3: T (0, a) = 0

T4: T (1, a) = a

T5: If a ≤ b then T (a, c) ≤ T (b, c) for all c

4. The implication operator IT is defined by residuation with respect to
T , i.e.

IT (a, b) = Max {c ∈ An|T (a, c) ≤ b}

and satisfies the following properties:

3.1. Algebra of truth–values 55

I1: IT (a, b) = 1 if, and only if, a ≤ b.

I2: IT (1, a) = a

I3: IT (a, IT (b, c)) = IT (b, IT (a, c))

I4: If a ≤ b, then IT (a, c) ≥ IT (b, c) and IT (c, a) ≤ IT (c, b) for all c

I5: IT (T (a, b), c) = IT (a, IT (b, c))

As it is easy to notice from the above definition, any of such truth–
values algebras is completely determined as soon as the set of truth–values
An and the conjunction operator T are determined. So, varying these two
characteristics we can obtain a parametric family of different many–valued
logics, including, among others, Kleene’s and Lukasiewicz’s logics.

As we can see in the example of the Figure 3.1 (the complete definition
for the module Gram of Sputum given in the Figure 2.8 and used in the
previous examples), this module declares a local logic (inference system)
consisting in a set of linguistic terms (truth values) and the conjunction
operator (conjunction).

The definition of this local logic in the module Gram of Sputum is de-
termined by the declaration of the set of five linguistic term S5 = {false,
unlikely, may be, likely, true}, and the conjunction operation TS5

operation
defined in the Table 3.1. The expert has choosen this number of terms be-
cause he considers that it is sufficient to talk about the concepts contained
in this module. The names of the linguistic terms used in each module are
intended to make understandable the kind of the concepts that are used
into the modules.

false unlikely may be likely true

false false false false false false

unlikely false unlikely unlikely unlikely unlikely

may be false unlikely may be may be may be

likely false unlikely may be may be likely

true false unlikely may be likely true

Table 3.1: TS5
Table.

The expert can choose a T function (holding the properties T1–T5)
depending on the meaning he wants to give to the conjunction operation1.
For instance, considering that T (a, b) ≤ min(a, b) (from properties T4 and

1A general algorithm for finding truth–value algebras over a partially ordered set of
n elements is given in (Godo and Meseguer, 1991).

56 Chapter 3. Approximate Reasoning

Module Gram of Sputum =
Begin

Import Sputum clas, Sputum Gram
Export End, Gram yes, DCGP, CGPC, CGPR, BGN, CBGN
Deductive knowledge

Dictionary: not defined here
Rules :

R001 If Sputum clas=(Grup 1 or Grup 2 or Grup 3)
then conclude Sputum ok is true

R002 If Sputum clas=(Grup 4 or Grup 5 or Grup 6)
then conclude Sputum not ok is true

R003 If Sputum ok then conclude Gram yes is true
R004 If Sputum not ok then conclude End is true
R005 If Sputum Gram=(DCGP MC) then conclude DCGP is true
R006 If Sputum Gram=(DCGP MC) then conclude CGPC is unlikely
R007 If Sputum Gram=(CGPC MC) then conclude CGPC is likely
R008 If Sputum Gram=(CGPC MC) then conclude DCGP is unlikely
R009 If Sputum Gram=(CGPR MC) then conclude CGPR is true
R010 If Sputum Gram=(BGN MC) then conclude BGN is likely
R011 If Sputum Gram=(CBGN MC) then conclude CBGN is likely
Inference system:

Truth values = (false, unlikely, may be, likely, true)
Connectives :

Conjunction =((false, false, false, false, false)
(false, unlikely, unlikely, unlikely, unlikely)
(false, unlikely, may be, may be, may be)
(false, unlikely, may be, may be, likely)
(false, unlikely, may be, likely, true)))

End deductive

End

Figure 3.1: Example of Local logic declaration.

3.1. Algebra of truth–values 57

T5) the expert can consider more or less optimistic evidence combinations.
For instance, he can consider that the conjunction of two propositions with
confidence degree likely results on a confidence degree of may be (less than
likely).

Nn

false true

unlikely likely

may be may be

likely unlikely

true false

Table 3.2: N5 Table.

It is easy to see that the negation operator N5 and the implication
operator ITS5

can be deduced from the above definition of the algebra of
truth–values (see the Tables 3.2 and 3.3 respectively).

x / y false unlikely may be likely true

false true true true true true

unlikely false true true true true

may be false unlikely true true true

likely false unlikely likely true true

true false unlikely may be likely true

Table 3.3: ITS5
(x, y) Table.

3.1.1 Modus Ponens Operator

The language used in Milord II is composed of weighted facts and rules.
Till now we have only introduced the conjunction and negation operators.
Then we should also introduce the many–valued version of modus ponens
inference rule (Alsina et al., 1984; Valverde and Trillas, 1985; Trillas and
Valverde, 1987) that allows us to make deductions, that is, to deduce the
truth–value of the conclusion of a rule from the truth–values of its condi-
tions and the truth–value of the rule.

58 Chapter 3. Approximate Reasoning

Definition 3.2 (Modus Ponens) MPT is a function from An × An to
the set of intervals2 of An defined as:

MPT (a, b) =















∅ if a and b
are inconsistent (*)

[a, 1] if b = 1
T (a, b) otherwise

(*) a and b are inconsistent if there exists no c such that I T (a, c) = b.

This is a functional expression of the multiple–valued version of the
classical modus ponens rule, i.e. MPT (a, b) is the set of solutions for ρ(q)
in the equation system:

{

ρ(p) = a
ρ(p → q) = IT (ρ(p), ρ(q)) = b

where ρ is the valuation of the sentences.

The modus ponens table for S5 and TS5
is given in Figure 3.4. For

instance, if the value of the fact p is likely and the value of the rule p → q
is true, by means of the definition of the MPT function and the Table TS5

we can deduce that the fact q has the value likely. We will return over this
rule when we explain the specialization of KB’s in Chapter 4.

x / y false unlikely may be likely true

false ∅ ∅ ∅ ∅ [false,true]

unlikely false ∅ ∅ ∅ [unlikely,true]

may be false unlikely ∅ ∅ [may be,true]

likely false unlikely ∅ may be [likely,true]

true false unlikely may be likely [true, true]

Table 3.4: MPTS5
(x, y) Table.

We know how to use a propositional language (no defined yet) with
negation, conjunction and implication operators. Till now we only have
talked about the deduction by means of the modus ponens inference rule.
In Chapter 4 we will introduce a different kind of deduction based on the
specialization inference rule (SIR).

2Notice that the modus ponens operator can return an interval of truth–values. This
will be one of the reasons to introduce intervals of truth–values as we will see.

3.2. Uncertainty and Imprecision 59

3.2 Uncertainty and Imprecision

We have considered in the introduction that uncertainty and imprecision
take an important role in the data used by ESs. Now we will talk on the
concrete items of information that can be used in Milord II. Our system
deals with uncertainty and imprecision by means of the use of intervals of
linguistics terms.

Consider the following two examples:

1. Peter is quite tall.

2. It is possible that Peter is tall.

These two propositions can be confusing. When we read the first propo-
sition we could think that the fact of being tall is a graduated measure, then
we are talking about the value of the attribute tall. There are persons that
are clearly tall (for instance, those that their height is greater than 2m.)
and persons that are clearly not tall, but between these two categories there
are persons that are slightly tall, quite tall, etc.

Another interpretation can guide us to the concept of fuzzy sets. The
difference between a classic set (named crisp set) and a fuzzy set is that
the elements of the considered universe have a degree of membership to the
fuzzy set. In crisp sets the elements of the universe belong or not belong to
the crisp set. We can consider that the concept tall is a fuzzy set. We can
imagine then a characteristic function that given the height of a person it
returns the degree of membership of the person to the fuzzy set tall (see
the Figure 3.2), expressed by means of linguistic terms (like quite).

The second proposition can be interpreted as the first one, but its syn-
tactical form guides us to think that tall is a boolean concept (a person is
tall or not tall) and we have a degree of confidence on the fact that Peter
is tall. In this case we are talking about uncertainty. We are not sure if
Peter belongs or not to the set tall.

There are other examples where that confusion is not possible, for in-
stance, we can say that It is possible that Peter has pneumonia but we can
not talk about degrees of pneumonia (it is not possible to say that some-
body is quite pneumonic). These interpretations depend on the concept
and the concrete linguistic terms we are using.

In Milord II we will consider only information of the second type, that
is, uncertain information expressed by means of linguistic terms, but the
semantical interpretation of those sentences will be dependent on the set of
concepts the expert is using. We will take advantage of this confusion3 to
introduce imprecision.

3Experience shows that experts use this kind of interpretation. Depending on the set

60 Chapter 3. Approximate Reasoning

µF (ω)

1.9

-

6

�
�

�
�
�

�
�
��

1

1.7 2.50
ω

Figure 3.2: Fuzzy set representing the concept tall.

Imprecision at truth level

Milord II introduces imprecision at the truth level by means of intervals of
linguistic terms. One may know that a proposition must take a truth–value
but does not know exactly which, then a set of possible values is given. We
can say that The confidence degree of pneumonia is between possible and
very possible.

This kind of imprecision could seem not to be very useful. We can think
that users would have difficulty to interpret these intervals of truth–values,
but we will make it clear by comparing the interpretation of these intervals
in Milord II with the interpretation of truth–values in Milord.

In Milord all the truth–values associated to the facts were considered
to be positive evidences. When we found more than one deductive path
to evaluate a fact, we choose the best, that is, that of the greatest truth–
value. In Milord the goal was to obtain the maximum certainty degree for
the facts. Furthermore in the case that the fact would get a truth–value less
than a threshold, it would be considered unknown (there was no sufficient
positive evidence to consider it).

Now we can comment the interpretation of positive evidence by means
of intervals of truth–values. We consider that positive evidence is an in-
terval from a truth–value to true, that is, when we say that the value of
the fact pneumonia is possible, the interpretation is that the value of pneu-
monia belongs to the interval [possible, true]. When a fact belongs to the

of concepts they are using the interpretation of the linguistic terms could be taken as
values or confidence degrees.

3.2. Uncertainty and Imprecision 61

interval [0, 1] it means that we know nothing about its value. With this
interpretation when we obtain the value false for a fact it means that the
value of this fact is unknown instead of false.

Thanks to this interpretation we can introduce negative evidence as
intervals of truth–values of the form [0, ai], that is, the value of the fact
could be from false to ai. In Milord II we interpret positive and negative
evidence as before. We can find deductive paths with positive and negative
evidences. The result of the parallel combination is the fusion (intersection)
of these intervals (as we will see in Section 4.2.3). Then the interpretation
of an interval as [ai, aj] is that the positive evidence is ai, but there are a
negative evidence aj. The goal of Milord II is to obtain the maximum
precision of the value of facts. We will return on this in the following
Sections.

Imprecision at value level

If we return to the examples above we can interpret the imprecision at truth
level as imprecision at value level, the more standard one. When we say
that It is between possible and very possible that Peter is tall we could think
of a previous imprecise measure of the height of Peter (a numeric interval).
The characteristic function of the fuzzy set tall is a function from intervals
of height to intervals of degrees of membership to the fuzzy set tall.

In the following Section we will present the extension of the algebra of
truth–values to the algebra of intervals. Now we consider that the sense of
these intervals is the imprecision at truth level. We will return on impreci-
sion at value level in Section 4.4.1.

3.2.1 Intervals of Truth–values

We have presented several semantic motivations to introduce intervals of
truth–values, but there are other reasons. The first one is related to the
chaining of rules. We can see in the above definition of the modus ponens
inference rule that in some cases it returns an interval of truth–values. The
second reason is to make possible the mappings between different local
logics and it will be explained in Section 3.3.

The deductive system of Milord II works on the set of intervals of
An, Int(An). N∗

n, T ∗ and MP ∗
T are the point–wise extensions4 of Nn, T

and MPT respectively. Let us introduce more formally the intervals of
truth–values and these operators.

4Strictly speaking they give the minimal interval containing the point–wise extensions.

62 Chapter 3. Approximate Reasoning

Definition 3.3 (Intervals) Int(An) will stand for the set of intervals of
An, i.e.

Int(An) = {[a, b]|a, b ∈ An such that a ≤ b} ∪ ∅

being [a, b] = {c ∈ An|a ≤ c ≤ b}.

Notice that there exists an embedding from An to Int(An) identifying
elements a with intervals [a, a] of Int(An). For the sake of simplicity on
the notation, we will also denote by a the interval [a, a] when no confusion
is possible. The interval ∅ represents an inconsistent value as we will see.

On the set of intervals Int(An) we can define the imprecision ordering
and the uncertainty ordering (Esteva et al., 1994).

Imprecision ordering: Is naturally induced by the set inclusion relation-
ship ⊆. Given A,B ∈ Int(An) , the interval A is more precise or
equal than B, if and only if A ⊆ B (see Figure 3.3 for an example
on Int(A4), where A4 = {0, a, b, 1}). The goal of Milord II is to
produce the most precise values.

PPPPPPPPPPPPi

Z
Z

ZZ}

�
�

��>

������������1
Z

Z
ZZ}

Z
Z

ZZ}

�
�

��>

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

Z
Z

ZZ}

�
�

��>

∅

1ba0

[b,1][a,b][0,a]

[a,1][0,b]

[0,1]

Figure 3.3: Imprecision Ordering on Int(A4).

Uncertainty ordering: The uncertainty order of An can be extended into
Int(An) in at least two different ways:

3.2. Uncertainty and Imprecision 63

• Weak uncertainty order (see Figure 3.4):

[a1, b1]≤̃[a2, b2] if, and only if, a1 ≤ a2 and b1 ≤ b2

• Strong uncertainty order:

[a1, b1] � [a2, b2] if, and only if, b1 ≤ a2 or [a1, b1] = [a2, b2]

Z
Z

ZZ~

Z
Z

ZZ~ �
�

��>

�
�

��>Z
Z

ZZ~�
�

��>

Z
Z

ZZ~�
�

��>Z
Z

ZZ~�
�

��>

Z
Z

ZZ~�
�

��>

1ba0

[b,1][a,b][0,a]

[a,1][0,b]

[0,1]

Figure 3.4: Weak Uncertainty Ordering on Int(A4).

Now we will define the negation, conjunction and modus ponens oper-
ators for the intervals of truth–values.

Definition 3.4 We define on the set of intervals of An the functions N ∗
n

and T ∗ as those functions that give the minimal interval containing the
point–wise extensions of Nn and T respectively. That is:

• N∗
n([a, b]) = [Nn(b),Nn(a)]

• T ∗([a, b], [c, d]) = [T (a, c), T (b, d)]

In order to get a functional expression of the multiple–valued version
of the Modus Ponens rule, we also define on the set of intervals of An the
function MP ∗

T as follows:

Definition 3.5 For any truth–intervals V and W , we define MP ∗
T (V,W)

as the minimal interval containing all solutions for z in the family of func-
tional equations

IT (a, z) = b

64 Chapter 3. Approximate Reasoning

varying a ∈ V and b ∈ W .

This definition can be made more explicit when taking into account that
the truth–intervals W attached to rules of Milord II are always upper
intervals, i.e. W is of the form W = [c, 1].

Proposition 3.1 MP ∗
T ([a, b], [c, 1]) = [T (a, c), 1]

After the introduction of the intervals and its operators we will explain
briefly how we work with intervals and the concept of precision.

3.2.2 Working with intervals

We have seen the extension to an algebra of intervals of truth–values. Now
we can explain how these intervals are used in practice with the rules of
Milord II.

The goal of Milord system was to find the maximum truth–value for the
facts because it only uses rules with positive evidence. Because of the use of
intervals of truth–values, the goal of Milord II is to obtain the maximum
precision interval for the facts (combining positive and negative evidences).

Consider a set of rules with the same fact in the conclusion, but some
rules with the negation of that fact in their conclusion. Then we should
consider the following points:

• The rules with a positive conclusion (not negated) will fix the mini-
mum certainty value of the conclusion fact.

• The rules with a negative conclusion will fix the maximum certainty
value of the conclusion fact.

• We combine evidences by means of the intersection of intervals.

We can explain it through an example. Consider that the weighted
sentences are pairs (sentence, value). And consider the following sentences
(two facts and two rules)5:

(a, ρa)
(b, ρb)
(a → c, [ρr1

, 1])
(b → ¬c, [ρr2

, 1])















From these facts and rules we can obtain a value for the sentence c
and for ¬c using the modus ponens inference rules for intervals of truth–
values. Notice that the value of a Milord II rule is an upper–interval to

5Notice that Milord did not use negation in the conclusion of rules.

3.2. Uncertainty and Imprecision 65

1. The values for the sentences in the conclusions of those rules are then
upper–intervals.

(a, ρa)
(b, ρb)
(a → c, [ρr1

, 1])
(b → ¬c, [ρr2

, 1])
(c,MP ∗

T ([ρa, ρa], [ρr1
, 1])) = (c, [T (ρa, ρr1

), 1])
(¬c,MP ∗

T ([ρb, ρa], [ρr2
, 1])) = (¬c, [T (ρb, ρr2

), 1])































Using the negation operator of intervals of truth–values we obtain an
interval from 0 for the conclusion of the second rule. As commented before
the positive rule produces a positive evidence of the conclusion and the
negative rule a negative one. The fusion (intersection) of intervals results
in a interval where its minimum value corresponds to a positive evidence
and the maximum value to the negative one.

(c, [T (ρa, ρr1
), 1])

(¬c, [T (ρb, ρr2
), 1]) ⇒ (c, [0,Nn(T (ρb, ρr2

))])

}

⇒

(c, [T (ρa, ρr1
),Nn(T (ρb, ρr2

))])

When the intersection of values is empty, then it is considered to be
inconsistent. All the operators N ∗

n, T ∗ and MP ∗
T with an argument equal

to ∅ return the same inconsistent value ∅.

3.2.3 Fuzzy Sets

Facts are one of the most primitive component of Milord II that represent
the concepts we will use in an ES. To deal with uncertainty and impre-
cision we associate an interval of truth–values to the facts. Sometimes it
is interesting to deal with other type of facts that represents set concepts.
For instance, we can consider that the fact treatment is a set of antibiotics.
We could be interested in comparing different treatments by means of set
relations and operations.

From the logical point of view the concept of fuzzy set is carried out
by changing the usual definition of the characteristic function of a set by
means of degrees of membership. We use uncertainty in the knowledge we
possess about the membership relation. To define a fuzzy set F we give a
reference set Ω and a mapping, µF (ω), of Ω into [0, 1]. µF (ω), for ω ∈ Ω
is interpreted as the degree of membership of ω in the fuzzy set Ω. When
µF (ω) ∈ {0, 1},∀ω, F is the same as an ordinary subset of Ω. This is called
a crisp subset of Ω and is a particular case of fuzzy sets.

66 Chapter 3. Approximate Reasoning

That is the usual definition of fuzzy sets as a mapping of the charac-
teristic function into the interval [0, 1]. Because of the use of linguistic
terms and imprecision we will extent the usual definition to the intervals of
truth–values.

Now we put an example of fuzzy set named treatment. Consider the
following reference set, in this case a set of antibiotics:

Ω = {carbamacepina, teofilina, digoxina ,dicumarinics, ciclospo-
rina, difenilhidantoina}

We use as imprecise degree of membership intervals of linguistic labels
Int(An) of the logic of the module that contains this fact. We can specify a
fuzzy set by means of its characteristic function. For instance, we consider
that a treatment is a fuzzy set composed by antibiotics6. The characteristic
function of the fact treatment could be:

µtreatment(carbamacepina) = [impossible, impossible]
µtreatment(teofilina) = [definite, definite]
µtreatment(digoxina) = [impossible, definite]
µtreatment(dicumarinics) = [very possible, very possible]
µtreatment(ciclosporina) = [possible, very possible]
µtreatment(difenilhidantoina) = [impossible, impossible]

After the definition of this kind of facts representing fuzzy sets we should
say how to use them in the rules. We can use them by comparing different
fuzzy sets. For instance, consider two different treatments in the universe
of antibiotics. We can say If treatment1 is a subset of the treatment2 then
... or If the treatment1 intersects with the treatment2 then This kind
of operations and relations results in an interval of truth–values as we will
see.

Elementary Operations and Relations

Here we explain the possible operations and relations among fuzzy sets
used in Milord II. They are based on usual concepts used in fuzzy set
theory and operations among fuzzy sets (Zadeh, 1965). This provides to
the experts a complete tool to work with fuzzy sets. First of all we describe
the unary operations using the above example.

Cut: We can use a threshold α to obtain a set Fα called α–cut of F . The
definition is the following:

Fα = {ω ∈ Ω|min(µF (ω)) ≥ α}

6This kind of facts like treatment are named enumerated facts in Milord II.

3.2. Uncertainty and Imprecision 67

Fα contains all the elements of Ω that are compatible with F at
level at least α. In Milord II α is the threshold of the module
(see the Section 5.2) that contains the fact F . The threshold in the
modules express the minimum certainty value that is considered to
be significant. Suppose α to be possible in the above example, then
it is easy to see that:

treatmentpossible = {teofilina, dicumarinics, ciclosporina}

Core: The cut of F at level 1 is called the core of F , denoted Ḟ .

Ḟ = {ω ∈ Ω|µF (ω) = 1}

It contains all the elements of Ω that are in F at level 1. Following
the same example we can see that:

˙treatment = {teofilina}

Support: The support set contains all the elements of Ω that are not at
level 0.

S(F) = {ω ∈ Ω|min(µF (ω)) > 0}

In our example they are all the elements with certainty value greater
than impossible.

S(treatment) = {teofilina, dicumarinics, ciclosporina}

Complement: Complementation of set F is defined as the set F̄ that has
the following characteristic function:

∀ω, µF̄ (ω) = N∗
n(µF (ω))

In the same example the characteristic function associated to the set
¯treatment is:

µ ¯treatment(carbamacepina) = [definite, definite]
µ ¯treatment(teofilina) = [impossible, impossible]
µ ¯treatment(digoxina) = [impossible, definite]
µ ¯treatment(dicumarinics) =

[slightly possible, slightly possible]
µ ¯treatment(ciclosporina) = [slightly possible, possible]
µ ¯treatment(difenilhidantoina) = [definite, definite]

We consider the normal union and intersection operations among fuzzy
sets:

68 Chapter 3. Approximate Reasoning

Union: ∀ω, µF∪G(ω) = max∗(µF (ω), µG(ω))

Intersection: ∀ω, µF∩G(ω) = min∗(µF (ω), µG(ω))

These operations are compatible with those on crisp sets7. Finally we
explain the set of relations we can use in Milord II. These relations given
two fuzzy sets return an interval of truth–values.

R : P̃(U) × P̃(U) → Int(An)

Before that we define the combination of relations and the complement
of a relation as:

Combination: (R ∗ S)(F,G) = min∗(R(F,G), S(F,G))

Complement: R̄(F,G) = N ∗
n(R(F,G))

Now we define the inclusion, intersection and equality between two fuzzy
sets and its meaning.

Inclusion or equal:
R⊆(F,G) = min∗(µF̄∪G)
R⊇(F,G) = R⊆(G,F)

Intersection degree:
R∩(F,G) = max∗(µF∩G)

Equality: R=(F,G) = (R⊆ ∗ R⊇)(F,G)

Inclusion:
R⊂(F,G) = (R⊆ ∗ R̄=)(F,G)
R⊃(F,G) = R⊂(G,F)

These relations return degrees of inclusion, intersection and equality be-
tween two fuzzy sets. Using them we can express the degree of intersection
of two treatments, as so on.

All these operations are the most standard (Zadeh, 1965) and they are
compatible with crisp sets. In these definitions we have used for simplic-
ity the functions min and max, but we can use instead the more gen-
eral ones, the triangular norm T and the triangular conorm S(x, y) =
N(T (N(x),N(y))).

7We consider the functions maximum and minimum as the point–wise extensions:
max∗([a, b], [c, d]) = [max(a, c),max(b, d)] and min∗([a, b], [c, d]) = [min(a, c),min(b, d)]

3.3. Local Logics 69

3.3 Local Logics

The need of communication among modules with different local uncertainty
calculus has lead us to analyze the correspondence between uncertainty
calculus. Uncertainty calculus can be considered as inference mechanisms
defining logical entailment relationships. Therefore the correspondences
(or communication) between different calculus can be analyzed as map-
pings between different entailment systems. To do that we will introduce
a summary of the main theoretical results on mappings between entail-
ment systems (Agust́ı et al., 1992) and we propose an algorithm to find the
mappings that allow modules to communicate.

3.3.1 Mappings between different local logics

Let M and M ′ be two modules and (L,`) and (L′,`′) their corresponding
logics, L and L′ standing for the languages and `′ and ` for the entailment
relations defined on L and L′ respectively. To establish a correspondence
from module M to module M ′, a mapping H : L → L′ relating their
languages, is needed. In the following we will analyze some natural require-
ments for the mapping H with respect to the entailment systems ` and
`′. Henceforth Γ and e will denote a set of formulas and a formula of L
respectively.

A) If Γ ` e, then H(Γ) `′ H(e)

With this requirement we assure that for every formula deducible from
a set of formulas Γ in M , its corresponding formula in M ′ by the mapping,
H(e), will also be deducible in M ′ from the corresponding formulas of
H(Γ). In other words, there is no inferential power lost when translating
from M to M ′ through a mapping H satisfying A. Nevertheless the main
drawback of requirement A is that it does not forbid to deduce from H(Γ),
in M ′, formulas that are not translations of any formula deducible from
Γ in M . The property means that, in the case of modules representing
different experts, an expert E ′ related to M ′, using knowledge coming from
an expert E related to M , will be able to deduce the same facts than E,
but not only those facts. We need:

B) If H(Γ) `′ H(e), then Γ ` e

This is the inverse requirement of A. So, in this case all deductions in M ′

involving only translated formulas from M are translations of deductions
in M , or equivalently if a fact is not deducible in M , then its correspondent
fact in M ′ will neither be deducible from the translated knowledge. An

70 Chapter 3. Approximate Reasoning

alternative to B could be:

C) If H(Γ) `′ e′, then there exists e such that Γ ` e and H(e) `′ e′.

This requirement assures that every formula deducible from H(Γ) in
M ′ must be in agreement with what can be deduced from Γ in M . This
requirement is slightly different from B, in the sense that it not necessary
that e′ be exactly a translation of a deducible formula e from Γ, but only
something deducible from such a translation. In the framework of logics
for uncertainty management, e′ can be interpreted as a weaker form of e,
i.e. a formula expressing more uncertainty than e.

It is worth noticing that, if C denotes the consequence operator with
respect to an entailment system (L,`), that is, C(Γ) = {e ∈ L|Γ ` e} for
all set of formulas Γ, then the requirements A and B can be rewritten in
the following way:

A) H(C(Γ)) ⊂ C ′(H(Γ))

B) C′(H(Γ)) ⊂ H(C(Γ))

being C ′ the consequence operator associated to the entailment system
(L′,`′).

From these three different requirements we can define the conditions
on the mappings in order these requirements hold. Notice that they are
mappings of truth–values algebras8.

Theorem 3.1 Given two truth–values algebras An
T1

=< An,Nn, T1, IT1
>

and Bm
T2

=< Bm,Nm, T2, IT2
>, a mapping H : An → I(Bm) fulfills the

requirements A or B or C from An
T1

to Bm
T2

if the following conditions hold:

1. H is non–decreasing, i.e. if a ≤ b, then H(a) ≤∗ H(b)

2. H(0) = 0

3. H(Nn(x)) = N∗
m(H(x))

4. We have one case for each requirement:

A) H(T1(x, y)) ⊃ T ∗
2 (H(x),H(y))

B) H(T1(x, y)) ⊂ T ∗
2 (H(x),H(y))

H(x) ⊂ H(y) ⇒ x = y

C) H(T1(x, y)) ⊂ T ∗
2 (H(x),H(y))

8The mappings are from the elements of a chain to elements of the set of intervals of
the other chain.

3.3. Local Logics 71

Finally we explain the algorithm that allows us to find mappings that
are quasi–morfisms.

We can divide every chain An in three subsets:

• Nn = {x|x < Nn(x)}

• Fn = {x|x = Nn(x)}

• Pn = {x|x > Nn(x)}

We consider three subsets N ∗
n , F∗

n and P∗
n for the case of intervals

Int(An). In that case we use the weak uncertainty order defined before.

• N ∗
n = {x|x<̃Nn(x)}

• F∗
n = {x|x = Nn(x)}

• P∗
n = {x|x>̃Nn(x)}

After that we find all the mappings

Hi : Nn ∪ Fn → N ∗
m ∪ F∗

m

such that:

1. Hi(0) = 0

2. Hi(Fn) ∈ F∗
m

3. If x ≤ y then Hi(x) ≤∗ Hi(y), where x ∈ An and y ∈ Int(Bm).

Now we can extend these mappings:

H(x) =

{

Hi(x) if x ∈ Nn ∪ Fn

N∗
m(Hi(H(x))) if x ∈ Pn

Finally we must check which mapping is quasi–morfisms for the three
criteria, that is, checking the condition 4 of the quasi–morfism definition.

3.3.2 Example

For this example we will consider the set of modules used as examples in
Chapter 2. Consider the module Gram (Figure 2.1) that has four sub-
modules Respiratory Diagnosis, Type of Infection, Previous Treatment (see
Figure 2.3) and Gram of Sputum (Figure 2.8).

Consider the following sets of truth–values corresponding to these mod-
ules, Gram7 for the module Gram and D2, T2, P2 and S5 for its submodules:

72 Chapter 3. Approximate Reasoning

Gram7 = {impossible, few possible, sligh possible, possible,
quite possible, very possible, sure}
D2 = {false, true}
T2 = {false, true}
P2 = {impossible, sure}
S5 = {false, unlikely, may be, likely, true}

and the T functions TS5
and TGram7

(see Tables 3.1 and 3.5 respectively).
We do not represent the other T functions because they are boolean logics
with different names for true and false. This is the situation of Figure 3.5
where we need to find the mappings HT , HS, HP and HD.

impos few p sli p possib quite p very p sure

impos impos impos impos impos impos impos impos

few p impos few p few p few p few p few p few p

sli p impos few p sli p sli p sli p sli p sli p

possib impos few p sli p possib possib possib possib

quite p impos few p sli p possib very p very p very p

very p impos few p sli p possib quite p very p very p

sure impos few p sli p possib quite p very p sure

Table 3.5: TGram7
Table.

First we focuses over the more difficult mapping HS . Following the
above definitions we can see that the sets N5, F5, N ∗

7 and F∗
7 are:

N5 = {false, unlikely}
F5 = {may be}
N ∗

7 = {impos, few p, sli p, possib, [impos, few p],
[impos, sli p], [impos, possib], [few p, sli p], [few p, possib],
[sli p, possib]}
F∗

7 = {possib, [few p, very p], [sli p, quite p], [impos, sure]}

Here there are two mappings that are examples of those that hold the
last requirement C:























S/false → impossible
S/unlikely → [impossible, few possible]
S/may be → [few possible, very possible]
S/likely → [very possible, sure]
S/true → sure

3.4. Logic Declaration 73

@
@

@R

�
�

�	

?

HHHHHHHHHHj

Type of Infection

Gram of Sputum

Previous Treatment Respiratory Diagnosis

Gram

Gram7, TGram7

D2, TD2
T7, TT2

P2, TP2

S5, TS5

HDHT HP
HS

Figure 3.5: Mapping example.























S/false → impossible
S/unlikely → [impossible, slightly possible]
S/may be → possible
S/likely → [quite possible, sure]
S/true → sure

The other cases are very simple because the other logics are boolean.
Then we can map the first term of those logics to the first term of the logic
of the module Gram. We can express the mapping as:

{

D/false → impossible
D/true → sure

{

P/impossible → impossible
P/sure → sure

Given a value from a submodule of the module Gram we can translate
that value by means of the mappings above.

3.4 Logic Declaration

After the presentation of the local logics used in Milord II, here we de-
scribe the syntactical declaration of the inference system of a module. Each

74 Chapter 3. Approximate Reasoning

module contains the inference system declaration9. It contains the declara-
tion of the concrete logic that will be used in a module and the mechanims
of communication with the local logics of its submodules.

The inference system declaration contains the set of ordered truth–
values An, the renaming mappings among the local logic and those of the
submodules and a set of logic operators: negation, conjunction, disjunction
and modus ponens (see Figure 3.6).

Inference system:

Truth values = (...)

Renaming: ...

Connectives:

Negation = ...

Conjunction = ...

Disjunction = ...

Inference patterns: ...

Modus ponens = ...

Figure 3.6: Logic declaration.

Now we will explain in depth these declarations specially to make clear
the multiple possibilities of the language. Normally the logics used in Mi-
lord II are of the type explained till now, that is, the expert declare a
set of truth–values and a T function. To experiment with another kind of
logics we allow to declare complete logics.

3.4.1 Truth values

Truth values of a module can be defined given an ordered set of symbols
representing linguistic terms, where each symbol is a truth–value. For in-
stance the declaration of the set A5 is:

Truth values = (impossible, sli possible, possible, very pos-
sible, sure)

Notice that given a truth value declaration, the first symbol is considered
to have the semantics of true and the last symbol of false.

To maintain the logic declaration style that was used in Milord there
are another possible form of declaring the truth–values. It consists in asso-

9As explained in Chapter 2 a module can declare its inference system by means of
the inheritance mechanism.

3.4. Logic Declaration 75

ciating to each linguistic term four real numbers in the interval [0, 1]. Then
we can use a truth–values declaration of the following form:

Truth values = (impossible = (a,b,c,d) , ...)

They correspond to the representation of a fuzzy interval (see the Fig-
ure 3.7) by means of a trapezoidal approximation of a fuzzy interval, as
was used in Milord.

µx

cb d

-

6
1

a

A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�
�

10

Figure 3.7: Trapezoidal approximation of a fuzzy interval.

3.4.2 Connectives

After the declaration of the set of truth–values of the local logic we must
define the connectives and inference pattern of the logic, that is, the nega-
tion, conjunction, disjunction and modus ponens operators. To do that we
have three options:

1. The standard one in Milord II is to define a set of truth–values
and a conjunction connective by means of a table. Then the system
generates the other connectives, that is, negation, disjunction and
modus ponens as seen above.

2. We can declare the set of truth–values and all the connectives and
modus ponens by means of tables. In this case these connectives will
be used by the inference engine. This option is for experimentation
with other logics. Obviously the map of local logics does not work
with logics different from the standard of Milord II.

76 Chapter 3. Approximate Reasoning

3. The last option is that of Milord. We can define the set of truth–
values as fuzzy intervals and declare the conjunction by means of a
function. In this case the other connectives and modus ponens are
calculated by the system.

Notice that in all the cases we use the extension to intervals, including
the logics used in Milord.

Functions Declaration

Users can define logical functions, or they can use the predefined functions
of the system.

The user can define these functions by different means:

• Defining a Truth Table for the first and second case. In Figure 3.8
there is an example of conjunction table declaration.

• By means of a S–expression or using a predefined function in the last
case.

Conjunction =

((false false false false false)
(false unlikely unlikely unlikely unlikely)
(false unlikely may be may be may be)
(false unlikely may be may be likely)
(false unlikely may be likely true))

Figure 3.8: Truth table declaration for TA5
.

The predefined functions which can be used are the well known:

• Lukasiewicz: T (x, y) = max(0, x + y − 1)

• Zadeh: T (x, y) = min(x, y)

• Probabilistic: T (x, y) = xy

3.4.3 Renaming

Because a module has its own logic, it should have a procedure to trans-
late the certainty values used in its submodules. Then we introduce the
construct renaming to make this translation.

3.5. Conclusions 77

In Figure 3.9 there is an example of renaming declaration for the module
Gram with the logic B7 that has a submodule named Gram of Sputum that
has the local logic A5.

Renaming:

S/false ==> impossible
S/unlikely ==> [impossible,few possible]
S/may be ==> [few possible,very possible]
S/likely ==> [very possible,sure]
S/true ==> sure

Figure 3.9: Renaming declaration example.

Finally we can include the complete declaration from the logic point of
view of the module Gram (see the Figure 3.10).

3.5 Conclusions

In this Chapter we have introduced the local logics of modules of Mi-
lord II. Expertise implies to deal with imperfect information. The infor-
mation managed by experts is imprecise and uncertain. A language for
ESs must provide the possibility of expressing easily this kind of informa-
tion. Furthermore the more adecuated language to express uncertainty is
problem dependent.

Milord II introduces a familly of multi–valued algebras that are use-
ful to represent uncertainty by means of linguistic terms. The extension
of these algebras to intervals of truth–values has been used to deal with
imprecision and fuzzy sets.

Finally local logics has been introduced as a form to adapt the logic to
the concrete problem and the method to allow the commmunication among
modules with different logics has been provided.

78 Chapter 3. Approximate Reasoning

Module Gram =
Begin

Module D= Respiratory Diagnosis
Module T= Type of Infection
Module P= Previous Treatment
Module S= Gram of Sputum
Export Pneumococcus, Haemophilus, Staphylococcus, Enterobacteria
Deductive knowledge

...
Truth values= (impos, few p, sli p, possib, quite p, very p, sure)
Renaming

D/false ==> impos
D/true ==> sure
T/false ==> impos
T/true ==> sure
P/impossible ==> impos
P/sure ==> sure
S/false ==> impos
S/unlikely ==> [impos, sli pos]
S/may be ==> possible
S/likely ==> [quite p, sure]
S/true ==> sure

Connectives:

Conjunction =

((impos, impos, impos, impos, impos, impos, impos)
(impos, few p, few p, few p, few p, few p, few p)
(impos, few p, sli p, sli p, sli p, sli p, sli p)
(impos, few p, sli p, possib, possib, possib, possib)
(impos, few p, sli p, possib, very p, very p, very p)
(impos, few p, sli p, possib, quite p, very p, very p)
(impos, few p, sli p, possib, quite p, very p, sure))

end deductive

... end

Figure 3.10: Example of logic declaration.

Chapter 4

Deduction by
Specialization

We have seen in Chapter 2 how an application can be structured in modules.
After that we have introduced in Chapter 3 the concept of local logics in
modules. This allowed us to deal with different uncertainty and imprecision
languages in different modules. Following the top–down description of Mi-
lord II, in this Chapter we will analyze the deductive knowledge of modules
and its interpretation.

The deductive knowledge of Milord II is mainly composed of facts and
rules as usual in Rule Based Systems . The particular kind of interpretation
we give here to deductive knowledge, that is, our inference engine, is a key
aspect of Milord II. We think that conventional inference engines produce
a poor behavior of the ESs. We think of conventional inference engines
as the well known backward and forward ones. In order to improve the
behavior of ESs we propose an inference engine based on a new rule of
inference called specialization. The deduction in Milord II is based on the
specialization of KBs as we will see.

This Chapter is divided in three parts. The first one is devoted to the
kind of behavior we want ESs to have, as the main motivation to introduce
our concept of specialization of KBs. To do that we introduce informally
the inference engine of Milord II. In the second part we present the logical
foundation of the specialization calculus and the theoretical results about
it. After that we will explain in detail the actual inference engine which is
based on specialization. Finally we present all the extralogic components
of deductive knowledge of Milord II introduced in the language to make
easier the development of applications.

79

80 Chapter 4. Deduction by Specialization

4.1 Enriched Behavior

The deductive knowledge component of the Milord II language is used
by experts to represent the domain knowledge of their applications. Like
Milord, Milord II is based on facts of order 0+ and production rules with
uncertainty. They have proved to be useful in our application development
experiences. For this reason further discussions on knowledge representa-
tion are avoided except to motivate the introduction of new constructs.

In this Chapter we are interested in showing that the interpretation of
the deductive knowledge plays an important role in the whole behavior of
an ES, and that a good inference engine design can improve this behavior
with respect to the one imposed by conventional inference engines.

At the moment, to simplify the explanation, we will focus the attention
on the interpretation of facts and rules without the extra complications of
control declarations and modular structuration1.

E.S.

query

input

answer

explanation

success
solution

failure
unknown

dialog

goal
questions

Solutions
Validation

Figure 4.1: Standard Behavior of an ES.

In the Figure 4.1 there is represented the standard behavior of an ES.
We will use that Figure to make clear which are the general aspects we are
interested in. These are related to the communication of the ES with the
user, the solutions generated by the ES and the validation of the ES.

Communication: First the user queries the system for the deduction of
a fact. This fact will be the current goal of the ES2and the ES will
try to find solutions for that fact. In order to obtain solutions, the
ES stablishes a dialog with the user. The system asks questions to
the user3, raised by the process of deduction. We consider that the

1Despite we abstract from modular structure, some aspects of the communication
between an ES and the user can be extended to the communication between modules.
In the text you will find references to modular structure when needed.

2We consider that the goals of the ES are facts. This corresponds to the interpretation
of modules as objects able to answer facts that belongs to its export interface.

3In Milord II the facts asked to the user correspond to the imported facts of modules.

4.1. Enriched Behavior 81

communication is the sequence of questions made to the user until a
solution for the goal or a failure is found.

Solutions: The system makes inferences using the rules and the answers
given by the user. Finally the system answers to the user with the
solutions for the goal (if found), which is normally a truth–value in
ESs with uncertainty. Furthermore the system gives some explanation
of its answer. We consider that a solution is a pair composed by an
answer and the explanation to that answer.

Validation: The aspects above allow experts to think in some kind of
validation of their system. The simplest one is case validation, that is,
to compare a case (the answers given by the user to the ES questions,
the goal and its solution by the user) with the corresponding solution
obtained by the ES.

Communication, Solutions and Validation depend on the inference en-
gine used. Conventional inference engines based on forward and backward
strategies present a number of shortcomings in all three mentioned aspects
of ES behavior. Milord was based on a backward inference engine with
uncertainty. The architecture and behavior of the inference engine of Mi-
lord II have been designed to improve these three aspects of ES behavior.

Following these aspects we will analyze the insufficient behavior pro-
duced by conventional inference engines and explain what are the improve-
ments on it we propose by means of an inference engine based on specializa-
tion. The first point considered is the architecture of Milord II inference
engine. The second and third points are about one of the main topics of
this thesis, that is, specialization.

4.1.1 Communication

In Chapter 1 we have explained that most of the applications developed
with Milord II are interactive. Part of the problem solving behavior of
the system consists in asking to the user the relevant information relative
to the case to be solved. The user’s confidence on the system is then
highly related to the question–answer dialog he maintains with the ES.
The user expects a sequence of questions which should be clearly related
to the current goal. The questions asked and the order in which they are
asked are very important to have a good interaction.

Conventional inference engines have search and deduction interleaved in
the same process. For instance, in backward inference engines depth first
and breath first strategies are part of the design of the inference engine. The
search strategy of Milord was depth first. That means that an inference

82 Chapter 4. Deduction by Specialization

engine has a fixed search strategy. The search strategy is embedded in the
inference engine and it can not be changed. Because the search strategy
determines indirectly the questions asked and the order in which they are
asked, it is difficult with these inference engines to obtain a good user
interaction. The way to change it is usually by changing the order of rules,
the order of the premises of the rules, and so on.

In this thesis we have not developed a theory of user system interaction.
Here the very important point we consider is the architecture of Milord II
inference engine which makes easier to have a good user interaction (see
Figure 4.2). It is composed of two independent processes, that is, the
search process and the deductive process.

Search process: Given a goal, the search process computes the informa-
tion needed to reach the goal with maximum precision (comments
on maximum precision and maximum certainty can be found in Sec-
tion 3.2). In Milord II this process is independent of the deductive
one. Classical inference engines are limited to the strategies implicitly
implemented in the inference engine (depth first, breadth first, etc).
This characteristic allows us to implement different search strategies
independently of the deductive process, including the conventional
ones.

Deductive process: The inference engine of Milord II is based on spe-
cialization of KBs. Each new fact known will specialize the KB. The
known facts have been previously selected by the search process. Then
the current status of a KB is specialized with respect to the known
information. Specialization will be explained along this Chapter.

The proposed architecture allows us to implement different search strate-
gies depending on different criteria and independently of the deductive pro-
cess. The search process is a part of the control of Milord II, and it will be
explained in depth in Chapter 5. The deductive process is the main topic
of the current Chapter.

4.1.2 Solutions

A solution given to the user should be as much informative as possible,
that is, the answer and its explanation should be clearly related to the
previous question–answer interaction with the user. Any doubt on this
relation causes the confidence in the system be on the decrease.

Real ESs applications are very big and they demand a lot of interac-
tion with the user. Sometimes the user does not know the answer to ES
questions. There are different reasons for that. Maybe the user actually

4.1. Enriched Behavior 83

KB

Deductive
Process

Specialization

Search
Process

Control
Strategy

USER
answer

questions in
pu

t

data
 fo

r

sp
ec

ial
iza

tio
n

Figure 4.2: Inference Engine Architecture.

does not know the answer to the system question, or he does not know it
at the time of the interaction. Frequently it can be too expensive to obtain
that answer. For instance in medical environments, sometimes to answer a
question implies to produce an intrusive action on the patient. For all these
reasons it is very important to be able to deal with incomplete information
(lack of answers). Conventional inference engines are not able to work with
incomplete information, they answer unknown to a goal if the system is not
able to deduce the goal using the information given by the user.

Remember the standard ES behavior (please return on Figure 4.1). The
user queries to the system whether a given fact can be deduced. If the sys-
tem is able to deduce the fact, its certainty value is given back. Otherwise
the answer is unknown (open world assumption). This behavior is rather
poor because the system usually has much more information obtained im-
plicitly in the process of deduction that could be useful to the user, for
instance:

1. When the system is able to answer the user’s query, the user might
also be interested in knowing other deductive paths that would be use-
ful to improve the solution, or to know other conditioned conclusions
that could be deducible from this solution.

2. When the system is not able to answer a query, it gives back the value
unknown maybe because the user did not provide enough information

84 Chapter 4. Deduction by Specialization

to the system. Thus, the communication would be much more infor-
mative if the system was able to answer, not unknown, but give the
information the user should know to come up with a value for the
query (this kind of answers are called conditioned answers).

All this information the ES has about the goal is usually not visible
outside the system, and it could be used to better modelise communication
among human experts. Looking carefully at how experts communicate their
knowledge and at their problem solving procedures, we can find complex
communication patterns. Sometimes experts cannot reduce their interac-
tion only to the communication of certainty values for facts, that is, by
giving a precise answer. For instance, in medical diagnosis, when experts
communicate, they also need:

1. To condition their decisions. Suppose that it is not known whether
a patient is allergic to penicillin. An expert considering the possibil-
ity of giving penicillin as treatment would say: Penicillin is a good
treatment from a clinical point of view provided that the patient has
no allergy to penicillin.

2. To give suggestions that must be considered with solutions.
Experts usually give other suggestions (antibiogram) that are related
to the solution (pneumococcus). For instance the expert might say:
Pneumococcus has been isolated in the culture of sputum. In this case
it is strongly suggested to make an antibiogram to the patient .

3. To give conditioned suggestions to be considered together
with decisions. Another example of complex communication is the
combination of the above two communication patterns: Ciprofloxa-
cine is a good treatment, but if the patient is a woman on breast–
feeding period she must stop breast–feeding .

Specialization allows us to deal with incomplete knowledge giving as
solutions conditioned answers, and producing complementary information
as suggestions or recommendations. To model such communication proto-
cols, we have to extend the ES answering procedure, by allowing to answer
queries with sets of formulas (rules and facts). We propose the Specializa-
tion Calculus (Puyol et al., 1992b) as a type of deduction allowing to have
all this enriched communication.

Let us introduce the specialization of KBs to better understand how we
can obtain this kind of enriched solutions.

4.1. Enriched Behavior 85

Introduction to Specialization

Here we introduce informally the notion of specialization. In rule base
systems, deduction is mainly based on the modus ponens:

A,A → B ` B

Modus ponens is only applicable when every condition of the premise of the
rule to be fired is satisfied, otherwise nothing can be inferred. We propose
the use of partial evaluation to extract the maximum information even from
incomplete knowledge about the truthvalue of the premises of a rule.

We base the partial evaluation of rules on the well known logical equiv-
alence (A∧ B) → C ≡ A → (B → C) which leads to the following boolean
specialization inference rule:

A,A ∧ B → C ` B → C

The rule B → C is called the specialization of the rule A ∧ B → C with
respect to the fact A. Notice that in the particular case of B = ∅, we
recover the usual modus ponens rule.

It is easy to see that we can specialize rules deleting the known facts
from the premise. Unknown facts remain as part of the premise of the
rules. This leads to simpler rules that can be thought as compiled rules.
For instance, suppose that we have the following rule:

If a and b and c then conclude d

Imagine that we only know a and c are true. Then the specialized rule
is:

If b then conclude d

Using modus ponens inference rule, the answer to the goal d would have
been unknown because we do not know if the fact b is true or false. If we
give the above rule as an answer, then its interpretation is the following:
The truthvalue of d depends on the truthvalue of b, if b is unknown so will
be d (open word assumption).

This boolean case can not be considered of great interest, but we can
extend this specialization concept to the more interesting uncertainty cal-
culus. For that we introduce the definition of what we call Specialization
Inference Rule (SIR).

Definition 4.1 (SIR) Given a fact A with certainty value α, and a rule
with certainty value ρ, then

(A,α), (A ∧ B → C, ρ) ` (B → C, ρ′)

86 Chapter 4. Deduction by Specialization

where ρ′ = MP ∗
T (α, ρ) is the new truth value of the specialized rule4.

Now consider the following weighted rule:

If a and b and c then conclude d is very possible

where very possible is the truthvalue of the rule. Imagine we know that a
has the value possible and c has the value definite. The resultant specialized
rule could be:

If b then conclude d is slightly possible

Notice that the truthvalue of the rule has changed because of the uncer-
tain values of the facts a and c. This is important when the KB contains
a set of other rules that also deduce d, and all these rules are ordered by
their precision. The specialized rule will change its place in the priority
order affecting the corresponding effect in the search strategy as we will see
in Section 5.1.2.

The specialization of a knowledge base consists on the exhaustive spe-
cialization of its rules. Rules whose conditions contain facts with known
values are replaced by their specializations, in particular, rules that only
have one known condition will be eliminated and its conclusion added to
the KB as a new fact. This new fact will be used again to specialize the
knowledge base. The process will finish when the knowledge base has no
rule containing on its conditions a known fact.

Now we can return to the three examples on experts communication in
the previous Section. We can translate the expert’s statements into a set
of formulas. It is easy to see that those formulas are a specialized part of a
knowledge base related to a goal. For instance in the first example we can
think of a knowledge base that contains the following rule:

If no (allergy) and ... then conclude penicillin treatment is
good

If the goal is penicillin treatment then the rule selected is the above one.
After that the system asks the questions related to the premise of this rule.
Suppose all the conditions are satisfied except the one related to the fact
allergy that is unknown. Finally the answer to the goal will be:

If no (allergy) then conclude penicillin treatment is good

This rule expresses formally the answer given in the example. We can
see that the system answers with a conditioned answer instead of saying
that penicillin treatment is unknown. It is very important to notice the
following points about conditioned answers:

4SIR is parametric on the uncertainty propagation function MP ∗

T
(modus ponens),

particular for each uncertainty calculus.

4.1. Enriched Behavior 87

• Conditioned answers is a form of answering a goal with part of the
knowledge needed to reach it. Then we can say that the system
communicates knowledge (rules) instead of only data (facts).

• The user can reconsider its answers to the questions of the system. In
the example above, the user has answered unknown to the question
allergy. The conditioned answer informs the user where allergy is used
in order to obtain his goal. Then he can reconsider its answer trying
to get this information.

Even in the case the system has reached the goal, it can also answer with
complementary suggestions. Remember that the KB is specialized until it
has no rule containing a know fact. Then we can obtain these suggestions
by selecting those rules that have been specialized with the goal. Consider
the two rules in the last example:

If ... then conclude ciprofloxacine is good
If ciprofloxacine and breast feeding
then conclude stop breast feeding is definite

If the information of the case allows the system to conclude ciprofloxa-
cine, the specialized rules will be:

ciprofloxacine is good
If breast feeding then conclude stop breast feeding is definite

We can consider this result as an answer composed by the solution of
the goal and a conditioned recommendation.

At this point let us give a new interpretation of the specialization of KBs.
So far we have interpreted the specialization as a form to build answers by
selecting part of a specialized KB. Now we will foccus our attention on the
inspection of a whole specialized KB.

A KB is programmed thinking in a concrete domain. For instance, the
domain of a KB could be: KB for treatment of pneumoniae acquired by
adult patients outside the hospital environment. This KB has no sense for
problems out of this domain. In Milord II a KB is specialized with each
information given by the user. We can interpret this specialization as a
form of restricting the initial domain of the KB. Then, specialization goes
from a KB in a domain to a KB in a more concrete domain. We can clarify
this interpretation by means of an example.

In Figure 4.3 we can see an example of a general KB for pneumonia
treatment. It is specialized for a case of women with gramnegative rods.
We obtain a new KB for pneumonia treatment in the case of women with
gramnegative rods. This interpretation of the specialization of KBs allows
us to introduce how specialization can affect the validation of ESs.

88 Chapter 4. Deduction by Specialization

Context

KB

Specialized KB

Women with gramnegative rods

General KB for pneumonia
treatment

Specialized KB for
pneumonia treatment
in the case of women with
gramnegative rods.

Figure 4.3: Example of specialization of a KB

4.1.3 Validation

Validation is a mandatory part of the development of ESs. Validation aims
at checking that programs are free of errors and satisfy the user needs.
A number of different methods and techniques exists for program valida-
tion. We can find an exhaustive study of validation and its new trends in
(Meseguer, 1992).

Here we do not present any contribution to validation in the sense that
we do not present a set of methods about how to validate an ES. We only
want to show that specialization of KBs is a good technique to simplify the
validation task, and we propose a very simple validation method based on
specialization.

As shown in the last example, we can obtain specialized versions of an
initial KB, producing a set of KBs in restricted domains. We can think
in applying any validation method on these simpler specialized KBs. This
can contribute to simplify the validation task similarly as argued for the
modular structure in the introduction of Chapter 2.

The validation method used in Milord II is related to ES testing (the
simplest case of validation). We define ES testing as the process of exami-
nating ES behavior by its execution on sample cases (test set) (Meseguer,
1992). The selection of the test set is an essential point for the testing
process. This set should be large enough to be a representative sample of
the program domain and yet small enough to allow the testing process to
be executed on each element of the test set consuming a reasonable amount
of resources. Testing has shown to be very effective in practice.

4.1. Enriched Behavior 89

Normally the expert has a significative set of cases, for instance in med-
ical diagnosis the cases are patient hospital records. After the execution of
the cases in the ES, a comparative analysis between the results obtained
from the ES an those given by human experts is done. This analysis of
results and expected results next to simple explanations (rules fired, facts
deduced, deductive paths, etc) helps the experts to detect errors and to do
a fine tuning of the ES.

As we have explained above, conventional inference engines produce
useful results when they have enought information to deduce the goal with
a value different from unknown. Each element of the test set can be a large
set of data. The expert should imagine how this set of data has produced
the deduction of the result over a set of rules. A summary of the execution
of the inference engine, like the fired rules, the evaluated facts, and so on,
is not sufficient to imagine how the result has been deduced. This task can
become more difficult when the number of rules of the system grows up.
This kind of testing method involve the expert in the operational aspects
of the system.

The testing method based on specialization avoids the experts enter
into the operational aspects of the deduction. Specialization allows us to
incrementally focus the KB in a concrete domain. The expert can detect
errors or improve the KB by observing how a new information specializes
his KB. After a specialization step the expert must agree with this new
specialized version of the KB. He must agree with this version because it
is the KB the expert would program for this restricted domain. Simple
inspection of specialized KBs can give a simple method for the experts for
validating their base without loss of the declarative interpretation of the
language.

4.1.4 Summary

Finally we can summarize the most important characteristics of the infer-
ence engine architecture of Milord II and the differences with the inference
engine of Milord. This differences are summarized in Table 4.1.

Milord II is based on an architecture with two independent processes
(search process and deductive process) and on a mechanism of deduction
based on specialization. This inference engine allows us to use any search
strategy, allowing conditioned answers and simplified validation.

The rest of this Chapter can be divided in two parts. The first one
is related to the logical foundation of specialization and the design of the
inference engine. For that, we introduce a simplified syntax and we develop
the theory of specialization.

90 Chapter 4. Deduction by Specialization

Milord Milord II

inference backward, forward specialization
answer atomic facts formulas
search implicit in the engine independent process
goals maximum certainty maximum precision

Table 4.1: Main differences between Milord and Milord II inference en-
gines

In the second part we introduce the real syntax and semantics of Mi-
lord II deductive knowledge. Deductive knowledge of Milord II is not
only composed of facts and rules. Practice in ES development has driven
us to add a set of extralogical components to the base language.

4.2 Specialization Calculus

Specialization Calculus is the key point of the deductive process used in
Milord II, and then of the whole behavior of the system. In this Section
we give a formal description and study the properties of this calculus. Here
we present the abstract syntax of the language, the semantics and a sound-
ness theorem. Examples are written in real syntax, but they are easily
understandable5. The purpose of the detailed examples is to introduce and
acquire familiarity with the calculus with intervals of truthvalues.

4.2.1 Syntax

Here we present a very simplified syntax of facts and rules for the deductive
knowledge of Milord II. It allows us to introduce formally the specializa-
tion calculus. Afterwards we will present the concrete syntax which does
not introduce significant changes in the theoretical results.

A propositional language Ln = (An, Σ, C,Sn) is defined by:

• The set of linguistic terms An as defined in Chapter 3.

• A signature Σ consisting on a set of atomic propositional symbols
plus true and false.

5The logic used in the examples of this chapter is the one defined in Chapter 3.
Remember that the linguistic terms are A5 = {impossible, slightly possible, possible,
very possible, definite}.

4.2. Specialization Calculus 91

• A set of Connectives: C = {¬,∧,→}

• A set of Sentences: Sn = Mv–Literals ∪ Mv–Rules

Sentences are pairs of classical–like propositional sentences and in-
tervals of truth–values. The classical–like propositional sentences are
restricted to be literals or rules. Thus, the sentences of the language
are of the following types:

Mv–Atoms: {(p, V) | p ∈ Σ and V ∈ Int(An)}

Mv–Literals: {(p, V) | (p, V) ∈ Mv–Atoms or p = ¬q and (q, V) ∈
Mv–Atoms}

Mv–Rules: {(p1 ∧ p2 ∧ · · · ∧ pn → q, V) | pi and q are literals, V =
[a, 1] is an upper interval of Int(An) where a > 0, and ∀i, j(pi 6=
pj , pi 6= ¬pj , q 6= pj , q 6= ¬pj)}

This syntax is close to the standard one in ESs, that is, facts and pro-
duction rules. The most important difference is that facts and rules are
weighted by intervals of truthvalues. The atomic symbols of the signature
are what we call facts in ES terminology. Rules are composed of a set of
conditions and a conclusion. The conditions and the conclusion are facts
or negations of facts. As usual, the facts contained in a rule only appear
once, in the conditions or in the conclusion.

In the next sections we will introduce the real syntax of facts and rules.
Here we limit our expansion to the logical components of deductive knowl-
edge and we will use the terminology introduced above.

The connectives are translated to the real syntax as: no (¬), and (∧),
and if · · · then conclude (→). An example of rule in Milord II syntax is:

R005 If macrol and no (light seriousness) and
entered to hospital then conclude no (roxi) is very possible

Notice that the symbol very possible after is represents the truthvalue of
the mv–rule. Only an element of An is introduced because the truthvalue
of the mv–rule is always implicitly considered an interval from an element
of An to 1. We could say that this value represents the more pessimistic
value of the rule. It is easy to see that the translation of the previous rule
to the abstract syntax is:

(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

There are two reasons to consider this kind of intervals for the conclu-
sions of rules. The first one is for simplicity. Despite the utility of using

92 Chapter 4. Deduction by Specialization

intervals of truthvalues, experts express better their knowledge using only
one value for the rules. The second one is related to the semantics of spe-
cialization and it will be explained in the next Section.

4.2.2 Semantics

After the description of the syntax of the abstract language, we present
the meaning of the sentences introduced above. This allows us to give
an interpretation of facts and rules with no ambiguity. It is very easy to
missinterpret the language as often do experts by translating the rules into
natural language and incorporating all the ambiguities it has. Then it is
mandatory the reference to the exact meaning of the language.

Models

Models Mρ are defined by valuations ρ, i.e. mappings from the first com-
ponents of sentences to An. The elementary case is the valuation of atomic
symbols. For instance we can say that the fact macrol has the value possi-
ble, that is, ρ(macrol) = possible. From this elementary valuation and the
operators Nn (negation), T (conjunction) and IT (implication) presented
in Section 3.1 we can obtain valuations of non atomic sentences.

Valuations of non atomic sentences as defined below hold that:

M1: ρ(¬p) = Nn(ρ(p))

M2: ρ(p1 ∧ p2) = T (ρ(p1), ρ(p2))

M3: ρ(p → q) = IT (ρ(p), ρ(q))

M4: ρ(true) = 1

M5: ρ(false) = 0

We can build an example with the facts and the rule given in the syntax
example. Suppose that our model Mρ is:

ρ(macrol) = possible
ρ(light seriousness) = impossible
ρ(entered to hospital) = definite
ρ(roxi) = slightly possible

We can extend the valuation function to the example rule as follows:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi) =
IT (T (ρ(macrol), T (Nn(ρ(light seriousness)), ρ(entered to hospital))),
Nn(ρ(roxi))) =
IT (T (possible, T (Nn(false), true)),Nn(slightly possible)) = def-
inite

4.2. Specialization Calculus 93

Satisfaction Relation

Given a model, that is, the valuations of facts and rules, we define when
a sentence is satisfied by a model. The satisfaction relation is defined as
follows:

Definition 4.2 (Satisfaction Relation) The Satisfaction Relation between
models and sentences is defined by:

Mρ |= (p, V) iff ρ(p) ∈ V

where V ∈ Int(An).

The satisfaction of a set of sentences is the satisfaction of each of them.
This satisfaction relation introduces in our system the notion of impreci-
sion presented in Chapter 3, a sentence is satisfied if the valuation of the
proposition belongs to an interval of truthvalues (it is not necessarily equal
to a truthvalue). For instance we can show that the model above satisfies
the rule given in the syntax example:

{ρ(macrol) = possible, ρ(light seriousness) = impossible,
ρ(entered to hospital) = definite, ρ(roxi) = slightly possible} |=
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

It is easy to see that:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi)
= definite ∈ [very possible,1]

Semantical Entailment

From the definitions of models and satisfaction relation given above, we
can introduce in the usual way the notion of semantical deduction, that is,
when a sentence is semantically deducible from a set of sentences.

Definition 4.3 (Semantical Entailment) Semantical entailment between
sets of sentences and sentences is defined as usual:

Γ |= A iff for any model Mρ |= Γ implies Mρ |= A,

for any set of sentences Γ and sentence A.

Following the same example consider that Γ and A are:

94 Chapter 4. Deduction by Specialization

Γ = {(macrol,[possible,definite]),
(light seriousness,[impossible,impossible]),
(entered to hospital,[definite,definite]),
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])}

A = (roxi,[impossible,possible])

Now we want to prove that Γ |= A. First of all we should find all the
models that satisfies Γ. Using the satisfaction relation it is easy to see that
the valuations of the atoms must be :

ρ(macrol) =







possible
very possible
definite

ρ(light seriousness) = impossible
ρ(entered to hospital) = definite

ρ(roxi) =























impossible
slightly possible
possible
very possible
definite

From these atomic valuations which combinations define fifteen possible
models, we can compute which are the valid models that satisfy the rule:

ρ(macrol ∧ ¬light seriousness ∧ entered to hospital → ¬roxi) =
IT (T (ρ(macrol), T (Nn(ρ(light seriousness)), ρ(entered to hospital))),
Nn(ρ(roxi))) ∈ [very possible,1]

We can simplify the expression with the facts light seriousness and en-
tered to hospital that only can take a boolean value:

IT (ρ(macrol),Nn(ρ(roxi))) ∈ [very possible,1]

Using the Table 3.3 of the operator IT in this example, we can build
the Table 4.2 that contains the valid models obtained.

Then we have obtained eight models that satisfy Γ. It is easy to see
that all the valuations of roxi are in the interval [impossible,possible], so Γ
entails A.

Now we are interested in semantical deduction. From mv–facts and
mv–rules we want to obtain new mv–facts and specialized mv–rules. A set
of interesting properties of the semantic entailment that will play a major
role in later proofs is presented next.

4.2. Specialization Calculus 95

ρ(light seriousness) ρ(entered to hospital) ρ(macrol) ρ(roxi)

impossible definite possible impossible
sli possible
possible

very possible impossible
sli possible
possible

definite impossible
sli possible

Table 4.2: Valid models of the example.

Proposition 4.1 If p, q, p1, . . . , pn denote literal symbols then the following
properties are fulfilled:

SR1: (p, V) |= (p,W) ⇔ V ⊆ W

SR2: (p, V) |= (¬p,W) ⇔ N ∗
n(V) ⊆ W

SR3: (p, V), (p,W) |= (p,U) ⇔ V ∩ W ⊆ U

SR4: (pi, Vi), (p1 ∧ · · · ∧ pn → q, V) |= (p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn →
q,W) ⇔ MP ∗

T (Vi, V) ⊆ W

SR5: MP ∗
T (T ∗(V1, . . . , Vn),W) =

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) . . .)), if W = [w, 1]

These properties6 give semantics to the negation of mv–atoms and the
specialization of mv–rules. The property SR5 is the justification of the
equivalence which is the base of specialization (a ∧ b → c ≡ a → (b → c)).
This is the other reason cited above to use upper intervals in the mv–rules.

4.2.3 Specialization Calculus

After the semantics we define the syntactical deduction that will be the base
of the inference engine and we prove that it is sound. The specialization
calculus is based on the following axioms and inference rules:

1. Axioms:

6The proof of these properties can be found in (Puyol et al., 1992c) and Appendix B.

96 Chapter 4. Deduction by Specialization

A1: (true, [1, 1])

A2: (false, [0, 0])

2. Axiom schemes:

AS1: (p, [0, 1])

3. Inference rules:

Weakening: (p, V1) ` (p, V2) where V1 ⊆ V2, for any literal p

Not–introduction:
(p, V) ` (¬p,N∗

n(V)), for any atom p
(¬p, V) ` (p,N∗

n(V)), for any atom p

Composition: (p, V1), (p, V2) ` (p, V1 ∩ V2), for any literal p

SIR: (pi, Vi), (p1 ∧ · · · ∧ pi ∧ · · · ∧ pn → q, Vr) `
(p1∧· · ·∧pi−1∧pi+1∧· · ·∧pn → q,MP ∗

T (Vi, Vr)), for any literals
p1 · · · pn and q

It is easy to see that these inference rules are deduced from the proper-
ties SR1–SR4. This is the simplest system for our concept of specialization
of KBs. We want to obtain mv–facts and specialized mv–rules. We are
not interested in other kind of rules. Finally we can give an example of
deduction. Consider this initial set of sentences composed by the above
rule R005 and concrete values for the facts macrol, light seriousness and
entered to hospital.

(macrol,[possible,definite])
(light seriousness,[impossible,impossible])
(entered to hospital,[definite,definite])
(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])

Using Not–introduction and SIR inference rules we can deduce syntac-
tically the following set of sentences7:

(macrol,[possible,definite])
(¬macrol,[impossible,possible])
(light seriousness,[impossible,impossible])
(¬light seriousness,[definite,definite])
(entered to hospital,[definite,definite])
(¬entered to hospital,[impossible,impossible])

7We do not apply the Weakening inference rule for the sake of symplicity. This rule
would generate new more imprecise mv–atoms. These mv–atoms would specialize again
the mv–rules producing new more imprecise mv–rules.

4.3. Implementation 97

(macrol ∧ ¬light seriousness ∧ entered to hospital
→ ¬roxi,[very possible,1])
(¬light seriousness ∧ entered to hospital → ¬roxi,[possible,1]))
(entered to hospital → ¬roxi,[possible,1]))
(¬roxi,[possible,1])
(roxi,[impossible,possible])

For simplicity we have not writen all the resultant sentences obtained
from the application of weakening. Finally the conclusion is:

A = (roxi,[impossible,possible])

4.2.4 Soundness and Completeness

From properties SR1, SR2, SR3 and SR4 of the semantical entailment, it
is easy to check that the above specialization calculus is sound.

Theorem 4.1 (Soundness) Let A be a sentence and Γ a set of sentences.
Then Γ ` A implies Γ |= A

It is straightforward to see that our deductive system is not complete.
For instance, we have {(p → q, 1), (q → r, 1)} |= (p → r, 1) but {(p →
q, 1), (q → r, 1)} 6` (p → r, 1). It is also the case that the language
is not complete for literal deduction in general. For instance, we have
{(p → q, 1), (¬p → q, 1)} |= (q, 1) but {(p → q, 1), (¬p → q, 1)} 6` (q, 1).
However, it can be proved that the system is complete for literal deduction
in the context of a restricted language setting. Soundness and restricted
completeness are proved in (Puyol et al., 1992c) and in Appendix B.

Despite our deductive system is not complete, we can show that it is
useful for our purpose of obtaining specialization of KBs. We need to
specialize a rule when we know the truthvalue of an atom that belongs to
the premise of that rule and in this case we have:

{(p1, V1), (p1 ∧ · · · ∧ pn → q,W)} |= (p2 ∧ · · · ∧ pn → q, U) ⇔
{(p1, V1), (p1 ∧ · · · ∧ pn → q,W)} ` (p2 ∧ · · · ∧ pn → q, U)

To finish this part we introduce the implementation of that Specializa-
tion Calculus.

4.3 Implementation

In the above Section we have introduced the Specialization Calculus used
in Milord II. Axioms and inference rules are the sufficient mechanisms to

98 Chapter 4. Deduction by Specialization

do specialization from the logic point of view. We have proved that the
properties we were interested in hold. Now we want to implement that
Specialization Calculus.

The requirements for the inference engine are closely related to the be-
havior of the whole system. Remember that the specialization of deductive
knowledge is the base for users/system communication. Furthermore the
inference engine must also handle the control knowledge. In summary, the
inference engine is a key part of the whole system Milord II. In this Section
we will present the requirements of the inference engine and the concrete
implementation.

4.3.1 Inference Engine Design

The simplest inference engine would be an inference engine that given a KB
it would apply all the inference rules of the Specialization Calculus until
there is not any rule that can be applied. In the last example we have
showed this kind of behavior. But when we design the inference engine of
Milord II we have new requirements that determine which and when rules
have to be applied.

In order to preserve the correctness of the inference engine with respect
to the semantics of Specialization Calculus, the inference engine does not
introduce here extralogical components. The axioms and inference rules
presented above are the only mechanisms to do specialization.

As usual we are interested in designing an efficient program but we do
not make a special point of this. Despite this we have introduced some
control to improve the efficiency of specialization.

Furthermore we should take into account that this inference engine must
be integrated in the whole system. Possible simplifications of the inference
engine are not possible because we need to handle the actions of the local
control of a module (control will be explained in Chapter 5). The following
are the more important points that we take into account in the design of
the inference engine of Milord II:

• The task of the inference engine is to produce specialization of de-
ductive knowledge. As seen in Section 4.1 the specialized deductive
knowledge is used to present an enriched behavior of ESs. The in-
ternal representation of deductive knowledge should facilitate that
task. We have chosen an internal representation that it is close to our
concept of specialization.

• When deducing facts we are only interested in values (intervals of
truth–values) having maximum precision. Then the inference engine

4.3. Implementation 99

will assign a definitive value to a fact when it is the most precise (you
can find comments on imprecision and its control in Sections 3.2.2
and 5.1.2 respectively) that we can obtain from the deductive knowl-
edge in the current case; otherwise the values are considered to be
provisional.

• The inference engine must be interleaved with control. Then it should
fit the actions made by the control. We avoid some simplifications
that would produce a more efficient inference engine because in the
inference engine design we must foresee the actions of the control.

Following the above criteria of design now we will comment the use of
the inference rules of the Specialization Calculus.

The first point is that we want to obtain maximum precision. This
implies that the inference engine must not use the Weakening inference
rule that produces valid but less precise values. Another consecuence of
maximum precision is that the system specializes the mv–rules with the
more precise mv–atoms. Then, it is not necessary to conserve the previous
versions of the mv–rules because the rules will not be specialized again with
the same mv–atoms. This implies the substitution of mv–rules with their
specialized versions.

From the expert point of view a KB is represented by means of mv–rules
and mv–atoms. Specialization of a KB should conserve that representation
as shown in the introduction of this Chapter. Then we are not interested
in creating mv–literals. Not–Introduction is only used when necessary to
calculate the new truthvalue of mv–rules or that of their conclusion when
they are specialized.

Finally notice that Composition is used to calculate the truthvalue of
a fact when more that one rule conclude it. Each rule gives a provisional
value to the conclusion. Finally the definitive value is obtained by means
of Composition.

Following this requeriments we will define the inference engine. We will
use functional and algorithmic descriptions. We use a simple example to
illustrate the behavior of the inference engine. First of all we introduce the
internal data structure of a KB.

4.3.2 Internal Representation of Deductive Knowledge

Here we present the internal representation of deductive knowledge to make
clear what is the task of the inference engine and what are the entries to
control.

We are not interested in maintaining a data structure composed of facts
and rules. We propose a new data representation that it is very close to the

100 Chapter 4. Deduction by Specialization

real implementation and that clarifies control and extralogical components
of the inference engine.

We maintain the above definitions for mv–atoms, and mv–literals, but
we propose a new representation of mv–rules that allows us to make easy
the functional descriptions by means of set operations.

Definition 4.4 (Mv–Rule) A mv–rule is represented as a 3–tuple r =
(mr, cr , ρr) where mr is the premise (a set of literals), cr is the conclusion
(a literal) and ρr is the truthvalue of the rule (an interval of truthvalues
such that ρr = [α, 1] and α ∈ An).

For instance the mv–rule (c ∧ d → e,[ρ2,1]) can be represented as the 3–
tuple: ({c, d}, e, [ρ2, 1]). From that we can give the definition of a knowledge
base. Given a set of mv–rules, it consists in associating each atom appearing
in the mv–rules with its current truth–value (provisional or definitive one)
and the mv–rules that can deduce it, that is, those whose conclusion is that
atom or the negation of that atom. In the following we will call knowledge
base the internal representation of the deductive knowledge.

Definition 4.5 (Knowledge Base) Let R be a set of mv–rules and let FR

be the set of all atoms appearing in the rules of R. We define a knowledge
base KBR as a mapping8:

KBR : FR → Int(An) ×P(R)

where, for each f ∈ FR, KBR(f) = (vf , Rf), being Rf = {r ∈ R|r =
(mr, cr , ρr) and cr = f or cr = ¬f}

Initially we build a knowledge base with truthvalues of the atoms [0, 1].
It means that the atoms initially has the most imprecise value. Notice that
a KB with all the atoms with truthvalues [0, 1] is always consistent in our
specialization calculus (axiom scheme AS2). The truthvalues of atoms can
be changed by the rules that deduce them (giving a more precise truthvalue
by means of Composition inference rule) or by external valuations of atoms.
The truthvalue of an atom is considered to be provisional when there are
rules that can conclude it; otherwise it is considered to be definitive.

Now we can see an example of initial KB. Suppose that we have a
deductive knowledge composed of the following set of mv–rules:

R = {(a ∧ b → c,[ρ1,1]), (a ∧ f → ¬ c,[ρ2,1]), (c ∧ d → e,[ρ3,1])}

It is easy to see that the set FR is:

8P(R) is the powerset of the set R.

4.3. Implementation 101

FR = {(a, b, c, d, e, f)}

Now we can translate the example to the new representation. We create
a table (mapping) from atoms of FR to its initial truthvalue ([0,1]) and the
set of mv–rules that deduce them. Then the knowledge base is the mapping
KB such that:

KB(a) = ([0 , 1], ∅)
KB(b) = ([0 , 1], ∅)
KB(c) = ([0 , 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])})
KB(d) = ([0 , 1], ∅)
KB(e) = ([0 , 1], {({c, d}, e, [ρ3, 1])})
KB(f) = ([0 , 1], ∅)

Now we will define the specialization of KBs represented by the above
formalism. We will use the same example to illustrate the explanation.

4.3.3 Specialization

First of all we give a functional description of specialization of mv–rules.
Giving a mv–rule and a mv–atom, the mapping SR will specialize the mv–
rule with respect of that mv–atom. It will return the new specialized mv–
rule, or a new mv–atom in the case that the initial mv–rule would be able
to deduce its conclusion.

Definition 4.6 (Specialization of Mv–Rules) Let R be a set of mv–
rules and F ∗ a set of mv–atoms F ∗ = {(p, ρp)|p ∈ FR}. We define SR as
a mapping:

SR : R × F ∗ → R × F ∗

SR(r, (p, ρp)) =















(r, (∅, [0, 1])) if p 6∈ mr and ¬p 6∈ mr

(r′, (∅, [0, 1])) if p ∈ mr or ¬p ∈ mr

(∅, (q, α)) if mr = {p} or mr = {¬p}
and cr = q or cr = ¬q

where

r′ =

{

(mr − {p}, cr,MP ∗
T (ρp, ρr)) if p ∈ mr

(mr − {¬p}, cr ,MP ∗
T (N∗

n(ρp), ρr)) if ¬p ∈ mr

and

α =















MP ∗
T (ρp, ρr) if mr = {p} and cr = q

N∗
n(MP ∗

T (ρp, ρr)) if mr = {¬p} and cr = q
MP ∗

T (N∗
n(ρp), ρr) if mr = {p} and cr = ¬q

N∗
n(MP ∗

T (N∗
n(ρp), ρr)) if mr = {¬p} and cr = ¬q

102 Chapter 4. Deduction by Specialization

Negations of mv–atoms are calculated by means of the Not–introduction
inference rule, and the specialization of mv–rules is done using SIR inference
rule. Notice that we only generate mv–atoms. Taking again the same
example we can do the specialization of the mv–rule of the last example
obtaining a new specialized mv–rule:

SR(({a, f}, ¬ c,[ρ2,1]), (f,[ρ4, ρ′
4]) =

(({a}, ¬ c,[MPT (ρ4, ρ2),1]), ∅)

If we specialize again the rule we obtain a mv–atom:

SR(({a}, ¬ c,[MPT (ρ4, ρ2),1]), (a,[ρ5, ρ′
5]) =

(∅, (c, N ∗
n(MP ∗

T ([MPT (ρ4, ρ2), 1], [ρ5, ρ
′
5]))))

After the definition of rule specialization we can explain atom special-
ization. A kb–atom is a structure that associates to an atom its truthvalue
and the rules that conclude it. Then, atom specialization will modifie the
structure of a kb–atom with a mv–atom.

First of all we find a mv–rule from the set of mv–rules that conclude
the atom such that it can be specialized with respect to that mv–atom. If
no rule of this type can be found the specialization of the kb–atom returns
the same structure. Otherwise it returns a new specialized rule (r ′ 6= r) or
a new mv–atom (r = ∅). If the specialization of a rule returns a new rule
(SR(r, f∗) = (r′, (∅, [0, 1]))) then we substitute the rule by the specialized
one and the truthvalue is not changed. Notice that [a, b] ∩ [0, 1] = [a, b]. If
it returns a new mv–atom (SR(r, f∗) = (∅, (p′, v′))) the rule is eliminated
and the new truthvalue is calculated by means of the Composition inference
rule.

Definition 4.7 (Atom Specialization) Let R a set of mv–rules and F ∗

a set of mv–atoms, the specialization of facts is a mapping such that:

SC : Int(An) × P(R) × F ∗ → Int(An) ×P(R)

SC((v,Rf), f ∗)

=

{

SC((v ∩ v′, Rf − {r} + {r′}), f ∗) (*)
(v,Rf) otherwise

(*) such that SR(r, f∗) = (r′, (p′, v′)) and r′ 6= r

being Rf = {r ∈ R|r = (mr, cr, ρr) and cr = f or cr = ¬f}

For instance, suppose we have the following kb–atom:

KB(c) = ([0, 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])})

4.3. Implementation 103

We want to specialize it with the mv–atom f ∗ = (a, [ρ5, ρ
′
5]). Then the

specialization is:

SC((v,R), f ∗) =
SC(([0, 1], {({a, b}, c, [ρ1, 1]), ({a, f},¬c, [ρ2, 1])}), (a, [ρ5, ρ

′
5])) =

([0, 1], {({b}, c, [ρ6, 1]), ({f},¬c, [ρ7, 1])})

because the specialization of the rule is:

SR(({a, f},¬c, [ρ2, 1]), (a, [ρ5, ρ′
5])) = (({f},¬c, [ρ6, 1]), ∅)

SR(({a, b}, c, [ρ1, 1]), (a, [ρ5, ρ
′
5])) = (({b}, c, [ρ7, 1]), ∅)

We want to specialize this resultant kb–atom with the mv–atom
f∗ = (f, [ρ4, ρ′

4]). Then

SC((v,R), f ∗) =
SC(([0, 1], {({b}, c, [ρ6, 1]), ({f},¬c, [ρ7, 1])}), (f, [ρ4, ρ′

4])) =
([0, 1] ∩ [0, ρ8], {({b}, c, [ρ6, 1])})

because the specialization of the rule is:

SR(({f},¬c, [ρ3, 1]), (f, [ρ4, ρ
′
4])) = (∅, ρ8)

It is easy to see that:

KB(c) = ([0, ρ8], {({b}, c, [ρ6, 1])})

We can interpret that the atom c has provisional value [0, ρ8] because
there is a mv–rule that conclude that atom yet. Finally we can arrive to
the whole knowledge base specialization:

Given a set of mv–atoms to specialize a KB, each mv–atom is used
to specialize the KB. This process of specialization will produce new mv–
atoms. These mv–atoms will be used to specialize the KB again. Special-
ization stops when there are no new mv–atoms to specialize the KB.

Definition 4.8 (KB Specialization) Let KB be a set of knowledge bases
and F ∗ a set of mv–atoms such that F ∗ = {(p, V)|p ∈ FR}. KB specializa-
tion is defined as a mapping:

SKB : KB ×P(F ∗) → KB

SKB(kb, F ∗) =

{

SKB(kb′, F ∗ − {f∗} + F ∗′

) if F ∗ 6= ∅
kb otherwise

where ∀fkb ∈ FR,

104 Chapter 4. Deduction by Specialization

kb′(fkb) =

{

(v, ∅) if (fkb, v) = f ∗ or kb(fkb) = (v, ∅)
SC(kb(fkb), f ∗) otherwise

and

F ∗′

= {y = (p, ρy)|kb(p) = (v,R),SC(kb(p), f ∗) = (ρy, ∅), p ∈ FR}

Finally we can see the last example consisting in specializing the last
KB with the atom b.

SKB(kb, {(b, ρ10)}) = SKB(kb′, F ∗)

where f ∗ = (b, ρ10)

KB′(a) = (ρ5, ∅)
KB′(b) = ([0 , 1], ∅)
KB′(c) = SC((ρ9, {({b}, c, [ρ1, 1])}), (b, ρ10)) = (ρ11, ∅)})
KB′(d) = ([0 , 1], ∅)
KB′(e) = SC(([0, 1], {({c, d}, e, [ρ2, 1])}), (b, ρ10)) =
([0, 1], {({c, d}, e, [ρ2, 1])})
KB′(f) = (ρ7, ∅)

F ∗ = {(c, ρ11)}

Finally

KB′′(a) = (ρ5, ∅)
KB′′(b) = ([0, 1], ∅)
KB′′(c) = (ρ11, ∅)
KB′′(d) = ([0, 1], ∅)
KB′′(e) = ([0, 1], {({d}, e, [ρ12, 1])})
KB′′(f) = (ρ7, ∅)

We have seen the specialization calculus and the concrete implementa-
tion by the above description of the inference engine function SKB. This
inference engine has been designed avoiding extralogical components and
then assuring the correctness of the inference engine with respect to the se-
mantics of specialization calculus. In Chapter 5 we will enrich the inference
engine with the actions of control.

4.4 The Deductive Knowledge Language

This Section starts a different approach to Milord II from that seen above.
In the current Chapter we have explained in a formal way a propositional

4.4. The Deductive Knowledge Language 105

language close to that of Milord II and its interpretation. We have intro-
duced the basic logical syntax, the semantics, the properties of this language
and the inference engine that interprets it. Here we introduce the real lan-
guage of Milord II which has been build on top of the previous logic based
one.

If we observe the module declaration given in Figure 4.4, we can see that
deductive knowledge is a basic component of modules as seen in Chapter 2.
The components of the deductive knowledge are the dictionary, the rules
and the inference system declarations.

Module foo =
...
Deductive knowledge

Dictionary: ...
Rules: ...
Inference system: ...

end deductive

...
End

Figure 4.4: Deductive declaration into the modules.

Now we relate the components of the deductive knowledge of a module
with those of the primitive syntax described in Section 4.2.1. A dictionary
declaration contains fact declarations, that is the set of concepts that will be
used into a module (temperature, feber). Facts can be declared to belong
to a type. For instance we can say that temperature is a numeric fact
and feber is a logic fact. Then, the value of the first fact will be a real
number and the value of the second one an interval of truth–values. The
atomic formulas of this language (atoms in the primitive syntax) are facts
of logic type or predicates over facts of another type. For instance an
atomic formula with the fact temperature could be temperature > 36.5 ◦.
Rules are composed by this kind of atomic formulas. Then, the sentences
of the deductive knowledge of Milord II are composed by pairs of facts and
their value (different from the mv–atoms) and rules weighted by intervals of
truth–values of the form [a, 1] (equal to mv–rules, but with different atomic
formulas). All this is explained in detail in the following paragraph.

The inference system declaration was explained in Section 3.4. Remem-
ber that it declares the local logic of a module. The set of linguistic terms
An is declared as a part of an inference system declaration.

Here we will present the concrete syntax of the dictionary and the rules

106 Chapter 4. Deduction by Specialization

of deductive knowledge that allows us to write real applications. Syntax is
introduced mainly to introduce the different constructs. We do not describe
here all the possible syntactical forms that are valid in the language. Please
reference the complete syntax in Appendix A. When possible we use real
examples to illustrate the programming task with Milord II.

4.4.1 Facts

Facts are one of the most primitive components of the language Milord II.
They are atomic symbols that represent the concepts that will be used in
a module. Facts can be observable (fever), deducible (pneumonia) and so
on.

The declaration of a fact is composed by an atomic name that is the
identification of the fact and a set of attributes: name, question, type, func-
tion and relations. Facts can be referenced inside a module9, for instance
in its rules.

Facts are declared in dictionary declarations. An example of dictionary
is given in Figure 4.5. It contains type and fact (predicate) declarations. In
this example we can see the declaration of a fact identified by assoc treat.

Dictionary:

Types: farmac = (carbamacepina or teofilina or digoxina or
dicumarinics or ciclosporina or
difenilhidantoina)

Predicates:

assoc treat=
Name: ”Associated Treatments”
Question: ”which farmacs the patient takes usually?”
Type: farmac
Relation: needs true use farmacs?

Figure 4.5: Example of dictionary declaration

Attributes of Facts

Here we will describe all the attributes that facts have. Name and type
attributes of facts are mandatory.

9A module can reference all the facts declared into the module. Facts declared into
other modules can be referenced by using a path name if they are accessible (remember
that they can be hidden by the information hiding mechanism).

4.4. The Deductive Knowledge Language 107

Name: This is an attribute that associates a long name to the fact. Ex-
perts use atomic short names to identify a fact mainly to simplify
the rules and metarules. The long name is presented to the user for
helping its understanding of the concept the fact represents.

Question: This is the text of the question made to the user when a fact
belongs to the import interface. When the system asks a question
to the user it presents the long name of the fact, the question and
the set of possible answers among which the user can select. When
a fact belongs to the import interface of a module this attribute is
mandatory.

Type: It declares the type of the fact. The type of a fact is the set of
values that it can take when it is evaluated. There are five predefined
types, that is, boolean, logic, numeric, array and class; and one user–
defined type named enumerated. A fact can be evaluated over the set
of values determined by its type.

Function: Sometimes we want to evaluate a fact with a procedural form
instead of a deductive one. This allows us to evaluate a fact by means
of a functional description.

Relation: It stablishes named relations with another facts. This imple-
ments a directed graph of relations among facts that can be used to
classify facts, to stablish an order of evaluation, etc.

We can see the example in Figure 4.5. This fact has a name, a question
because its value will be obtained from the user, and the type (declared
in the type declaration of the dictionary) which is a set of farmacs. The
relation declaration means that the fact use farmacs? needs to be known
true to give sense to the fact assoc treat.

After this summary description of the attributes of facts, we will explain
in detail the type, function and relations attributes.

Types of facts

In the first part of this Chapter we have worked with facts weighted by
an intervals of truthvalues. Now we say that this kind of facts are of logic
type. We need to add more types that the logic one. We follow Milord in
this but with some variations. There are five predefined types: boolean,
logic, numeric, array and class. The user can define new types of facts
by enumeration, then we say that facts are of order 0+. Here there is a
summary of the types of Milord II facts:

108 Chapter 4. Deduction by Specialization

Boolean: Are facts whose value can be Yes (true) or No (false). They are
used when we want talk about the presence or absence of a concept.
For instance we can consider that the fact has fever is a boolean fact
because we have a criteria to decide if it is true or not the patient has
fever.

Logic: The values of this facts are intervals10 of a set of linguistic terms
that represents uncertainty values. This set of terms must be defined
in the inference system declaration (see Section 3.4). The kind of
concepts that can be considered logic facts are those whose truthness
can be valued, because there are subjective. For instance if we use
a subjective criteria to appreciate if a patient has fever as touching
with the hand, we can consider that the fact has fever is a logic fact
(we can say that has fever is possible).

Numeric: The value is an interval of real numbers. They are used in
quantitative data, for instance temperature, number of leucocits, etc.

Enumerated: This is the only type that can be defined by the user. This
type is a set of symbolic values. The value of a fact of enumerated
type is a subset of the type declaration, or none. A difference with
the enumerated type in Milord is that each symbol of a enumerated
fact has a certainty value associated (it is a fuzzy set as shown in
Section 3.2.3). In Figure 4.5 we can see an example of enumerated
type declaration farmac. An enumerated type can be defined in the
type attribute of a fact declaration. It can also be defined in the type
declaration of the dictionary (see Figure 4.5) and give it a name. This
name can be used to declare a type of a fact.

Array: The value of this kind of facts are arrays of real numbers of any
dimension. This is a special type of fact and it is only used in an
example of belief propagation application described in the Section 6.6.

Class: The facts of this type have no value. They are used only to define
relations with other facts. For instance we can consider that the fact
oral is a class fact because we want to define a relation with it in the
declaration of the antibiotics that are administrated orally.

The facts that belong to the import interface of a module can be asked to
the user11. He can answer with the set of values that are allowed depending

10
Milord used only one element of a set of linguistic terms. This type of facts was

named fuzzy.
11Facts of the import interface are not always asked to the user. In some cases the

control of the module can give a value to an imported fact before asking it to the user.

4.4. The Deductive Knowledge Language 109

of the type of the fact. Users are able to answer unknown to a system
question. It is very important to distinguish this answer of the interval [0, 1].
In the first case the system considers that the fact questioned provisionally
has no value. Then, it do not produce any actions on the module, it is not
used to specialize the KB. The interval [0, 1] is an interval of truth–values
used internally that represents the definitive value unknown.

Fact Functions

Fact functions allows us to implement a set of functionalities that are useful
in the practice of ESs. Here we emphasize possible applications of functions
as interfaces with other programs, procedural evaluations of facts and fuzzy
sets.

The function attribute of a fact is programmed in Common Lisp12.
It is a lambda–expression without parameters. This lambda–expression is
considered to be into a lexical closure that contains the name of the facts
declared into a module. The evaluation of these fact names returns their
value. Then the body of the lambda–expression can contain fact names and
they will be substituted by their values.

The value of a fact that contains a function attribute in its declaration
is calculated by means of the evaluation of that function. To evaluate
this kind of fact its function attribute is evaluated and the result of this
evaluation is attached to the fact. Now we can see a set of examples of the
function attribute.

One of the characteristics of Milord II commented in the introduction
is that it should work in a realistic computer environment. Function at-
tributes can provide a tool for communicating an ES with other programs.
For instance in Spong–IA application the system asks the user which is the
form of the sponge he wants to classify. Then it is more clear if the question
is joined with a set of pictures representing the possible forms. The user
can select one of them by means of a picture representation program. For
instance, the evaluation of the fact form can be obtained by means of a
function that uses that program. Function attributes can be used as a sort
of interface with other programs as graphics, databases, etc.

Sometimes the value of a fact can be obtained easily by means of a
mathematical expression or a procedure. An example of function attribute
of Terap–IA application can be seen in Figure 4.6. The value of the fact
clearance of creatinin can be obtained by means of the following expression.

12Underline language of Milord II is Common Lisp, then it is easy to introduce
part of the ES programmed in this language. In this Section we will use Common Lisp
terminology that is considered to be well known. Details of this can be found in (Steele,
1984).

110 Chapter 4. Deduction by Specialization

In Figure 4.6 we can see the declaration of this fact creat clear that contains
a function attribute.

clearance of creatinin = 140 −

age × weight ×

{

1.0 if male
0.8 if female

}

72

Creat clear=
Name: ”Clearance of creatinin”
Type: numeric

Function:

#’(lambda ()
(- 140
(/

(* age weight (case sex
(male 1.0)
(female 0.8)))

72)))

Figure 4.6: Example of function attribute

Another use of the function attribute of a fact is for declaring the char-
acteristic function of a fuzzy set (see Section 3.2.3). In Figure 4.7 we can
see an example of fact declaration of the concept tall. This concept is rep-
resented by a fuzzy set and declared with a function that given an interval
of numeric values that represents the height of a person returns an interval
of truthvalues. You can see a graphical representation of this characteristic
function in Figure 3.2.

In the Section 6.5 we can see an application that uses the function
attribute to implement fuzzy sets.

Fact Relations

A fact can have several relation attributes. Relation attributes define
named relations between the fact and other facts of the system. We can
distinguish between relations defined by the user, and predefined relations.
The expert can define relations among facts and give them sense and prop-
erties in the control component of the module. Relations can be used in
the conditions of metarules, this will be explained in Section 5.4.1. Here
we present some examples of relations defined by the expert of Terap–IA

application:

4.4. The Deductive Knowledge Language 111

Tall=
Name: ”Tall”
Type: logic
Function:

#’(lambda ()
(labels ((tall (omega)

(cond
((< omega 1.7) ’impossible)
((and (>= omega 1.7)

(< omega 1.75)) ’sli possible)
((and (>= omega 1.75)

(< omega 1.8)) ’possible)
((and (>= omega 1.8)

(< omega 1.9)) ’very possible)
((>= omega 1.9) ’definite))))

(list (tall (first height)) (tall (second height)))))

Figure 4.7: Example of characteristic function.

• eritro DB equivalent spectrum doxi : The facts eritro DB and doxi
are antibiotics. This relation means that both antibiotics can treat
the same kind of pneumoniae.

• amoxi belongs to group administracio oral : The antibiotic amoxi be-
longs to the group of the antibiotics administrate orally.

• vanco tract agree with anam spec/insuf renal : Notice that we can
define relations with visible facts of other modules, in this case the
relation of fact vanco tract with the fact insuf renal of the module
anam spec.

There are a set of common problems faced by experts that can be solved
using relations. Predefined relations are a set of relations with a global
meaning in the system.

Belongs to: Experts usually use a belonging relation in their applications.
This is a predefinited relation to avoid defining its transitive property,
giving a more efficient system. For instance when the expert defines
these three relations among antibiotics, doxi belongs to ABS/tetras 2,
doxi DI belongs to ABS/tetras 2 and tetras 2 belongs to tetraciclines,
the system adds the new relations doxi belongs to tetraciclines and
doxi DI belongs to tetraciclines.

112 Chapter 4. Deduction by Specialization

The relations of type needs are used to give a correct ordering of ques-
tions to the user in the case of importable facts.

Needs: When the system is going to ask for the value of a fact, and this
fact has a needs relation with another fact, this last fact will be asked
first. For instance the relation pregnant needs sex means that before
asking if a person is pregnant the system will ask for his sex.

Needs true: This case is similar to the last one but the behavior is dif-
ferent depending on the answer of the first question. Consider the
following example of relation from Spong–IA, organization needs true
foreign. The first question to the user would be if the sponge is for-
eign. If the user answers ”yes”, the question organization would be
asked. If the user answers ”no”, then the fact organization would
become false and no question about it would be made.

Needs false: The only difference with the last case is that the behavior is
the inverse one with respect to the answer to the first question.

The needs relation work with importable facts of type boolean logic or
enumerated. In the case of enumerated facts we consider that false is the
none answer and that true is any answer but none.

If the expression has the value unknown, then the fact takes the value
unknown. If the expression is evaluated with false in the case of boolean
and logic facts, and with none in the case of enumerated facts, then the
fact takes the same value depending on the type of the fact.

Facts can be evaluated by the user (importable facts) , by the function
attribute, or deduced by the rules. Before the above evaluation of a fact all
the needs relations are solved.

4.4.2 Rules

Syntax of Milord II rules is given in Figure 4.8. It is not necessary to
give a complete explanation of rules because they are similar to the mv–
rules described before. The only difference is that the conditions of rules
can be composed of predicates on the facts of different type (conditions in
mv–rules were literals of type logic).

The rules are composed of an identifier, the premise (that is, a con-
junction of conditions), the conclusion, and the certainty value of the rule.
The certainty value of a rule is a linguistic term belonging to the set An

of the local logic of the current module. Internally, this linguistic term is
translated to an upper–interval [a, 1].

4.4. The Deductive Knowledge Language 113

rules ::= rule rules | rule
rule ::= ruleid If premisse-rule Then conclusion-rule

[documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule
conclusion-rule ::= conclude rconclusion is certainty-value

Figure 4.8: Syntax of the rules.

4.4.3 Predicates on Facts

Facts are used to build the rules. They appear in the conditions and the
conclusion of rules. The evaluation of a condition or a conclusion is always
an interval of truthvalues. Class facts have no value and they do not appear
in the rules. Then in the case of facts where their evaluation is not an
interval of truthvalues we must predicate on them. That is the case of
numeric and enumerated facts.

First of all we explain the conditions of rules. We can see in Figure 4.9
the syntax of the conditions of rules. In order to give an understandable
explanation to conditions of rules, we do not consider conditions containing
paths.

The conditions of a rule can be written in affirmative form (condition)
or in negative form (no(condition)). The evaluation of condition returns an
interval of truthvalues, then all the syntactic categories of type condition
can be negated using the negation operator N∗

n of the logic of the current
module.

The elemental conditions can be:

1. A fact name or a certainty value belonging to the local logic of the
module, including true or false.

2. A formula composed of facts of any type.

3. Operations among expressions containing facts of type numeric and
enumerated.

A condition can be a certainty value. This is the most simple case
because certainty values are self–evaluated symbols. They can be used to
give initial values to facts, for instance:

If definite then conclude ciprofloxacine is definite

114 Chapter 4. Deduction by Specialization

condition-rule ::= condition | no (condition)

condition ::= certainty-value |
pathform |
operator (expression, expression)

pathform ::= pathform-s | pathform-c
pathform-s ::= predid | amodid/pathform-s

pathform-c ::= (formula)| amodid/pathform-c

formula ::= (pathform op pathform)

operator ::= < | > | <= | >= | = | /= | int

expression ::= number |
operator-arit (expression, expression)|

operator-set (expression)|

pathform-s |
(values)

values ::= values-crisp | values-fuzzy
values-crisp ::= symbol , values | symbol
values-fuzzy ::= (symbol , symbol), values-fuzzy |

(symbol , symbol)

operator-arit ::= + | - | * | :
operator-set ::= cut | core | support | complement
op ::= plus

Figure 4.9: Syntax of the conditions of rules.

4.4. The Deductive Knowledge Language 115

This kind of rule can be fired immediately and the value of ciprofloxa-
cine will be definite. A condition can be a fact name when the type of
this fact is boolean or logic. Evaluation of logic facts returns and interval
of truthvalues. Boolean fact evaluation returns a boolean certainty value
(true, false). Then the value true is assimilated to the last linguistic term
of An (an), and the value false to the first linguistic term of the chain An

(a0).

Formulas

Sometimes it is necessary to work with combinations of facts. Formulas
are operations among facts of any type. The value of a formula can only
be defined by firing a previous rule, and it does not have any relation with
the individual values of the facts that compose that formula. For instance
consider the following rule:

R024 If AD/pregnant then conclude (macrol plus RFM) is
possible

The module that contains this rule must have the declarations of the
facts macrol and RFM in the dictionary declaration, then the rule R024
can give a value to the formula (macrol plus RFM), and then this formula
can appear in the condition of other rules. The expert can use any operator
by previous definition of its algebra13 or use the predefined operations.

Practical use of the predefined operation plus is given in Section 6.2.3,
Terap–IA use this kind of operation to produce a pneumonia treatment
composed of antibiotic combinations. This is an algebra with the following
properties:

Symmetric: (a plus b) = (b plus a)
Associative: (a plus (b plus c)) = ((a plus b) plus c)

A module can export a formula when all the components of that formula
are exportable facts.

Before explaining the operations between expression we should distin-
guish between operations composed by numeric facts and those composed
by enumerated facts.

Numeric Operations

A numeric expression is composed by numbers, numeric facts and arith-
metic operations (+,-,*,:) among them. The evaluation of a expression of

13Now the language Milord II has not the constructs to define those algebras. Then
can only be used the predefined operator plus.

116 Chapter 4. Deduction by Specialization

this type returns a number. Then we can apply the relations of Table 4.3
to numeric values.

The valid relations are < (less), > (greater), <= (less or equal), >=
(greater or equal), = (equal), and / = (different). These are overloaded
operations in the sense that these operations are different depending on the
type of the expressions that are involved. Now we can see the operations
with enumerated facts.

Enumerated Operations

Remember the example in Figure 4.5. The enumerated fact is a fuzzy set
named assoc treat. When an enumerated fact is evaluated we consider
the reference set to be the type attribute of the fact, in this case a set of
antibiotics:

The operations ”+” and ”-” are interpreted as the set union and the
set intersection. This operators are applied to fuzzy sets as shown in Sec-
tion 3.2.3.

The valid relations are < (subset), > (superset), <= (subset or equal),
>= (superset or equal), = (equal), / = (different) and int (intersection).
The operators apply over the evaluations of the expressions. These opera-
tors only apply between expressions of the same type, and the result is an
interval of truthvalues. We explain the sense of the operations by means of
the Table 4.3.

a / b numeric enumerated

< a < b R⊂(A,B)
> a > b R⊃(A,B)
<= a ≤ b R⊆(A,B)
>= a ≥ b R⊇(A,B)
= a = b R=(A,B)
/ = a 6= b R 6=(A,B)
int no sense R∩(A,B)

Table 4.3: Operations between expressions.

The syntax of the conclusion of rules is given in Figure 4.10. They are
simpler than conditions. Notice that in the conclusion of rules they can not
appear paths because the module only can conclude local facts.

Conclusions can be of affirmative or of negative form. They can conclude
facts or formulas.

4.5. Conclusions 117

rconclusion ::= form |
(predid = values)|

no (predid)|

no (form op form)|

no (predid = values)

form ::= predid |
(form op form)

values ::= symbol or values | symbol

Figure 4.10: Syntax of the conclusion of rules.

4.5 Conclusions

We have presented the deductive knowledge of the modules of Milord II.
It is composed of weighted facts and rules and it has a set of added func-
tionalities that contribute to the real needs of ESs.

The inference engine of Milord II is based on specialization of KBs.
This allows us to have an enriched behavior of the ES, consisting in the
improvement of the communication with the user, the results provided to
the users and the validation process.

118 Chapter 4. Deduction by Specialization

Chapter 5

Control

In the precedent Chapters we have explained the modular architecture,
the approximate reasoning representation and the deductive mechanisms
of Milord II based on specialization. We can program an application by
defining a hierarchy of modules, their interfaces and their deductive knowl-
edge composed by facts and rules. Furthermore we declare the concrete
local logics of every module and the translation mechanisms between these
logics. The next step is to explain the control.

Till now we have given an approximate idea of the operational semantics
of Milord II. It can be summarized by the following statements:

1. The user queries a visible module for the value of an exportable fact.

2. The module obtains external data from the user and it also makes
queries to its submodules1. The answers given by the submodules are
then translated to the actual local logic if necessary.

3. With this new information the module specializes its deductive knowl-
edge.

4. Steps 2 and 3 are performed by order to find a solution to the initial
query.

This is a global view of the operational semantics of Milord II, but we
should make precise the details of the whole execution. For instance, given
a query to a module, the system must decide which are the facts that will
be necessary to give a solution to that query. Which facts will be asked to
the user and which will be queried to its submodules. How to use the set of

1Returning to the first step for this submodule.

119

120 Chapter 5. Control

rules of the deductive knowledge of the module to deduce a fact, in which
order and how.

In this Chapter we will clarify the execution of an ES programmed with
Milord II. For that we start by introducing the main ideas related to
control.

Local Control: We have decided to introduce the control locally to every
module. This allows us to identify a module as the complete de-
scription of a problem. The separation between domain and control
knowledge is a mandatory characteristic of ES’s languages to provide
a clear and declarative programming style.

Specific versus general knowledge: Experts usually have different meth-
ods to reason on a problem depending on the amount of data they
know. For instance, a physician do not have aspirations to know all
the data about the patient to make a diagnosis. If the patient is in
a coma he can not ask questions to him, but he should make a di-
agnosis despite the lack of these data. To represent these situations
experts program rules with different levels of specificity (using more
or less information from the patient, that is, putting more or less con-
ditions) to deduce the same fact. These kind of rules produce that
we can deduce a fact using more specific or more general knowledge.
Milord II extends the concept of subsumption of Milord by using
partial labels in the rules. With this technique we try to use the more
specific knowledge when possible.

Avoiding unnecessary work: It is normal to have different ways to find
a solution for a problem. Furthermore these ways can have different
levels of credibility. It is very important to know which is the more
satisfactory way to start the reasoning, how to change it in the case of
failure, and how to follow the reasoning. For instance a physician can
dispose of different laboratory analysis to find a germ. He starts first
with the better analysis but if it fails he chooses another. Milord II
uses specialization in order to detect if a rule can not yet improve
the result of the current goal. During the execution of a case, the
deductive knowledge of modules is specialized with the new known
facts. Specialization produces new rules changing the premises and
the uncertainty values of the previous rules. When a rule is fired, we
can decide if the other rules that conclude over the same fact are able
to improve the result obtained with the first one. If they can not we
should eliminate those rules so avoiding unnecessary work.

Precision Level Results: We have seen that the certainty value of facts

121

is represented by an interval of truth–values. These intervals repre-
sent more or less precise values of facts. In some cases experts are
interested in programming modules whose results should be greater
than a minimum precision level. They are not interested in less pre-
cise results. Experts can declare a threshold to fix when the values of
the facts of a module are significant, that is, when they can be used
to produce precise results. For instance, we can program a module
that only considers that a fact is significant when its certainty value
is greater than possible.

How to obtain Data: Given a query to a module we can follow different
strategies to answer the query. How to obtain the external facts of
the module and in which order are the essential points of the different
evaluation strategies. Milord II allows to declare different evaluation
strategies because of the separation between the search process and
the deductive one (specialization).

Programming Control: Milord II provides Horn–like metarules that
can be programmed by experts. It is a powerful method of local
control that can simplify the deduction by eliminating rules, deducing
facts and changing the hierarchy of modules.

We divide this Chapter between the implicit control, that is, the pre-
programmed characteristics of the execution; and the explicit control as the
parameters of control that the expert can declare.

Implicit components of control are build–in in the interpreter and then
they can not be programmed. Implicit control is composed of two mech-
anisms, the unnecessary rules detection and the subsumption treatment.
They act when we have more than one rule that conclude over the same
fact.

Control knowledge

Evaluation Type: ...

Truth Threshold: ...

Deductive Control: ...

Structural Control: ...

end control

Figure 5.1: Control declaration

Explicit components of control, that is, those that can be programmed
by experts are explained after implicit ones. These components of control

122 Chapter 5. Control

knowledge are the threshold, the evaluation strategy and the reification and
reflection mechanism related to metarules. Figure 5.1 shows the syntactical
declaration of the explicit control in a module.

5.1 Implicit Control

Subsumption control and unnecessary rules control are important charac-
teristics of the execution of a module that can not be programmed by the
expert.

5.1.1 Subsumption

We have repeated along this thesis that the kind of knowledge managed
by ESs is imperfect, that is, incomplete, imprecise and uncertain. Incom-
pleteness is an usual characteristic of the knowledge managed by experts.
They have an special ability to manage and obtain useful conclusions from
situations with more or less complete knowledge. For instance, a physi-
cian needs to know data of the patient to decide an adequate treatment.
Nevertheless if the patient is in a coma then the physician should find a
treatment using less data. An ES should be capable to modelize this kind
of behavior allowing to program different solutions to a problem with dif-
ferent levels of incompleteness. When possible the ES should work with the
less incomplete (more specific or more specialized) knowledge as an expert
does. That is the criteria used in Milord II.

Experts express the deductive knowledge of a module by mean of rules.
Frequently they write several rules containing the same fact in its conclu-
sions. These rules can represent disjunctive paths in the proof tree of that
fact, but in other cases they can represent the same path with different
incompleteness level2. We will show two simple examples to clarify this
concept. Consider the first example from Terap–IA:

R051 If cotri then conclude cotri DB is slightly possible
R052 If cotri and seriousness then conclude no(cotri DB) is
definite

These two rules conclude over the same fact cotriDB. It is easy to see
that rule R052 is more specific than rule R051. Whenever we can apply the
more specific rule, we could also apply the more general one. We say that
there is a subsumption relation between these rules. This is an example
of lack of data. In this example the expert has a default rule for the case

2In Chapter 4 we had only considered that the rules with the same fact in the con-
clusion were disjunctive paths.

5.1. Implicit Control 123

where they have no sufficient evidence3 of the seriousness of the illness.
Then the fact cotri DB can be deduced with less data.

If we consider that the fact cotri is true and the fact seriousness is
unknown the value for cotriDB would be [slightly possible, 1] using the
more general rule. If we know that the fact seriousness is true we will use
the more specific rule, and the result for the fact cotriDB would be [0, 0]4.
Notice that it is not necessary that the truth–value of the more specific rule
to be greater than the general one. The second example is:

R001 If age > 60 then conclude old is possible
R002 If age > 70 then conclude old is very possible

Intuitively it is clear that the rule R002 is more specific that the rule
R001. It is more specific to know that the age is greater that seventy than
the age is greater that sixty. Below we give a precise definition of being
more precise.

In Milord II as in Milord we first apply the most specific rules. If the
most specific rule can not be applied, then the most general one is fired.

In this sense we can say that in some cases the more specific rule can
not be applied but only the more general can (default reasoning). In the
cases where the more specific rule can be applied, the more general could
be applied also. Our criterion is that we always apply the more specific
rule if possible and in that case the more general rule will not apply.

Remember the first example. If we know the fact seriousness then we
only use the rule R052. In the other case we will use rule R051.

Now we analyze the above subsumption criterion from a general point
of view in the concrete syntax of Milord II rules.

General Subsumption

Here we explain the general subsumption criterion. We think that it is in-
teresting to use always the more specific knowledge in the deductive process,
but we will finally define a criterion that is a compromise among complexity
and understandability.

First of all we analyze the subsumption criterion between two isolated
rules.

Definition 5.1 (Subsumption) Given two rules R1 and R2 with premises
A and B respectively, and that they conclude over the same fact, we say

3We say sufficient evidence in the sense that the rule would conclude a value different
than unknown ([0,1]). We will insist in this aspect in the next Section where we will talk
on the threshold control component.

4Notice that without the subsumption criteria these two rules would produce an
inconsistent result when both would be applied ([slightly possible, 1] ∩ [0, 0] = ∅).

124 Chapter 5. Control

that rule R1 is more specific than rule R2 or that rule R2 is more general
than rule R1, when

(A → B, 1)

Now we can simplify this criterion taking into account the different types
of premises of Milord II.

First of all we can simplify the criterion using a property of the impli-
cation (I1, Section 3.1) used in Milord II.

(A → B, 1) ⇒ ρ(A → B) = 1 ⇒ IT (ρ(A), ρ(B)) = 1 ⇔ ρ(A) ≤ ρ(B)

Premises of rules are composed of a conjunction of predicates over facts.
Facts can be of four types: boolean, logic, numeric and enumerated. We can
only compare facts of the same type. We extend the subsumption criterion
taking into account the different components of the premises of the rules.

It is easy to see from properties T5 and T1 of T functions that the
following holds:

If a ≤ b and c ≤ d then T (a, c) ≤ T (b, d)

Proof:

a ≤ b ⇒ T (a, x) ≤ T (b, x),∀x
c ≤ d ⇒ T (c, y) ≤ T (d, y),∀y

}

⇒ T (a, c) ≤ T (b, d)

We can consider that premises of rules are composed of a conjunction of
sets of predicates over facts grouped by their type. B, L, N , and E are sets
of predicates of types boolean, logic, numeric and enumerated respectively.
Then it is easy to extend the last property to the new one:

ρ(B1) ≤ ρ(B2)
ρ(L1) ≤ ρ(L2)
ρ(N1) ≤ ρ(N2)
ρ(E1) ≤ ρ(E2)















⇒ ρ(B1 ∧ L1 ∧ N1 ∧ E1) ≤ ρ(B2 ∧ L2 ∧ N2 ∧ E2)

This allows us to group the conditions on sets of the same type and to
apply the subsumption criterion to each group separately. Now we should
test if the following set of conditions hold:

{(B1 → B2, 1), (L1 → L2, 1), (N1 → N2, 1), (E1 → E2, 1)}

Boolean and Logic premises

Suppose the following rules:

5.1. Implicit Control 125

BL1: (a1 ∧ a2 ∧ · · · ∧ an → c, α)
BL2: (b1 ∧ b2 ∧ · · · ∧ bm → c, β)

If we want to test if the rule BL1 subsume the rule BL2 then:

ρ(b1 ∧ b2 ∧ · · · ∧ bm) ≤ ρ(a1 ∧ a2 ∧ · · · ∧ an)

If m ≥ n and we can found n facts such that ai = bj then it is easy to
see that ρ(a1 ∧ · · · ∧ an) = ρ(b1 ∧ · · · ∧ bn). And by the property T5 of T
functions the following expression always hold.

T (ρ(a1 ∧ a2 ∧ · · · ∧ an), ρ(an+1 ∧ · · · ∧ am)) ≤ ρ(b1 ∧ b2 ∧ · · · ∧ bn)

In this case it is easy to see that the subsumption criterion is that rule
R1 is more general than rule R2 when A ⊆ B, where A and B are the set
of boolean and logic conditions of rules BL1 and BL2 respectively.

Numeric and enumerated premises

This case is not so easy as the logic and boolean premises. Numeric ex-
pressions can be a set of arithmetic expressions among facts and numbers.
Each condition can contain several facts, and two conditions can predicate
over the same fact. Consider the following example:

(a − b > 3 ∧ b < 6 → c, α)
(a < 12 → c, β)

In this case it is easy to see that the second rule subsumes the first one,
because:

ρ(a− b > 3∧ b < 6) = ρ(a > b + 3∧ b < 6) = ρ(a < 9∧ b < 6) =
T (ρ(a < 9), ρ(b < 6)) ≤ ρ(a < 9) ≤ ρ(a < 12)

In general the problem can be reduced to two inequation systems, each
one composed by the conditions of each rule. After finding the solutions of
the two systems, we can compare each variable of the systems, and show if
one system implies the other. In the last example:

a − b > 3
b < 6

}

⇒
a < 9
b < 6

}

⇒ a < 12

Finding solutions for an inequation system is a complex task. It is easy
to see that in the case of enumerated premises the problem is similar, but
much more complicated (remember the operations on fuzzy sets explained
in the Section 3.2.3).

126 Chapter 5. Control

In real programs experts normally do not write very complicated con-
ditions. Furthermore a complex subsumption criterion is an impediment
more than a help to the understandability of subsumption when the expert
writes his program.

For all these reasons in the case of numeric and enumerated premises
we consider that there is a subsumption relation between two rules when
the facts contained in the premise of one rule are contained in the set of
facts of the premise of another rule as in the logic and boolean case.

Subsumption in depth: Partial Labels

There are added problems that have not been addressed yet. Till now we
have only worked with two isolated rules. The last criterion is not enough
for catching all the subsumption relations when we have many rules. For
instance consider the following set of rules:















R1 : a ∧ b ∧ c ∧ d → g
R2 : e ∧ f → g
R3 : c → e
R4 : a ∧ b → f

It is easy to see that there is a hidden subsumption relation between
the rules R1 and R2. Considering the usual chaining of rules we can obtain
that the set of facts necessary to fire the rule R1 is {a, b, c, d}, and for the
rule R2 is {a, b, c}. R1 is more specific than R2. In this case we do not only
compare the premises of the rules but the set of facts in the deduction tree
below the fact along two different paths.

We should not forget that we are thinking on an isolated module. If we
consider all the modular structure then we can find new hidden subsump-
tion relations. Suppose that the rules in the last example are distributed
in two different modules.

M1 :

{

RM1

1 : M2/f ∧ M2/c ∧ d → g

RM1

2 : M2/e ∧ M2/f → g
M2 :

{

RM2

1 : c → e

RM2

2 : a ∧ b → f

We can find the same subsumption relation than in the first example.
In our system we only find local subsumption relations. Other subsump-

tion relations are ignored.
Now we describe a partial solution to this type of hidden subsumption

relations using partial labels.
The first idea is to find the set of facts in the deduction tree below the

facts. We would compare them in order to find the subsumption relations.
Apart of the complexity of this task, there is another problem. We consider

5.1. Implicit Control 127

subsumption with respect to the data that has been really used to deduce
a fact. We do not know a priori the data that will be necessary to do this.
We can not predict which of the conjunctive paths will be successful. Then
we can not build labels statically but at runtime.

Now we explain the method used in Milord II. This is based on partial
labels. Specialization allows us an easy implementation of this kind of task.

We will illustrate the explanation with the example in the Figure 5.2.
The complete label of a fact in a rule is composed of terminal nodes of
the proof tree considering an isolated module. Terminal nodes of a module
are the imported facts and the prefixed facts (those facts belonging to the
submodules).

R1〈a, b, c, d〉 : a ∧ b ∧ c ∧ d → g
R2〈〉 : e ∧ f → g
R3〈c〉 : c → e
R4〈a, b〉 : a ∧ b → f















a
;

R1〈a, b, c, d〉 : b ∧ c ∧ d → g
R2〈〉 : e ∧ f → g
R3〈c〉 : c → e
R4〈a, b〉 : b → f















b
;

R1〈a, b, c, d〉 : c ∧ d → g
R2〈a, b〉 : e → g
R3〈c〉 : c → e







c
;

R1〈a, b, c, d〉 : d → g
R2〈a, b, c〉 : ∅ → g

}

Figure 5.2: Example of subsumption.

Initially we can build the partial labels of each rule identifying the facts
in the premise of the rule that are terminal nodes. In our example all the
conditions in the rule R1 are terminal nodes. Conditions of the rule R2 are
not terminal nodes, they are deducible nodes (by the rules R3 and R4).

When a rule is specialized with a fact that has been deduced by another
rule, the first rule extends its label with the label attached to the other
rule. In the example when rule R4 is fired and the fact f specializes the
rule R2, the new partial label of R2 is the union of the old label (empty)
and of the label of the fired rule (〈a, b〉).

Before firing a rule we can compare its label with the labels of the
other rules that conclude over the same fact. In the case a subsumption
relation between two rules is detected, we act as explained before. In the
last specialization step of the example, we can observe that the rule R2 can
be fired but its label is included in the label of the rule R1. In that case the
rule R2 is more specific than the rule R1 and it is not fired until we know
if rule R1 is able to be fired.

128 Chapter 5. Control

Finally we can summarize the design decisions adopted for the practical
implementation of subsumption relations.

• We consider only local subsumption relations inside modules. The
relations that can be detected building the partial labels of the rules
during execution time.

• Runtime labeling of rules allow us to detect cases of hidden subsump-
tion relations.

• We consider that the specificity of a rule with respect to the other rules
concluding the same fact is determined by the inclusion relationship of
their partial labels. A rule is more general than another if its partial
labels are included into those of the other rule.

• We only use the more specific rules if possible; otherwise we use the
more general ones.

5.1.2 Unnecessary Rules

In the Section above we have seen that the evaluation of a fact can be
carried out by one or more rules. All these rules can contribute to the
evaluation of a fact taking into account that in the case of rules with a
subsumption relation only a rule will be used. Now we only consider the
set of rules that effectively can take part in the evaluation of a fact.

These rules will be specialized using a concrete search strategy by means
of the Specialization inference rule. We can compose the results of these
rules by means of the Composition inference rule, as seen in Section 4.2.3.
It is easy to see that the intersection of intervals of truth–values leads to
more precise or equal values. Each rule can contribute then to give more
precision to the final result.

Suppose the situation where we have obtained a provisional value to
a fact (a rule has been totally specialized). We can now consider if the
remaining rules concluding the same fact can give more precision to the
fact.

The maximum precision given to the conclusion of a rule is limited by
the certainty value of the rule. Consider a rule with premise value [a i, aj]
and certainty value [aρ, 1]. The conclusion of the rule is given by

MP ∗
T ([ai, aj], [aρ, 1]) = [T (ai, aρ), 1)] = [ar, 1] ,where ar ≤ aρ

Then it is easy to see that the value of the conclusion of the rule will be
more imprecise or equal that the precision of the value of the rule. There
are no differences in the case of negative conclusion because the negation

5.2. Threshold 129

does not change the precision. When the system obtains a new provisional
value for a fact, we test if the rules associated to the fact are necessary or
unnecessary.

If the provisional value is [ρp
p, ρ

o
p] and the value of the rule is [ρr, 1], if

the conclusion of that rule is affirmative then the rule will be unnecessary
if and only if ρr ≤ ρp

p. If the conclusion is negative then the rule will be
unnecessary if and only if ρr ≥ Nn(ρo

p).

We apply this test again when a rule is specialized, because specializa-
tion deals with more imprecise or equal truth–values of rules. This method
allows us to save unnecessary deduction and avoids to demand information
outside the module without necessity.

Specialization of rules results in new rules with new truth–values. Then
we can apply this method when a rule is specialized. Notice that it is an
improvement with respect to other system that do not use specialization
(including Milord). They could only compare the rules before or after firing
them. In the last case all the questions related to a rule would be made.
This can be avoided thanks to the previously explained test.

5.2 Threshold

Remember that the goal of the inference engine of Milord II is to obtain
values with the maximum precision. Despite this we can obtain final val-
ues of facts with so little precision that an expert can consider not to be
significant, that is, like unknown. Milord II introduces a parameter that
controls the minimum precision of facts in order to consider that they are
significant. This parameter is local to each module, then we can control
the precision level needed to solve a concrete problem.

This mechanism of control is named the threshold Th of a module. It
is a linguistic label belonging to An and represents the minimum value a
deduced fact must have to be significant. The default threshold value of
Milord II is the second term A2 of the chain An of truth–values. MYCIN
(Shortliffe, 1976) had certainty factors lying in the interval [0, 1]. The
threshold used was of 0.2. An example of threshold declaration is:

Truth Threshold: possible

Now consider the following general rule:

(a1 ∧ a2 ∧ · · · ∧ am → b, [ρr, 1])

130 Chapter 5. Control

We can calculate the final value of the conclusion5 b:

ρ(b) = MP ∗
T (ρ(a1 ∧ a2 ∧ · · · ∧ am), [ρr, 1])

ρ(a1 ∧ a2 ∧ · · · ∧ am) = T ∗(ρ(a1), ρ(a2), . . . , ρ(am))

Considering that ρ(ai) = [ρp
ai

, ρo
ai

], then:

T ∗(ρ(a1), ρ(a2), . . . , ρ(am)) = [T (ρp
a1

, ρp
a2

, . . . , ρp
am

), T (ρo
a1

, ρo
a2

, . . . , ρo
am

)]

ρ(b) = MP ∗
T ([T (ρp

a1
, ρp

a2
, . . . , ρp

am
), T (ρo

a1
, ρo

a2
, . . . , ρo

am
)], [ρr, 1]) =

ρ(b) = [T (T (ρp
a1

, ρp
a2

, . . . , ρp
am

), ρr), 1] = [T (ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr), 1]

And finally:

T (ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr) ≤ Min(ρp
a1

, ρp
a2

, . . . , ρp
am

, ρr)

Notice that the precision of the conclusion of a rule depends on the
minimum truth–values of the rule and its conditions. Given a rule with
minimum truth–value less than the threshold, it concludes the interval [0, 1].
The same happens when it exists one condition of the rule whose value is
less than the threshold.

5.3 Evaluation Strategy

At this moment we know many aspects of Milord II. We have talked about
the modular structure, the uncertainty, and the deductive component. We
know how a knowledge base is specialized using the above implicit control.
To specialize the deductive knowledge of a module it needs to know external
data (from the user and from its submodules). But until now we have
not explained how this information is obtained. In the Figure 4.2 we can
see that the search process asks questions to the user and then passes
information to the deductive process in order to specialize the knowledge
base. In this Section we explain how the search process obtains information
from the user and from its submodules.

The search process is goal directed inside each module. Given a goal,
that is, a fact to be evaluated in a module, the evaluation goes by asking the
necessary questions to the user and to its submodules in order to evaluate
the goal with the maximum precision.

In Milord II there are three evaluation strategies, named lazy, eager
and reified strategies. These strategies are declared locally to each module.

5Because we are talking on precision we will use only positive rules. Negative rules
produce the same results on precision.

5.3. Evaluation Strategy 131

Lazy and eager evaluation types are radical strategies in the sense that
they use the minimum information in the case of lazy, or the maximum
information in the case of eager. Other strategies could be defined thanks
to the separation between search and deductive processes as explained in
Section 4.1.1. Before explaining in detail these strategies we give a brief
summary:

Lazy: A module with this evaluation strategy asks questions to the user
and to its submodules only in the case where this questions are nec-
essary to reach the current goal. This strategy is used by default.

Eager: Given a goal to an eager module the following actions are done: it
asks to the user all the imported facts of the module; and it asks also
all the exported facts of its submodules.

Reified: This kind of evaluation strategy do not differs of the eager one
in the form of asking questions. We will explain in detail this kind of
evaluation when explaining the reification and reflexion mechanisms
in the next Section.

5.3.1 Lazy

A module with lazy search strategy finds the cheapest path to obtain a
solution for a goal. This is a dynamic task in the sense that the module
finds the next fact to be asked looking at the current state of that module
(values of the facts and current rules). This determines a search cycle
consisting in finding the next question that is relevant to the goal (user
or submodules) and updating the module (by means of the specialization
of the knowledge base). This cycle consisting on finding a question and
specializing a module is repeated until the goal is reached.

We should remember which are the components of a module that par-
ticipate in the evaluation of a fact. A fact of a module can be evaluated by
the user (import), by its submodules, by means of needs true or needs false
relations (see Section 4.4.1), by a function associated to a fact (see Sec-
tion 4.4.1), or by the rules of the deductive knowledge of the module.

Given a goal to a module the algorithm sketched below shows how the
module finds the questions that are needed to reach the current goal of the
module. That process only returns which is the next fact that is necessary to
obtain. This is a recursive algorithm because the initial goal to the module
produces new internal subgoals that in its turn use the same algorithm.

1. Goal of a submodule. If the goal is a path to a submodule of the
current module, and if that submodule is visible, then the algorithm
returns that path (it will be asked to the submodule).

132 Chapter 5. Control

2. Goal belonging to the import interface. In this case we must consider
if that goal has needs6 relations with other facts. If the goal has not
needs relations the algorithm returns the same goal (it will be asked
to the user); otherwise the needs relations must be satisfied and then
we apply recursively the function to the first fact of a non solved need
relation.

3. Goal with a function attribute. Now the evaluation of the goal depends
on the evaluation of the function attribute. In this case we apply
recursively this algorithm to the first fact with no value that belongs
to the function. We iterate this process until all the facts of the
function are obtained. Finally the function is evaluated and its result
attached to the fact.

4. Goal that can be deduced by means of rules. In this case we start a
depth search on the rules of the deductive knowledge of the module.
This will be explained in the rule search Section.

Notice that the algorithm finally returns a path to a submodule of the
current module, or a fact belonging to its import interface.

Rule Search

Before starting the rule search we order the set of rules that are able to
deduce a fact with the following criteria.

1. Rules more specific first. We try to find solutions first using the more
specific rules.

2. With rules with no subsumption relations we try first the more precise
rules. A rule is more precise than another when its truth–value is more
precise than that of the other rule. Notice that this order can change
during the execution because of the specialization of rules. We try
first the solutions expected more precise.

3. Finally we maintain the order of rules given by the expert.

When we select a rule we maintain the writing order of the conditions
of that rule (left to right). With these considerations the search strategy is
depth first. We apply recursively the above procedure until a fact is found.

6Need relations are those explained in Section 4.4.1, that is, Needs, Needs true and
Needs false.

5.4. Reification and Reflection Mechanisms 133

5.3.2 Eager

The eager strategy is radically different from the above one. Now we have
not economical criteria to find the questions. Given a goal to a module, that
module asks all the facts of its import interface, and all the facts belonging
to the export interfaces of its submodules.

The ordering of these goals is that of the declarations given by the
expert, that is, first the facts of the import interface of the module with its
original order, then the facts of the export interface of its submodules with
the order of declaration in the submodules. In this kind of search only the
needs relations are taken into account when asking questions to the user.

5.4 Reification and Reflection Mechanisms

Above we described the implicit and static mechanisms of control that are
used in Milord II. Implicit mechanisms affect the specialization process
made in the deductive knowledge of modules. We only use the rules that
can improve the results (those with more precision) and those with more
specific knowledge when possible. These implicit mechanisms of control can
not be programmed by the expert.

The expert can declare which is the precision level of the modules and
the kind of evaluation used into them. The search process is effected by the
implicit mechanisms cited above and it determines which questions and in
which order they will be asked to the user and to the submodules. Now
we are interested in the dynamic aspects of control, that is, the control
programmed by the expert by means of metarules.

We have presented a complete description of the execution of modules.
Given a query to a module and depending of the kind of search strategy, the
module starts making questions to the user, to other modules and making
deductions by means of the specialization of modules. Now we complete
the internal components of a module adding the meta control component
into its structure. As introduction we explain the components shown in the
Figure 5.3).

Object Level: The object level of a module is composed by the facts and
the rules. It is an active component. Given a goal to a module, it
finds that goal by inspecting the rules, relations, functions and so
on, and asking questions to the user (import interface) and to its
submodules (hierarchy). It follows the search strategy (evaluation
type) of the module and specializes the rules following the implicit
control (subsumption and unnecessary rules) and the specialization
process with the new external information obtained. The reification

134 Chapter 5. Control

Communication

�

-

MODULE

Reflection Reification

?

6

Object Level

Meta Level

Figure 5.3: Control cycle.

5.4. Reification and Reflection Mechanisms 135

process informs the meta level about the actions performed by the
object level. The actions give values to facts and specialize rules.

Meta Level: The meta level of a module is composed of a set of metarules
(classified in deductive rules and structural rules). It is a passive com-
ponent. It is continuously looking at the behavior of the object level.
It makes actions when the conditions of a metarule hold. The reifi-
cation process informs then the meta level about the actions done
by the object level, and the meta level acts on the object level by
reflecting actions. These actions affects the deductive knowledge (de-
ductive control) and the hierarchy (structural control) of the module.
The actions proposed by the meta level are mandatory to the object
level.

For instance, if the object level informs the meta level that the patient
is a man, then the meta level reflects an action consisting in eliminating
the specific rules for women.

Before describing the syntax of metarules we should see which are the
components of the object level that are reified to the meta level. Static
reification informs the meta level about static components of the deductive
knowledge, as relations, submodules, etc. Dynamic reifications informs the
meta level about the specialization process, as new deductions, specialized
rules and so on.

5.4.1 Static Reification

The static reification informs the meta level of several characteristics of the
module that do not change during the execution, as the relations among
facts, the type of facts, the submodules, the threshold, the set of linguistic
terms and the kind of search strategy.

Relations: It is the meta predicate name of relation (the predefined rela-
tions can also be used) with two arguments corresponding to the facts
related (the facts can be valid paths from the module). The relation
is from fact1 to fact2.

name of relation(fact1, fact2)

Types: The predicate that says that a fact belongs to a concrete type:

type(fact, type of fact)

where type of fact ∈ {boolean, logic, numeric, class, list of symbols,
name}. An enumerated fact is named with the set of symbols of

136 Chapter 5. Control

the type of that fact (list of symbols) or its name (name) (see Sec-
tion 4.4.1).

The static reification is performed before the execution of the module
because it does not change during the execution.

5.4.2 Dynamic Reification

The current object level theory (OLT) is the set of rules of a module. The
current meta level theory (MLT) is the set of meta–rules of a module, plus
the instances of the user defined metapredicates, that were the defined in
the Section above. Dynamic reification is composed of the predicates K,
WK and P that are related to the value of facts, and the active submodules
of the module.

First of all the minimal literal definition is given. It is composed of the
set of facts deduced in the OLT with the most precise value.

Definition 5.2 (Minimal Literal) We define the minimal literal OLT as

OLT ∗ = {(p,W)|p is a literal, and W =
n
⋂

i=1

Vi such that (p, Vi) ∈ OLT}

Meta–predicate K

K(p, V) means that V is the minimal interval such that the proposition
(p, V) belongs to the OLT. There is a close world assumption on this pred-
icate. The reflection rules are:

(p, V) ∈ OLT ∗

`M K(p, V)

(p, V) 6∈ OLT ∗

`M ¬K(p, V)

The reflection process maps the meta level theories into object level
literals. The reflection rule that relates MLT with OLT is defined as:

`M K(p, V)

`O (p, V)

5.4. Reification and Reflection Mechanisms 137

Meta–predicate WK

WK(p, V) means that (p, V) is deducible in the OLT, i.e. OLT `O (p, V).
¬WK(p, V) means that OLT `O (p, V ′) with V ′ 6= [0, 1] but V ′ 6⊆ V .

(p, V) ∈ OLT ∗ and V ⊆ V ∗

`M WK(p, V ∗)

(p, V) ∈ OLT ∗ and V 6⊆ V ∗

`M ¬WK(p, V ∗)

Meta–predicate P

P (p) means that (p, V) belongs to the deductive closure of OLT being
V 6= [0, 1]. If at the moment of the upwards reflection the computing of
the deductive closure for p is not finished neither P (p) nor ¬P (p) will be
generated.

OLT `O (p, V) and V 6= [0, 1]

`M P (p)

OLT 6`O (p, V) and V 6= [0, 1]

`M ¬P (p)

Examples of these predicates can be:

K(fever,[very possible,1]
WK(pneumonia,[possible,1]
P(cotri)

The first example means that the fact fever has been deduced in the OLT
theory with value [very possible, 1] and that value is the most precise one.
The second example says that the fact pneumonia is provisionally deduced
with value [possible, 1], but it could be deduced with more precision. The
last example means that the fact cotri is proved in the OLT theory with a
value different from unknown.

After defining which is the knowledge that the meta level contains in a
concrete moment of the execution of a module, we explain the syntax of the
metarules of Milord II. We distinguish between deductive and structural
metarules. The first ones are related to the deductive knowledge of the
module that contains them, and the other to the submodule structure of
that module.

See the Figure 5.4 for the complete syntactical description of the premises
of metarules. Where metapredid are the above metapredicates (K, WK and
P) plus arithmetic predicates (le, ge, gt and lt), set operators (member, diff

138 Chapter 5. Control

premisse-meta ::= condition-meta and premisse-meta |
condition-meta

condition-meta ::= mconditio |
no(mconditio)|

mconditio ::= metapredid (conditionterm , ..., conditionterm)

conditionterm ::= operation (conditionterm ,..., conditionterm)|

metafunctid (conditionterm , ..., conditionterm)|

conditio

Figure 5.4: Syntax of the premises of metarules.

and atom). At the moment we only use plus as operations. Finally the
metafunctions are relative to array functions (for instance transpose).

5.4.3 Deductive Control

The deductive control (see the Figure 5.5) affect the deductive knowledge
of a module by inhibiting rules or deducing the above metapredicates. In
some cases it is interesting to simplify the set of rules to avoid unnecessary
deductions, or to deduce facts despite of the object level.

Inhibit Rules: This action inhibits all the rules containing the fact path-
predid into their premises. We can introduce optionally a name of
relation relation-id and then the rules inhibited will be those contain-
ing in its premises a fact related with pathpredid.

Prune: It inhibit all the rules belonging to the deductive tree of the fact
pathpredid.

Conclude: Metarules can give a value to a fact of the object level. Meta
level has the maximum priority and then the value of a fact given
by the meta level will be definitive. This implies to inhibit the rules
deducing this fact.

5.4.4 Structural Control

The metarules of the structural control (see the Figure 5.6) are designed to
modify the hierarchy of a module by inhibiting modules or declaring new
ones (dynamic modules); they can also stop definitely the execution (for
instance, when the system is out of domain).

5.4. Reification and Reflection Mechanisms 139

mrr ::= metaid If premisse-meta Then filters-mrr
filters-mrr ::= filter-mrr filters-mrr | filter-mrr
filter-mrr ::= inhibit rules relation-id pathpredid |

inhibit rules pathpredid |
prune pathpredid |
conclusion-meta

conclusion-meta ::= mconclusion |
no (mconclusion)

mconclusion ::= metapredid (conclusionterm , ..., conclusionterm)

conclusionterm ::= operation (conclusionterm , ..., conclusionterm)|

metafunctid (conclusionterm ,..., conclusionterm)|

form
form ::= predid | $symbol

(form op form)

Figure 5.5: Syntax of the deductive control.

mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodidlist |

order amodidlist |
Open moduleid
Module moduleid

amodidlist ::= amodid amodidlist | amodid
mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

Figure 5.6: Syntax of the structural control.

140 Chapter 5. Control

Filter: A metarule can inhibit (filter) submodules of a module. That
means that all the facts exported by the filtered submodule will be
unknown.

Order: When we use eager evaluation in a module, the order of questioning
the submodules is by the writing order given by the expert. Some-
times it is interesting to change this order at run time. This actions
allow to change this order when a set of conditions hold.

Definitive Solution and Stop: These are exceptional actions. In some
cases the expert wants to stop the execution given the value of a fact
(definitive solution) or nothing (stop). This is useful when the ES is
out of domain.

Apart from the kind of process used to ask questions in the different
evaluation types, we must make distinctions between them with respect to
the reification and reflexion mechanisms and the specialization.

Lazy: Given a query to a lazy module,

1. It starts finding a question to the user or to a submodule useful
to reach the current goal (see Section 5.3.1).

2. It obtains the value for this question and reifies the result (value
of the fact) to the meta level.

3. The meta level tries to fire metarules. Now there is a looping
between the meta level and the object level. It consists in re-
flecting a result to the object level (specialize, inhibit rules, filter
submodules, and so on), to execute the action at the object level,
and reify its results. It is an iterative process until the meta level
reflects nothing.

4. Finally the object level specializes its knowledge with the answer
to the first question. And it returns to the first step.

This process continues until a value for the initial query is found.

Eager: Given a query to an eager module,

1. It does the same actions that points 1 to 3 of the lazy strategy.
The difference is that an eager module ask all the questions of its
import interface and of all the export interface of its submodules.

2. Finally the module specializes with all the questions made fol-
lowing the same dialog with the meta level as before.

5.5. Conclusions 141

Reified: Given a query to a reified module,

1. The first step is similar of that of the eager strategy, but the
rules of the module are also reified. In this case specialization is
not used and all the deduction is made at meta level.

2. Finally the module gets the results reflected by the meta level.

Usually applications use the lazy and eager evaluations as a form of
obtaining the information from the user. An example of module evaluation
type reified is given in Section 6.6.

5.5 Conclusions

In this Chapter we have completed the description of Milord II by present-
ing the control. We have explained the part of the control that is implicit
in Milord II and the one that can be programmed by the user.

142 Chapter 5. Control

Chapter 6

Applications

In the introduction of this thesis we put emphasis on the applicability of
Milord II to build real systems. After the syntactical and semantical
description of all the components of the language and the system, this last
Chapter deals with the systems that have been developed and that are
currently running with Milord II.

Thanks to these application and to the enthusiastic collaboration of the
experts we have been able to bring Milord II to the actual state. In the
introduction we have distinguished Milord II from other systems by its
purpose. The main purpose of Milord II are the application development.
The languages directed to the applications are designed following a bottom–
up methodology. The development of the applications and of Milord II
have been in a mutual feedback cycle.

Despite the great number of problems raised by the paralell development
of real applications and of Milord II, it has brougth a fruitful collabora-
tion. From the developer point of view, real applications are an interesting
source of new problems. Experts have taken advantage of the bottom–up
development by being allowed to introduce these suggestions to the system
design.

6.1 Introduction

We introduce the main applications developed with Milord II. They are
different applications and each one has contributed with their own problems
and solutions to Milord II development.

In the first part of this Chapter we explain three ES application (Terap–

IA, Spong–IA, and Ens–AI). Terap–IA is presented more extensively than

143

144 Chapter 6. Applications

the others. Finally we explain two examples. The firs one deals with fuzzy
control and the other with the propagation of belief in bayesian polytrees.

6.2 Terap-IA

Terap-IA is a medical application for pneumonia treatment developed at
the IIIA by Dr. Pilar Barrufet using Milord II. It is a collaboration with
the Mataró Hospital directed by Dr. Albert Verdaguer. A Ph.D. Thesis
based on Terap–IA will be presented soon by Dr. Pilar Barrufet. Terap–IA

is the natural extension of a previous expert system named Pneumon–IA

for pneumonia diagnosis (Verdaguer, 1989) developed using Milord (Sierra,
1989).

6.2.1 Motivation and Goals

The most common cause of mortality related with infectious processes is
the pneumonia (it is the sixth death most common cause at EEUU).

The death rate of patients affected by pneumonia that needs hospitaliza-
tion, is very high. About of 54% of gravely ill patients at the intensive care
unit died, and about 20% were old people. In other cases the death rate
is about 5.7%. The death rate of patients that do not need hospitalization
is lower than those considered above. Despite this, every pneumonia case
needs an urgent diagnosis and treatment. Erroneous initial diagnosis can
be fatal in some cases. For instance, an initial diagnosis of pneumococic
pneumonia in a patient with legionella pneumonia can be fatal because of
late adequate treatment.

The goal of Terap–IA ES is to deduce the best antibiotic treatment in
the case of a pneumonia caused by only one etiologic agent or considering
different etiologic hypothesis (definitive diagnosis are about 50%). In the
last case we should combine the set of antibiotics corresponding to each
germ. Thus it must take into account a set of criterion used in the antibiotic
combination.

6.2.2 Architecture

We describe the process of obtaining the treatment of pneumonia for a
patient having a previous diagnosis (set of possible germs). The goal is to
produce an adequate treatment for the case using the previous diagnosis
and the data of the patient . The architecture of Terap–IA is graphically
represented in Figure 6.1.

6
.2

.
T
era

p
-IA

145

Combination
Criterion

Groups of
Antibiotics

Antibiotics

Previous
Diagnosis

Antibiotics

Antibiotics

Antibiotics

Groups of
Antibiotics

Antibiotics
Combinations

Antibiotics
Combination
Result

- Gestation
- Breast-Feefing
- Alergy
- Renal Failure
- Genetic Elements

- Spectrum
- Cost
- Other conditions- Seriousness

- Interactions
- Contrary Effects

...

...

...

...

F
igu

re
6.1:

A
rch

itectu
re

of
T
era

p
–
IA

ap
p

lication
.

146 Chapter 6. Applications

1. We start with the set of groups of antibiotics1 used for the pneumonia
treatment. Initially we consider that the uncertainty values of these
groups of antibiotics are all true.

2. General conditions: A set of general conditions obtained from the
patient is used to filter those groups of antibiotics. Filter these groups
consist in changing its uncertainty value by means of rules (remember
that initially all the groups have the value true). The order of filtering
is that of the following items2.

(a) Gestation

(b) Breast–feeding

(c) Allergy

(d) Renal Failure

(e) Genetic Elements

For instance the expert states that If the patient has renal failure then
the certainty value of Aminoglucocids decreases from sure to possible.
The result of this filtering is the same groups of antibiotics that we
got initially but with their truth–values now adequated to the current
case.

3. The starting point is a set of germs that are selected from a previous
initial diagnosis of the patient. These germs are the possible causes
of the disease3. The user selects a set of these germs.

4. For each germ selected we filter the above groups of antibiotics:

(a) Bacterian Sensibility: Given a germ and the groups of antibiotics
with its certainty value for the germ, the process of filtering
selects the groups of antibiotics that can be used in a treatment
for this germ.

1The list of 27 groups of antibiotics is the following: Quinolones, Tetraciclin,
Tetraciclin Retard, Cotrimoxazol, Sulfamids, Vancomicine, Teicoplanine, Aminogluco-
cids, Metronidazol, Clindamicine, Carbapenems, Isoniacida, Rifampicina, Etambutol,
Pirazinamida, Anfotericina B, Aciclovir, Ganciclovir, Vidarabina, Ribaravina, Aman-
tadine, Rimantadine, Penicilline, Macrolids, Betalactamases Inhibitory, Cefalosporines,
and Monobactams.

2The filtering of the groups of antibiotics is not dependent of the germ selected.
3The list of the 24 germs is the following: Mycoplasma, Coxiella Burnetii, Chlamy-

dia Psitacii, Chlamydia Pneumoniae, Legionella Pneumophila, Pneumococcal Pneumo-
nia, Anaerobis, Enterobacteria, Influenza Virus, branh, Pseudomonas, Meningococcus,
S Pyog, S Aurea, Aspergilus, Crip, Nocar, Cytomegalovirus, Varicela–zoster Virus, Her-
pes Simplex Virus, Eptein–Barr Virus, Respiratory Syncitial Virus, Adenovirus and
Haemophilus Influenzae.

6.2. Terap-IA 147

(b) Seriousness: For each group of antibiotics the seriousness of the
patient determines the concrete antibiotics of that group that
are adecuate for the treatment.

(c) Interactions: Filter the concrete antibiotics that have interac-
tions with other treatments.

(d) Contrary Effects: Filter the concrete antibiotics taking into ac-
count the contrary effects of other treatments.

The result of this phase is a set of concrete antibiotics with a truth–
value associated for each germ considered.

5. When the system has a set of antibiotics one for each germ considered
then:

(a) Antibiotic Combination: It combines the treatment for each
germ returning a global treatment (a combination of antibiotics).

(b) Antibiotic Filtering: Finally the final treatment is filtered taking
into account the spectrum of the antibiotics, its cost and other
considerations.

i. Spectrum

ii. Cost

iii. Other Conditions

6. Finally the answer is a combination of antibiotics useful to treat the
germs selected and adapted to the particular conditions of the patient.

6.2.3 Implementation

In this Section we comment relevant characteristics of the code of Terap–IA.
For a complete example of the code of Terap–IA please go to the Section C.2.

The modular structuration of the treatment problem follows the con-
ceptual one given in Figure 6.1. We give a simple example of filtering of
groups of antibiotics and the expansion to concrete antibiotics for a given
germ. Finally we present briefly the antibiotic combination.

Filtering

In this Section we explain briefly the kind of filtering used in this appli-
cation. Figure 6.2 shows the modular structure of the filtering explained
above. Notice how the modular hierarchy is declared. The module ABS 1
contains all the groups of antibiotics with certainty value true. The module

148 Chapter 6. Applications

Gestation (Gestacio4) is the first filter. It exports the groups of antibiotics
filtered by gestation considerations. The father of this module is Breast–
feeding (Lactancia) and finally Allergy (Alergia).

If we would follow the modular structure we would find the modules
Renal Failure and Genetic Elements. We explain now the module Renal
Failure as an example of filtering.

Consider the declaration of this module given in Figure 6.3. This mod-
ule is declared as a refinement of the module ABS. The purpose of this
refinement operation is only for the inheritance of the dictionary of that
module. There is no information hiding.

This module import nothing from the user (only uses the information
of its submodules). It exports the groups of antibiotics. The submodules
of Renal Failure are the module Allergy (another filter) and the module
Anam. Notice that this module is refined with another encapsulated module
declaration. The purpose of this refinement is to hide all the facts exported
by the module Anam but the fact renal failure.

The evaluation type of the module is eager. It asks then for all the facts
exported by its submodules, the filtered groups of antibiotics from Allergy
and the fact renal failure.

The rules of this module give a certainty value to a set of groups of
antibiotics. Notice that the role of the only metarule of the module is to
give a value to the groups of antibiotics that has not been deduced by the
module.

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

The meaning of this metarule is the following: given any fact of the
submodule x (x/y) with any value c, such that y has not been deduced by
the current module (NP ($y))5, then we give to the fact y of the module
the value c.

This facts maintains the same value that the given by the submodule x
(that corresponds to the module Allergy). All the filtering modules follows
this kind of structure.

After the filtering of the groups of antibiotics for each germ, we find the
concrete antibiotics for the treatment. In Figure 6.4 there is a simple case
of treatment for the germ Pneunomia Mycoplasma.

This module inherits the facts of the dictionary from the module An-
timicrobians. It exports concrete antibiotics. The submodules of this mod-
ule are the antecedent of the patient Antecedents and the last filter Re-
nal failure. Notice that this module is refined in order to only select the

4We give the english translation of these module names because this application has
been written in Catalan.

5The metapredicate NP means ¬P (see Section 5.4.2).

6.2. Terap-IA 149

Figure 6.2: Example of filtering.

150 Chapter 6. Applications

Module renal failure:ABS =
Begin

Module x = allergy
Module anam R= anam:

Begin

Export renal failure
End

Export quinol, tetras 1, tetras 2, cotri, sulfas, vanco, teico,
amino, metro, clinda, carbapen, INH, RFM, ETM, PZ,
anf B, ACV, GCV, ARA A, RBV, AMD, RMD, peni,
macrol, b lactam inh, cef, monobac

Deductive knowledge

Rules:

R001 If anam R/renal failure
then conclude no(tetras 1) is s

R002 If anam R/renal failurel then conclude tetras 2 is p
R003 If anam R/renal failure then conclude amino is p
R004 If anam R/renal failure then conclude anf B is p
R005 If anam R/renal failure then conclude AMD is p
End deductive

Control knowledge

Evaluation Type: eager

Deductive Control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)
end control

End

Figure 6.3: Module Renal Failure.

6.2. Terap-IA 151

groups of antibiotics that are useful for this germ (bacterian sensibility).
The rules determine the values for the concrete antibiotics exported.

Antibiotic Combinations

The initial diagnosis is a set of possible germs. The system deduces a
treatment for each germ of the initial diagnosis. We must combine these
different treatments in order to give a final treatment (a more complete
code is given in Section C.1).

The antibiotic combination consists in two generic modules. The generic
module Build combinations produces a set of valid combinations following
a set of medical criterion. The generic module Remove combinations finally
simplifies the result of the module Build combinations. These modules are
based on metarules. Let us comment one metarule of each generic module.

The first one is a metarule of the generic module Build combinations.
This module is instantiated by two modules that represent treatments.
Consider two treatments exported by the submodules x and y.

M004 If K(X/$x,int($tc11,$tc12)) and K(Y/$y,int($tc21,$tc22))
and atom($x) and atom($y) and diff($x,$y)
and no(subsumeix($x,$y)) and no(subsumeix($y,$x))
and no(espectre equivalent($x,$y))
then conclude WK(($x plus $y)

,and(int($tc11,$tc12),int($tc21,$tc22)))

The above metarule has the following meaning: Given two treatments
X/x and Y/y where x and y are simple treatments, that is, antibiotics
(atom), and they are different (diff). Furthermore if they have no sub-
sumption relations (in the medical sense of subsumption), then we can
conclude a combination of the two antibiotics (x plus y). Notice that the
conclusion is weak (WK). That means that this conclusion is not definitive
yet and it can be changed by other metarules.

The next example is a metarule of the generic module Remove combinations.

M006 If K(($x plus $y),$V) and belongs to($y,administracio oral)
and belongs to($x,administracio parenteral)
then conclude K(($x plus $y) ,int(gp,s))

The above metarule considers a combination of two antibiotics (x plus y).
If they differ in their administration (oral or parenteral) then this combi-
nation is removed by attaching to it the value unknown.

Terap–IA has about 150 modules, 2000 facts, 600 rules, and 200 metarules.
It can be considered a big application and it is in a state of validation.

152 Chapter 6. Applications

Module pneumonia mycoplasma treatment: antimicrobians =
Begin

Inherit antecedents
Inherit clinic situation
Open renal failure:

Begin

Export quinol, tetras 1, tetras 2, macrol
End

Export cipro, oflox, tetras ac rap, doxi, doxi DI, cotri DB,
cotri DI, vanco tract, teico tract, amika, genta, metro tract,
clinda DB, clinda DA, imip, RFM DA, GCV tract, ACV DB,
ACV DA, ARA A tract, RBV tract, AMD DB, AMD DA,
RMD tract, peni procaina, peni G Na, peni G Na DA,
peni amp espectre, cloxa, ampi, amoxi, eritro DB, eritro DA,
roxi, amoxi clav DB, amoxi clav DA, ticar clav, cefuro OR,
cefuro EV, ceftriax, cefazol, cefra, cefmet, cefoxi, ceftaz, aztreo

Deductive knowledge

Rules:

R001 If quinol then conclude cipro is modp
”Kobayashi H. Clinical efficacy of ciprofloxacina in the
treatment of patients with respiratory tract infections in
Japan. Am J Med 1987 ; 82(40): 169-73”

R002 If quinol and clinic situation/tract OR
then conclude oflox is llp

;; tetraciclines per mycoplasma
R003 If tetras 1 then conclude tetras ac rap is p
R004 If tetras 2 then conclude doxi is p
R005 If tetras 1 then conclude doxi DI is p
;; macrolids per mycoplasma
R006 If macrol then conclude eritro DB is s
R007 If macrol then conclude eritro DA is s
R008 If macrol and situacio clinica/tract OR

then conclude roxi is mp
End deductive

End

Figure 6.4: Module Pneumonia Mycoplasma Treatment.

6.3. Spong–IA 153

6.3 Spong–IA

Spong–IA is an ES for sponge classification developed at the IIIA by Marta
Domingo (Domingo, 1993a; Domingo, 1993b) using Milord II. It is a col-
laboration with the Ecology group at the CEAB and have been directed by
Dr. Carlos Sierra and Dr. Iosune Uriz. A Ph.D. Thesis will be presented
soon by Marta Domingo.

Biological classification is a task performed usually by sistematists, but
speciment identification can also be the work of either an expert or a general
scientist, who being a specialist in other fields, needs the identification of a
sample as a starting point for his research.

While an expert would search for a sequence of characters inspired by his
experience, a novice or a laboratory technician can be prepared to perform
the collection of data, but he can still feel lost in the selection of relevant
characters for a given case of classification. The knowledge he would need
are the rules of thumb of experts in the field, which in fact are adquired
only after years of experience. This is the kind of knowledge that an ES is
specially suited to model.

In Figure 6.5 there is an example of the modular structure for Geodia
sponges. In Figure 6.6 there is a partial example of a concrete case of
classification.

Spong–IA is an application that has approximately 60 modules, 350
facts, 300 rules and 150 metarules. In is starting now the validation step.

6.4 Ens–AI

Ens–AI (Barroso, 1992) is an intelligent tutorial system directed to the
diagnosis and orientation assistency in pedagogical processes. This work is
directed to the student education and its goal is to obtain the diagnosis and
orientation assistance. This ES has been developed by Dr. Clara Barroso
of the La Laguna University (Canarian Islands).

The pedagogical knowledge is composed by a set of different domains of
knowledge, mainly the psychology, the pedagogy and the teaching knowl-
edge. Educational problems are treated by multiprofesional teams com-
posed by educational professionals like psychologist, pedagogues and teach-
ers.

The knowledge on education, or pedagogic knowledge, is composed by
a set of interrelated knowledge. Expert teams of schools deal with the diag-
nosis and recommendations for educational problems. They are composed
by psychologists, pedagogues and teachers specialized on elementary ed-
ucation. They advice and orient the general teacher to act in front of a

154 Chapter 6. Applications

Figure 6.5: Example of module tree.

6.4. Ens–AI 155

==

Case Name: Geodia

Date: 2-2-1994 13:49

--

Long Name: GEOGRAPHICAL LOCATION

Value: (MEDITERRANEAN)

Module: CLASSES Name: GEO

--

Long Name: PRESENCE OF SPICULES

Value: S

Module: SKEL Name: PRES

--

Long Name: FIBRES PRESENT IN THE SKELETON

Value: GP

Module: SKEL Name: FIBRE

--

Long Name: SPICULAR FIBRES OR TRACTS

Value: GP

Module: SKEL Name: TRACTS

--

Long Name: CHEMICAL COMPOSITION

Value: (SILICA)

Module: SKEL Name: QUIM

--

Long Name: SPICULE CATEGORIES

Value: (BOTH CATEGORIES)

Module: SPICULE Name: SIZE

--

Long Name: NUMBER OF THE SPICULE AXES

Value: (FOUR ONE)

Module: SPICULE Name: AXIS

--

Long Name: NUMBER OF THE SPICULE ACTINES

Value: (MORE THAN TWO TWO)

Module: SPICULE Name: ACTINE

--

Long Name: TYPE OF MEGASCLERES

Value: (OXEA TRIAENA)

Module: SPICULE Name: MEGAS

==

Figure 6.6: Case example.

156 Chapter 6. Applications

given problem, following the psychopedagogical analysis and diagnosis of
the problematic student. The kind of information managed by the expert
team to elaborate their diagnosis is based in three aspects:

The student: The social and individual characteristics of the student.

His training environment: Going from the internal characteristics of
the school to the external features of the family or his social envi-
ronment.

His teacher: His education level, skills, expertise, speciality, attitude and
expectations.

The first symptoms of a problem are usually the low profit or the mis-
behavior of the student. The analysis of the above data allow the experts
to make a diagnosis and to propose concrete actions to solve the situation
(such as special or alternative education).

The real situation at the school is that expert teams have to work with
a great number of cases. They concentrate in the most important ones, for
instance psychopathologies or special education needs. The less important
cases (low profit ,misbehavior, etc) have to be treated by the general teacher
without specialized advice.

Teachers usually have not the necessary training to cope with this special
cases. They have difficulty to analyze with objectivity the result of their
actions. All these facts have motivated the development of an expert system
thougth as a tool to advice teachers in their educational task.

Ens–AI has about 60 modules, 400 facts, 500 rules and 60 metarules.

6.5 Fuzzy Control Example

The first exercise proposed to show the expresivity power of Milord II
is a simple problem of fuzzy control. Fuzzy control methods rely on the
knowledge of a set of rules that link, at a symbolic level, the controller
inputs to outputs.

The problem to be solved is the regulation of the level in the second
of two coupled tanks as shown in Figure 6.7. Laurent Foulloy introduced
this example in (Foulloy, 1993) and we will use the fuzzy inference rules
proposed in this paper.

We program the modules of Milord II that represent the controller
processes of the above control problem. In the Figure 6.8 we can see all
the parts of this regulation example. The complete code of this example is
given in the Section C.2.

6.5. Fuzzy Control Example 157

e

h2

c

Q

h1

q1,v1 q2,v2S S

s s

Figure 6.7: Coupled tanks example.

Simulation Process: We need to simulate the variation relative to the
time of the level of both tanks h1 and h2 given a flow Q. The controller
acts by intervals of time. Given the sampling period ts the controller
needs to know the level of the second tank at time kts , h2(kts), and

the first derivative of that level dh2(kts)
dt

. With this data the controller
computes the new flow Qk+1 until time (k + 1)ts.

Controller: The controller is a process with three components:

1. Fuzzification. The input of the controller is the actual level in
the second tank and its first derivative. First the controller needs
to translate these values to qualitative values.

2. Fuzzy Inference. These qualitative values can fire a set of rules
that represents the fuzzy control. These rules return a new qual-
itative value for the flow.

3. Defuzzification. Finally we must translate the resultant qualita-
tive value of the new flow to the first tank to a physical value.

6.5.1 Simulation Process

Given two identical tanks with section S and the coupling tubes with section
s it is easy to see that the levels in the tanks are:

{

S dh1

dt
= Q − sv1

S dh2

dt
= sv1 − sv2

where
sv1 =

ρg

R
(h1 − h2)

158 Chapter 6. Applications

Process

c

h2,dh2

Q

fuzzification

defuzzification

fuzzy inference
-

Figure 6.8: Scheme of the process.

and

sv2 =
ρg

R
h2

Normalizing for ρg
R

:

{

S̄ dh1(t)
dt

= Q̄ − h1(t) + h2(t)

S̄ dh2(t)
dt

= h1(t) − 2h2(t)

Finally,






S̄2 d2h2(t)
dt2

+ 3S̄ d2h2(t)
dt2

+ h2(t) = Q̄

h1(t) = S̄ dh2(t)
dt

+ 2h2(t)

and










h2(t) = c1ep1t + c2ep2t + Q̄
dh2(t)

dt
= c1p1ep1t + c2p2ep2t

h1(t) = c1(2 + S̄p1)ep1t + (2 + S̄p2)c2e
p2t + 2Q̄

where p1 = − 3+
√

5
2S

and p2 = −3+
√

5
2S

. Considering the initial conditions
h1(ta) = h1,a and h2(ta) = h2,a

c1 =
h2,a − c2e

p2ta − Q̄

ep1ta

c2 =
h2,a(2 + S̄p1) − h1,a − Q̄S̄p1

S̄(p1 − p2)ep2ta

6.5. Fuzzy Control Example 159

Given the initial levels of the tanks h1,(k−1)ts
and h2,(k−1)ts

and the flow
Q̄ in the interval of time [(k − 1)ts, kts] we can calculate the new levels in
the first tank and its derivative at time kts:

{

h2(kts) = c1ep1kts + c2ep2kts + Q̄
dh2(kts)

dt
= c1p1ep1kts + c2p2ep2kts

We use a set of Lisp functions to simulate this process.

6.5.2 Controller

Now we introduce in detail the three components of the controller: the
fuzzification, the fuzzy inference and the defuzzification. The implementa-
tion of this fuzzy controller is very simple. It consists in using the function
attribute of the facts for implementing the fuzzificator and the defuzzifica-
tor, and the Milord II rules for the fuzzy inference.

We use three modules, that is, the fuzzificator, the defuzzificator and
the controller (see the Figure 6.9).

Figure 6.9: Fuzzy control modules.

Fuzzification

Fuzzification is a numeric to qualitative interface. The numerical value of
the error (in this example the difference between the level at the second
tank h2 and the reference level c) and its derivative are translated to a
set of qualitative values. In our case we use a set of symbols P0, PS, PM
and PL standing respectively for the qualitative constants Positive Zero,
Positive Small, Positive Medium and Positive Large. The symbols N0, NS,
NM and NL represent the same for negative values.

160 Chapter 6. Applications

In the Figure 6.10 we can see that these symbols are represented as
fuzzy sets. The characteristic function is a trapezoid of dimensions width
and slope.

width

0

1

x

P0 PS PMN0

x1

fa

fb

x2slope

Figure 6.10: Fuzzification process.

In the example of the Figure 6.10 we can see that given a numeric value
x1 the fuzzification function returns the value fa for the symbol P0 and the
value fb for the symbol PS. fa and fb are real numbers between 0 and 16.

fa =
1

2
−

1

2slope
(x1 − width) and fb =

1

2
+

1

2slope
(x1 − width)

In our example these real values are translated to linguistic terms.
The linguistic terms used in this example are: impossible, few possible,
sligh possible, possible, quite possible, very possible and sure7.

In the following module example we can see that the module fuzzifier
imports the value of the second tank level and its derivative, and exports
its qualitative values (e and Var e).

We represent these fuzzy sets by means of enumerated facts of type
Q domain. The function attribute of these facts are used to make these
transformations.

Module Fuzzifier =
Begin

Inherit Simulator
Inherit Data
Export e, Var e
Deductive knowledge

Dictionary:

6Notice that with this representation the fuzzification of a number only returns one
or two symbolic values.

7We consider that the linguistic terms are equidistant into the interval [0, 1].

6.5. Fuzzy Control Example 161

Types:

Q domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:

e = Name: ”Qualitative Value of e”
Type: Q domain
Function:

(lambda ()
(let* ((slope (fact value Data/s))

(terms (type e))
(ratio (* (- (division (fact value Simulator/h2b)

(fact value data/reference))
1) 5))

(ling terms (linguistic terms))
(width (fact value Data/w))

(Num terms (length terms)))
...

Var e = Name: ”Qualitative Value of Var e”
Type: Q domain
Function:

...
End deductive

End

For instance, given slope = 2.5 and width = 5 (triangular case) the
fuzzification of 6 returns that P0 is sligh possible and PS is quite possible.

Fuzzy Inference

Given the qualitative values of the error and its derivative we can use the
Table 6.1 (Vicar-Whelan, 1976) to find the resultant value of control Q.

ε/dε NL NM NS N0 P0 PS PM PL

PL P0 PS NS NL NL NL NL NL

PM PS N0 NS NM NM NM NL NL

PS PM PS N0 NS NS NS NM NL

P0 PM PM PS P0 N0 NS NM NM

N0 PM PM PS P0 N0 NS NM NM

NS PM PL PS PS PS P0 NS NS

NM PL PL PM PM PM PS P0 P0

NL PL PL PL PL PL PL P0 P0

Table 6.1: Mac Vicar–Wheland’s initial set of rules.

162 Chapter 6. Applications

The qualitative values of the error and the qualitative values of its
derivative will produce a set of qualitative values. In our case we represent
this table as a set of Milord II rules, where the facts used are enumerated
facts.

Module Fuzzy Inference =
Begin

Module F = Fuzzifier
Export Var u
Deductive knowledge

Dictionary:

Types:

Q domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:

Var u = Name: ”Qualitative Action”
Type: Q domain

Rules:

R001 If F/e int (PL) and F/Var e int (NL)
then conclude Var u = (P0) is sure

...
R035 If F/e int (P0) and F/Var e int (NS)

then conclude Var u = (PS) is sure
R036 If F/e int (P0) and F/Var e int (N0)

then conclude Var u = (P0) is sure
...
R043 If F/e int (PS) and F/Var e int (NS)

then conclude Var u = (N0) is sure
R044 If F/e int (PS) and F/Var e int (N0)

then conclude Var u = (NS) is sure
...
R064 If F/e int (NL) and F/Var e int (PL)

then conclude Var u = (P0) is sure
End deductive

End

These 64 rules produce the qualitative output of the control. Notice
that in our system we can introduce weighted rules (in this example all the
rules are sure) allowing to use richer control strategies.

As shown above the result of a fuzzification process is one or two terms.
Taking into account that the rules have as premises the error and its deriva-
tive, the output of the fuzzy inference can be one of four terms as maximum
(in this example).

For instance, given the value e = P0 very possible and PS sure and
Var e = N0 very possible and NS possible, the four rules R035, R036,

6.5. Fuzzy Control Example 163

R043 and R044 are fired (see the code example). The result for Var u is
NS very possible, N0 possible, P0 possible and PS slightly possible.

Defuzzification

The terms obtained in the fuzzy inference have to be deffuzified in order to
obtain a real number representing the physical parameter of control. To do
that we use a simple deffuzification method consisting in the computation
of the gravity center8 of the resultant function (see the Figure 6.11).

0

1

x

P0 PS PMN0

fps

fp0

xgc

Figure 6.11: Defuzzication by mean of the gravity center.

The defuzzification of the above example P0 is sligh possible and PS
is quite possible (for number 6) returns 5.428. Obviously the error has an
inverse relation with the number of linguistic terms. The implementation
of this module (defuzzifier) is similar to the fuzzifier module.

6.5.3 Results

We run an example to show the whole process. We use slope = 2.5, width
= 5, S̄ = 50 and the reference level of 800. Initially we consider that the
two tanks are empty, and there is no flow into the first tank.

In the Figure 6.12 we represent the level in the second tank, the flow
into the first tank and the control actions. We can observe an small error
in the result of the level in the second tank (805 instead of 800). This is
produced by the small number of linguistic terms used.

In the Figure 6.13 we can see a detailed graph of the evolution of the
control actions. The stabilization is finally performed by mean of small
alternatively positive and negative actions of control.

8There are several methods for the deffuzification process, for instance those given in
(Berenji, 1992).

164 Chapter 6. Applications

Figure 6.12: Results for h2, dQ and Q.

Finally in the Figure 6.14 we can see the phase plane result of the
simulation. Observe how the absolute value of the error and its variation
decreases to the origin.

6.6 Propagation Rules for Polytrees

Here we present an application whose goal is to obtain a declarative algo-
rithm for the propagation of belief in bayesian polytrees. This application
was developed by Jose Carlos Ortiz and proposes minimal modifications to
Milord II in order to reach this goal. Finally bayesian reasoning has been
added to the inference machinery of Milord II.

6.6.1 Introduction

We start from the Belief Updating by Network Propagation of Judea Pearl
(Pearl, 1988). A polytree is a singly connected network, namely, no more
than one path exists between any two nodes.

Let considers a typical node having m children, Y1, . . . , Ym, and n par-
ents, U1, . . . , Un as in Figure 6.15.

The belief distribution of variable X can be computed if the three fol-
lowing types of parameters are made available:

6.6. Propagation Rules for Polytrees 165

Figure 6.13: Detailed dQ.

166 Chapter 6. Applications

Figure 6.14: Phase plane result.

?πY1
(X)

6
λY1

(X)

?

πX(Ui) 6λX(Ui)

?

?

@
@

@
@

@@R

�
�

�
�

��	

�
�

�
�

���

@
@

@
@

@@I

U1��
��

· · · Ui��
��

· · · Un��
��

X��
��

Y1��
��

· · · Yj��
��

· · · Ym��
��

Figure 6.15: Node example.

6.6. Propagation Rules for Polytrees 167

1. The current strength of the causal support π contributed be each
incoming link Ui → X.

2. The current strength of the diagnostic support λ contributed by each
outgoing link X → Yj .

3. The fixed conditional–probability matrix P (x|u1, . . . , un) that relates
the variable X to its immediate parents.

Local belief updating can be accomplished in three steps, to be executed
in any order.

Belief Updating: Node X inspects the messages πX(ui), i = 1, . . . , n
communicated by its parents (causal support) ant the messages λYj

(x), j =
1, . . . ,m communicated by its children (diagnostic support) and up-
dates its belief measure to

BEL(x) = αλ(x)π(x)

where

λ(x) =
m
∏

j=1

λYj
(x)

and

π(x) =
∑

u1,...,un

P (x|u1, . . . , un)
n

∏

i=1

πX(ui)

and α is a normalizing constant.

Bottom–up propagation: Using the messages received, node X com-
putes new λ messages to be send to its parents. For instance, the
new message λX(ui) that X sends to its parents Ui is computed by

λX(ui) = β
∑

x

λ(x)
∑

uk:k 6=y

P (x|u1, . . . , un)
∏

k 6=y

πX(uk)

Top–down propagation: Each node computes new π messages to be
send to its children. For instance, the new πYi

(x) message that X
sends to its child Yj is computed by

πYj
= α





∏

k 6=j

λYk
(x)





∑

u1,...,un

P (x|u1, . . . , un)
n

∏

i=1

πX(ui)

Boundary conditions:

168 Chapter 6. Applications

1. Root nodes: if X is a node without parents, we set π(x) equal to the
prior probability P (x)

2. Anticipatory nodes: if X is a childness node that has not been initi-
ated, we set λ(x) = (1, 1, . . . , 1)

3. Evidence nodes: if evidence X = x ′ is obtained (X being any node in
the network) we set λ(x) = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the x’–th
position.

6.6.2 Implementation over Milord II

We use the object level and the meta level of Milord II in a particular
form to deal with this kind of application. At the object level we only
represent the causal polytree, nodes and links between nodes. We do not
use the inferential mechanisms provided by this level. We use the meta
level to the belief propagation along the causal polytree.The complete code
for this example is given in Section C.3.

Object Level

At the object level we represent the nodes as predicates and the links be-
tween nodes as rules. The example of application n = m = 3, U1 = A,
U2 = B, U3 = C, X = D, Y1 = E, Y2 = F and Y3 = G.

Nodes: The nodes of the polytree are facts of type array. We declare all
the nodes like the following example for A:

A =
name: ”A”
type: array[a0,a1]

Pointers: Because of the premises and the rules of the language Milord II
are of type logic, we use a kind of predicates we name pointers as
representational facts of the polytree nodes . We declare a pointer for
each element of the tree (represented by a relation points to to the
facts declare above). For instance the pointer to A is:

A ptr =
name: ”Pointer to A”
type: logic
relation: points to A

Rules: The rules represents the links among the nodes. In this example
the links of the node D with its parents A, B and C; and its children
E, F and G. We need four rules (using the pointers):

6.6. Propagation Rules for Polytrees 169

R01: If A ptr and B ptr and C ptr then conclude D ptr is P (d|a, b, c)
R02: If D ptr then conclude E ptr is P (e|d)
R03: If D ptr then conclude F ptr is P (f |d)
R04: If D ptr then conclude G ptr is P (g|d)

Prior Probabilities: For each root node (node with no parents, in this
example A, B and C) we declare a fact that represents its prior prob-
ability. For instance, for the root node A the declaration of its prior
probability is:

A prior =
name: ”P(A) Prior probability of A”
question: ”Enter P(A), prior probability for A”
type: array[a0,a1]
relation: prior A

The value by default for prior probability assumes equiprobability.

Evidences: Each node with evidence (all the leaves, in this example the
nodes E, F and G) has a fact that represents its evidence.

E evid =
name: ”Evidence for E”
question: ”Enter evidence for E”
type: array[e0,e1]
relation: evid E

The interface of the only module of this application declares the export
interface containing all the nodes of the polytree, and the import interface
with each fact of evidence and each fact of prior probability:

Export A, B, C, D, E, F, G
Import A prior, B prior, C prior, E evid, F evid, G evid

Meta Level

At this point we explain a simplified version of the metarules that deal with
the evidence propagation. Remember the evaluation strategy reified where
we execute by only a step of reification.

After the module asked to the user all the import interface, the object
level of the module reifies the facts belonging to the import interface (the
only that have a value at the moment) and the rules (with a particular
format9).

9In order to simplify the explanation we omit the metarule that makes the translation
to this form. Notice that the premises and the conclusion of the rules are the facts pointed
by the original of the rules.

170 Chapter 6. Applications

K(A prior, aprior)
K(B prior, bprior)
K(C prior, cprior)
K(D evid, devid)
K(E evid, eevid)
K(F evid, fevid)
K(cause((A, B, C), D), P (d|a, b, c))
K(cause((D), E), P (e|d))
K(cause((D), F), P (f |d))
K(cause((D), G), P (g|d))

After this reification step we apply the metarules belonging to the con-
trol knowledge of this module. We will only explain some of the metarules
in order to make clear this kind of application.

Declare nodes: We declare which is a node in the metalevel:

m01 If points to($x ptr, $x) then conclude node($x)

this metarule produces node(A), node(B), ..., node(G).

Initialize prior probability: We initialize the root nodes with the prior
probability with the metarule:

m02 If prior($x prior, $x) and K($x prior, $v)
then conclude K(pi($x), $v)

For instance, the node A is a root node prior(A prior, A) and has a
value entered by the user K (A prior, aprior), then the result is:

K(pi(A), aprior)

Initialize evidence: We initialize the nodes with evidence as lambda pred-
icates:

m03 If evid($x evid, $x) and K($x evid, $v)
then conclude K(lambda($x), $v)

For instance, the node D has evidence evid(D evid, D) and has a
value entered by the user K (D evid, devid), then the result is:

K(lambda(D), devid)

6.6. Propagation Rules for Polytrees 171

Lambda propagation: Calculates lambda messages for nodes with sev-
eral fathers (D in the example):

λX(ui) = β
∑

x

λ(x)
∑

uk:k 6=y

P (x|u1, . . . , un)
∏

k 6=y

πX(uk)

We use the following metarule:

m05 If K(cause($list of fathers, $child), $matrix) and

K(lambda($child), $lambda child) and

position($father i, $list of fathers, $i) and

set of instances

($msg,
conj (position ($father k, $list of fathers,$k),

neg(equal($k,$i))
K(pi msg ($father k, $child), $msg)),

$pi msgs fathers minus i)
then conclude

K(lambda msg($child, $father i),
matrix product

($lambda child,
transpose

(matrix prod*

(cartesian prod*($pi msgs fathers minus i),
reduce dim($matrix, $i)))))

In the case of nodes with only one father (E, F and G in the current
example):

λX(u) = β
∑

x

λ(x)P (x|u)

We use the following metarule:

m06 If K(cause($list of fathers, $child), $matrix) and

cardinal($list of fathers, 1) and

position($father, $list of fathers, $i) and

K(lambda($child), $lambda child)
then conclude

K(lambda msg($child, $father),
matrix product($lambda child, transpose($matrix)))

We can create a lambda message from the previously calculated lambda
of the node D , K(lambda(D), devid), and the rule K(cause((D), E),
P (e|d)). From the previous metarule we conclude:

172 Chapter 6. Applications

K(lambda msg(E, D),
matrix product(devid, transpose(P (e|d))))

Finally the lambda update function,

λ(x) =
m
∏

j=1

λYj
(x)

The following metarule implements this function:

m07 If node($father) and

set of instances

($msg,
K(lambda msg ($child, $father), $msg),
$lambda msgs children)

then conclude

K(lambda($father), inner product($lambda msgs children))

Pi propagation: Similarly to lambda propagation.

Belief update: Finally the belief update BEL(x) = αλ(x)π(x) is imple-
mented with the following metarule:

m11 If K(lambda($x),$lambda x) and

K(pi($x),$pi x)
then conclude

K($x, norm(inner product($lambda x,$pi x)))

We have explained this application to show that with minimal modifica-
tions Milord II deal with bayesian reasoning. We have introduced the type
of facts array, the evaluation strategy reified and some metapredicates (for
instance, position) and functions over arrays. You can see an incomplete
example of the resulting code in the following Figure.

Module POLYTREE =
Begin

Export A, B, C, D, E, F, G
Import A prior, B prior, C prior, E evid, F evid, G evid
Deductive knowledge

Dictionary:

Types:

dom A = (a0, a1)
dom B = (b0, b1, b2)
dom E = (e0, e1)

6.6. Propagation Rules for Polytrees 173

...
Predicates:

A =
name: ”A”
type: array [dom A]

A prior =
name: ”P(A) Prior probability of A”
question: ”Enter P(A), prior probability for A”
type: array [dom A]
relation: prior A

A ptr =
name: ”Pointer to A”
type: logic
relation: points to A

D =
name: ”D”
type: array [dom D]

E =
name: ”E”
type: array [dom E]

E evid =
name: ”Evidence for E”
question: ”Enter evidence for E”
type: array [dom E]
relation: evid E

...
Rules:

R01 If A ptr and B ptr and C ptr
then conclude D ptr is

((((0.3 0.7) (0.4 0.6) (0.5 0.5))
((0.75 0.25) (0.82 0.18) (0.35 0.65))
((0.45 0.55) (0.8 0.2) (0.1 0.9)))
(((0.3 0.7) (0.99 0.01) (1 0))
((0.37 0.63) (0.85 0.15) (0.21 0.79))
((0.45 0.55) (0.99 0.01) (0.27 0.73))))

R02 If D ptr then conclude E ptr is ((0.75 0.25) (0.55 0.45))
R03 If D ptr then conclude F ptr is ((0.3 0.2 0.5) (0.1 0.5 0.4))
R04 If D ptr then conclude G ptr is ((0.3 0.6 0.1) (0.5 0.2 0.3))
end deductive

Control knowledge

Evaluation Type: reified

Deductive Control:

m01 ...
m02 If points to ($x ptr, $x) then conclude node($x)
m03 If evid($x evid, $x) and K($x evid, $v)

174 Chapter 6. Applications

then conclude K(lambda($x), $v)
m04 If prior($x prior, $x) and K($x prior, $v)

then conclude K(pi($x), $v)
m05 If K(cause($list of fathers, $child), $matrix) and

cardinal($list of fathers, 1) and

position($father, $list of fathers, $i) and

K(lambda($child), $lambda child)
then conclude

K(lambda msg($child, $father),
matrix product($lambda child, transpose($matrix)))

...
end control

end

6.7 Future Applications

Milord II is currently being extended with temporal representation and
reasoning capabilities. The knowledge representation languange has been
enriched to express the temporal reference of facts as well as temporal
relations between them. Such a language enrichement is efficiently sup-
ported by especialized temporal constraint propagation algorithms. Mi-
lord II’s temporal extension is founded on a formally studied temporal
ontology based on instants and periods as pairs of instants (Vila, 1993b;
Vila, 1993c), states, fluents and accomplishment events as temporal entities
(Vila, 1993d), pointwise metric temporal constraints as temporal relations
(Dechter et al., 1991; Vila, 1993a) and a logic –embodying these represen-
tational issues– based on the notion of temporal token introduced as an
argument, namely temporal token arguments. Porc-IA is an ESs based on
temporal representation to program the evolution of a pig farm.

6.8 Conclusions

We have presented the main applications and examples developed using
Milord II. Our experience with experts is very satisfactory and we are
able to start new applications soon. Experts use intensively the modular
decomposition of problems and the generic modules. This allows them to
make easier to understand code (real applications have hundreds of facts
and rules). An example of the size of these applications is given in Fig-
ure 6.16.

We have showed also that Milord II is able to represent other kind of
problems.

6.8. Conclusions 175

Figure 6.16: Comparations among applications.

176 Chapter 6. Applications

Chapter 7

Conclusions

We have presented Milord II. It is a language and an architecture to build
knowledge–based systems. In this Chapter we present the conclusions of
this thesis and the future work on Milord II.

The conclusions are summarized in the following items:

A Modular Language: All the programming work performed with Mi-
lord II is based on modules. Modules are the primitive components
of the language. The applications programmed with Milord II start
by structuring the whole problem in a hierarchy of modules. It is a
language adapted to programming in the large, that is, to program
real applications.

Milord II has not global components in the system. Each module
contains a complete ES specialized in a part of the whole application.
Modules have its own deductive knowledge (dictionary, rules and so
on), its own local logic (particular multi–valued logic used to cope
with the concrete subproblem) and the local control. Modules have
well defined interfaces to interact with the user and the other modules
of the system.

Milord II modular language is based on modules and generic mod-
ules. Generic modules allows us to save code and to make more
understandable the code of an application.

A set of operations on modules have been designed to deal with in-
cremental programming of applications. Refinement, contraction and
expansion of modules allows the expert to build several versions of
modules that are progressively refinements and modifications . All
the successive versions of a module are executable entities allowing
an incremental validation and testing of the applications.

177

178 Chapter 7. Conclusions

Imperfect Knowledge: We have introduced the local logics of modules
of Milord II. Expertise implies to deal with imperfect information.
The information managed by experts is imprecise and uncertain. A
language for ESs must provide the means of expressing easily this
kind of information. Furthermore any good language to express un-
certainty is problem dependent.

Milord II introduces a familly of multi–valued algebras that are
useful to represent uncertainty by means of linguistic terms. The
extension of these algebras to intervals of truth–values has been used
to deal with imprecision and fuzzy sets.

Local logics have been introduced as a form to adapt the logic to the
concrete problem and the techniques to allow the commmunication
among modules with different logics have been provided.

Deduction by Specialization: The deductive knowledge of the modules
of Milord II is composed of weighted facts and rules and it has a set
of added functionalities that contribute to the practical implementa-
tion of ESs.

The inference engine of Milord II is based on specialization of KBs.
It is a deductive method that provides several improvements on clas-
sical inference engines. The search strategy, the communication of
the system, the validation and the deductive economy of the system
are improved thanks to this mechanism. We have formulated the spe-
cialization calculus and presented the practical implementation of an
inference engine based on specialization.

Control: We have presented the implicit control of Milord II. It deals
with the economy of deduction and quering to the user (unnecessary
rules) and with incomplete knowledge (subsumption). These thec-
niques takes benefits from specialization.

The inference engine based on specialization allows us to separate
the search component and the deductive one. Thanks to this separa-
tion we can program different search strategies independently of the
deduction.

Each module can contain a local control component based on Horn–
like rules. It provides a powerful resource to implement complex de-
ductive behaviours.

Applications: Real ESs can be programmed using Milord II. The im-
plementation and validation of several ESs are now being finished.
The domains of these applications are heterogeneous, from medical
applications (Terap–IA) to biological classification (Spong–IA).

7.1. Future Work 179

We have showed that Milord II is also useful in other kind of appli-
cations such as fuzzy control and belief propagation.

7.1 Future Work

Milord II is the starting point of a language for autonomous agents (Puyol,
1989b; Puyol, 1989a; Puyol, 1990) where fuzzy control and robotics will be
the main topics. We will use the capabilities of specialization to implement
knowledge communication among agents.

A temporal extension of Milord II and its applications are also being
designed.

180 Chapter 7. Conclusions

Appendix A

Syntax of Milord II

A.1 Notation

The symbols ::=, [,], | are part of the BNF formalism, as follows:

L ::= R The syntax of L is defined by R
[X] An optional item
X | Y An item from one of the syntactic categories X or Y

• We write the predefined terminal symbols that are part of the lan-
guage Milord II in underlined boldface 1.

• We write user-defined terminal symbols in italic. They are always
atomic symbols.

• We write non-terminal symbols in normal type face.

Lines of comments can be written after two semicolons (;;). If the com-
ment is larger that one line, two semicolons must be written at the beginning
of the lines. Several spaces and carry returns are ignored and considered
only a space.

1Comparison of predefined terminal symbols is case-insensitive.

181

182 Appendix A. Syntax of Milord II

A.2 Modular System

environ ::= moddecl environ | moddecl
moddecl ::= Module modbind
modbind ::= amodid [([paramlist])][modop modexpr] [= modexpr]

modexpr ::= bodyexpr [modop modexpr]
modop ::= : | < | >
bodyexpr ::= overloadfun(modexpr , ..., modexpr)|

pathid[([iparamlist])] |

begin decl end |
nil

paramlist ::= params [; sharing]
params ::= amodid [modop modexpr] | params ; params
iparamlist ::= modexpr | iparamlist ; iparamlist
overloadfun ::= union

| intersection | complement | extension
decl ::= [hierarchy]

[interface]
[deductive]
[control]

hierarchy ::= Open modexpr |
Sharing patheq |
Inherit pathid |
moddecl |
hierarchy hierarchy

interface ::= [import]
[export]

sharing ::= Sharing patheq
pathid ::= amodid | amodid/pathid

patheq ::= pathid = patheq | pathid = pathid |
patheq ; patheq

import ::= Import predicateidlist
export ::= Export predicateidlist
predicateidlist ::= predid , predicateidlist | predid
pathpredid ::= predid | amodid/pathpredid

A.3. Deductive Knowledge 183

A.3 Deductive Knowledge

deductive ::= Deductive knowledge
[Dictionary: dictionary]
[Rules: rules]
[Inference system: logcomp]
end deductive

A.3.1 Dictionary

dictionary ::= [typedef] preddef
typedef ::= Types: typebindings
typebindings ::= typeid [= [temporal] typespec] |

typebindings typebindings
typespec ::= (values)|

predefined |
typeid |
Array [arraydim] |

Set Of typeid |
frame framespec end frame

predefined ::= boolean | logic | numeric | class
arraydim ::= typeid |

numeric |
arraydim , arraydim

framespec ::= slotid : typeid
framespec framespec

preddef ::= Predicates: predbindings
predbindings ::= predid = attributes |

predbindings predbindings
attributes ::= name [question] type [function] [relations]
name ::= Name: string
question ::= Question: string
type ::= Type: [temporal] typespec
function ::= Function: S-expression
relations ::= Relation: relationid pathpredid |

relations relations
relationid ::= predef-rel-id | symbol
predef-rel-id ::= Needs | Needs true |

Needs false | Belongs to

184 Appendix A. Syntax of Milord II

A.3.2 Rules

rules ::= rule rules | rule
rule ::= ruleid If premisse-rule Then conclusion-rule

[documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule
conclusion-rule ::= conclude rconclusion is cert-value
condition-rule ::= conditio |

meta-condition |
no (conditio)|

no (meta-condition)

rconclusion ::= form |
elemental = (values)|

no (elemental)|

no (form op form)|

no (elemental = (values))

form ::= elemental | (form op form)

elemental ::= predid | varid
meta-condition ::= conditio is conditio |

is (conditio, conditio)|

conditio between (conditio, conditio)|

between (conditio, conditio, conditio)

values ::= symbol , values | symbol
values1 ::= symbol between [ltermid , ltermid] , values1 |

symbol between [ltermid , ltermid]

conditio ::= operator (expression, ..., expression)|

pathform | cert-value |
expression operator expression

pathform ::= pathform-s | pathform-c
pathform-s ::= elemental | amodid/pathform-s | varid/pathform-s

pathform-c ::= (formula)| amodid/pathform-c | varid/pathform-c

formula ::= (pathform op pathform)

expression ::= operator-arit (expression, ..., expression)|

(expression operator-arit expression)|

numeric | elemental | pathpredid | pathvar |
values | values1

S-expression ::= atom | list | S-expression S-expression
list ::= (S-expression)| ()

operator ::= < | > | <= | >= | = | /= | int

operator-arit ::= + | - | * | : | symbol

A.4. Inference System 185

A.4 Inference System

logcomp ::= [lingtermdef] [order]
[renaming]
[connectives]
[infpat]

lingtermdef ::= Truth values = (ltermidlist)|

Truth values = (ltermlist)

ltermidlist ::= ltermid , ltermidlist | ltermid
ltermlist ::= ltermid = (real, real, real, real), ltermlist |

ltermid = (real, real, real, real)

cert-value ::= ltermid |
number |
[ltermid , ltermid] |

[number , number] |

(certarrows)

certarrows ::= certlist |
(certarrows)certarrows

certlist ::= ltermid |
number |
certlist certlist

renaming ::= Renaming lrenames
lrenames ::= pathid/cert-value ==> cert-value lrenames |

pathid/cert-value ==>cert-value |

S-expression
connectives ::= Connectives:

[Negation = fundef]
[Conjunction = fundef]
[Disjunction = fundef]

infpat ::= Inference patterns:
Modus ponens = fundef

fundef ::= S-expression | fileid | luckasiewicz |
Zadeh | probabilistic | truth-table

order ::= (ltermid, ltermid) order |

λ
truth-table ::= Truth table (arrows)

arrows ::= (termlist) | arrows arrows

ltermlist ::= ltermid | ltermlist ltermlist

186 Appendix A. Syntax of Milord II

A.5 Control Knowledge

control ::= Control knowledge
[search] [threshold][deduccnt] [structcnt]
end control

A.5.1 Evaluation Type

search ::= Evaluation type: evaltype
evaltype ::= lazy | eager | heuristic | input | reified

A.5.2 Truth Threshold

threshold ::= Truth threshold: cert-value

A.5.3 Deductive Control

deduccnt ::= Deductive control: lmrr
lmrr ::= mrr lmrr | mrr
mrr ::= metaid If premisse-meta Then filters-mrr
filters-mrr ::= filter-mrr filters-mrr | filter-mrr
premisse-meta ::= condition-meta and premisse-meta |

condition-meta
condition-meta ::= mconditio |

no(mconditio)|

mconditio ::= metapredid (conditionterm , ..., conditionterm)

conditionterm ::= operation (conditionterm ,..., conditionterm)|

metafunctid (conditionterm , ..., conditionterm)|

conditio
filter-mrr ::= inhibit rules relation-id pathpredid |

inhibit rules pathpredid |
prune pathpredid |
increase form integer |
decrease form integer |
conclusion-meta

conclusion-meta ::= mconclusion |
no (mconclusion)

mconclusion ::= metapredid (conclusionterm , ..., conclusionterm)

conclusionterm ::= operation (conclusionterm , ..., conclusionterm)|

metafunctid (conclusionterm ,..., conclusionterm)|

form

A.5. Control Knowledge 187

A.5.4 Structural Control

structcnt ::= Structural control: lmre
lmre ::= mre | mrx | lmre lmre
mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodidlist |

order amodidlist with certainty cert-value |
Open (conclusionterm , ..., conclusionterm)|

Module (conclusionterm , ..., conclusionterm)|

Inherit (conclusionterm , ..., conclusionterm)

amodidlist ::= amodid amodidlist | amodid
mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

188 Appendix A. Syntax of Milord II

Appendix B

Proofs

Proposition B.1 MP ∗
T ([a, b], [c, 1]) = [T (a, c), 1]

Proof. It reduces to find all solutions of the functional inequations

IT (x, z) ≥ c

being a ≤ x ≤ b. However, given a residuated pair (T, IT) it is well known
that the following relation holds:

T (x, y) ≤ z iff IT (x, z) ≥ y

Then, the solution for the first equation is z ≥ T (x, c), and taking into
account that x ≥ a, and that z = 1 is always a solution, the minimal
interval that will contain all the solutions for z is [T (a, c), 1].2

B.1 Proposition

Proposition B.2 If p, q, p1, . . . , pn denote literal symbols then the follow-
ing properties are fulfilled:

SR1: (p, V) |= (p,W) ⇔ V ⊆ W

SR2: (p, V) |= (¬p,W) ⇔ N ∗
n(V) ⊆ W

SR3: (p, V), (p,W) |= (p,U) ⇔ V ∩ W ⊆ U

SR4: (pi, Vi), (p1 ∧ · · · ∧ pn → q, V) |= (p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn →
q,W) ⇔ MP ∗

T (Vi, V) ⊆ W

189

190 Appendix B. Proofs

SR5: MP ∗
T (T ∗(V1, . . . , Vn),W) =

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) . . .)), if W = [w, 1]

Finally we explain the proof of the properties:

SR1: Straightforward from the satisfaction relation definition.

SR2: Follows from SR1 and the fact that a valuation ρ satisfies ρ(p) ∈ V
if, and only if, ρ(¬p) ∈ N∗

n(V).

SR3: Straightforward from the satisfaction relation definition.

SR4: First we prove the property for the simplest Modus Ponens case, i.e.,

{(p,U), (p → q, V)} |= (q,W) iff MP ∗
T (U, V) ⊆ W

By definition of the function MP ∗
T , MP ∗

T (U, V) is the minimal in-
terval containing all the solutions for ρ(q) in the following family of
functional equation systems:

{

ρ(p) = a
ρ(p → q) = IT (ρ(p), ρ(q)) = b

for any a ∈ U , and b ∈ V . Thus, for any model ρ satisfying ρ(p) ∈ U ,
and ρ(p → q) ∈ V and ρ(q) ∈ W , it must be only the case that ρ(p) ∈
MP ∗

T (U, V), and thus MP ∗
T (U, V) ⊆ W . Moreover, if U = [x, y] and

V = [z, 1], then MP ∗
T (U, V) = [T (x, z), 1].

Now property SR4 follows straightforward from the associativity of
the t-norm T , used to interpret conjunctions, and from the fact that
a residuated pair (T, IT) satisfies the following equality:

IT (T (x, y), z) = IT (x, IT (y, z))

SR5: From proposition 1, it follows that, if U = [x, y] and V = [z, 1], then
MP ∗

T (U, V) = [T (x, z), 1]. Then, it is easy to see that, due to the
associativity of the t-norm T , if Vi = [ai, bi], for i = 1, . . . , n, then

T ∗(V1, . . . , Vn) = [T (a1, . . . , an)1, T (b1, . . . , bn)]

and thus, on the one hand

MP ∗
T (V1,MP ∗

T (V2, . . . ,MP ∗
T (Vn,W) · · ·)) = [T (a1, . . . , T (an, w) · · ·), 1]

= [T (a1, . . . , an, w), 1]

1The expression T (r1, r2, r3, . . .) is the recurrent application of T as
T (r1, T (r2, T (r3 . . .) . . .)

B.2. Soundness Theorem 191

and on the other hand

MP ∗
T (T ∗(V1, . . . , Vn),W) = MP ([T (a1, . . . , an), T (b1, . . . , bn)], [w, 1])

= [T (a1, . . . , an, w), 1]

Properties from SR1 to SR4 give us a foundation for the specialization
calculus.

B.2 Soundness Theorem

From properties SR1, SR2, SR3 and SR4 of the semantical entailment, it
is easy to check that the above specialization calculus is sound.

Theorem B.1 (Soundness) Let A be a sentence and Γ a set of sentences.
Then Γ ` A implies Γ |= A

Proof. The properties SR1-SR4 show that the inference rules are locally
sound and complete. So, we need only to show that the axioms are sound
to have the proof of the theorem.

1. If A is the axiom AS1, i.e. A = (¬¬p → p, [1, 1]) then for every model
Mρ, ρ(p) = N(N(ρ(p))) = N(ρ(¬p)) = ρ(¬(¬(p))) ⇒ I(¬¬p → p) =
I(ρ(¬¬p), ρ(p)) = 1. Then, for all Mρ, Mρ |= (¬¬p → p, [1, 1]).

2. If A is the axiom AS2, i.e. A = (p, [0, 1]), it is the case that every
model Mρ satisfies ρ(p) ∈ [0, 1]. Then for all Mρ, we have trivially
that Mρ |= (p, [0, 1]).

3. If A is the axiom A1, i.e., A = (true, [1, 1]) then, by definition, for
every model Mρ, ρ(true) = 1 ⇒ Mρ |= (true, [1, 1]).

4. If A is the axiom A2, the proof is analogous to the previous case.

B.3 Restricted Completeness

B.3.1 Literal Completeness

It is straightforward to see that our deductive system is not complete. For
instance, we have {(p → q, 1), (q → r, 1)} |= (p → r, 1) but {(p → q, 1), (q →
r, 1)} 6` (p → r, 1). It is also the case that the language is not complete
for literal deduction in general. For instance, we have {(p → q, 1), (¬p →
q, 1)} |= (q, 1) but {(p → q, 1), (¬p → q, 1)} 6` (q, 1). However, it can be
proved that the system is complete for literal deduction in the context of a
restricted language setting, as it will be shown in this section.

192 Appendix B. Proofs

Previous definitions

Definition B.1 (Mv-Horn-Rules) We define the set Mv-Horn-Rules as
the set {(p1 ∧p2 ∧ · · ·∧pn → q, V) | pi and q are atomic symbols, V = [a, 1]
is an interval of truth-values of An with a > 0, and ∀i, j(pi 6= pj , q 6= pj) }

Definition B.2 (Restricted Language) Given the propositional language

Ln = (An, Σ, C,Sn)

we define a restricted propositional language as:

RLn = (An, Σ, C,RSn)

where RSn = Mv-Atoms ∪ Mv-Horn-Rules

For any Γ ⊂ RSn the next notation will be used:

• Γ = ΓL ∪ ΓR

• ΓL = {γ ∈ Γ|γ are mv-Atoms}

• ΓR = {γ ∈ Γ|γ are mv-Horn-Rules}

• Prem: Is a function that given a rule returns its conditions.

• Cond: Is a function that given a rule returns its conclusion.

• ΓA
L = {p ∈ Σ|∃V interval of An : (p, V) ∈ ΓL}

• ΓA
R = {p ∈ Σ|∃r ∈ ΓR : p ∈ Prem(r) or p = Concl(r)}

• ΓA = ΓA
L ∪ ΓA

R

Previous Lemmas

Proposition B.3 The inference rules (Weakening, Composition, Negation
and Specialization) are locally complete, i.e., they verify the following equiv-
alences:

1. (p, V) ` (p,W) iff (p, V) |= (p,W)

2. (p, V) ` (¬p,W) iff (p, V) |= (¬p,W)

3. {(p, V), (p,W)} ` (p,U) iff {(p, V), (p,W)} |= (p,U)

4. {(p1, V1), . . . , (pn, Vn), (p1∧· · ·∧pn → q,W)} ` (q, U) iff {(p1, V1), . . . ,
(pn, Vn), (p1 ∧ · · · ∧ pn → q,W)} |= (q, U)

B.3. Restricted Completeness 193

Proof. Straightforward from properties SR1-SR5 and from the definition
of the four inference rules in Section 3.3.

Lemma B.1 Let ΓL be a set of Mv-Atoms, and let R1, R2 be two sets of
mv-Horn-Rules. R1 and R2 rules have as premises conjunctions of atoms
belonging to ΓA

L , and share the same conclusion, an atom p not belonging
to ΓA

L .
If V1 =

⋂

{V ′′|{ΓL, R1} |= (p, V ′′)}, V2 =
⋂

{V ′′|{ΓL, R2} |= (p, V ′′)}
and W =

⋂

{V ′′|{ΓL, R1, R2} |= (p, V ′′)}, then W ⊇ V1 ∩ V2.

Proof. By reductio ad absurdum. Suppose that W 6⊇ V1 ∩ V2. Then
∃α ∈ V1∩V2 and α 6∈ W . Because of V1 and V2 are minimals, we have that:

• α ∈ V1 ⇒ ∃Mρ such that ρ(p) = α, Mρ |= ΓL and Mρ |= R1

• α ∈ V2 ⇒ ∃Mρ′ such that ρ′(p) = α, Mρ′ |= ΓL and Mρ′ |= R2

We will prove that there always exists a model Mρ′′ such that ρ′′(p) = α,
Mρ′′ |= ΓL, Mρ′′ |= R1 and Mρ′′ |= R2. Define ρ′′(p) = α, and ρ′′(a) =
min(ρ(a), ρ′(a)), ∀a ∈ ΓA

L . Mρ′′ easily extends to the Mv-Horn-Rules by
the implication function IT . Then, for this model Mρ′′ we have:

1. ρ′′(p) = α.

2. Mρ′′ |= ΓL: due to the fact that ρ′′ = min(ρ, ρ′) over ΓA
L .

3. Mρ′′ |= R1: ∀r ∈ R1, where r = (q1 ∧ · · · ∧ qm → p, [vr, 1]), we have
that Mρ |= R1 implies ρ(r) ≥ vr. Given that we work with Mv-Horn
rules, i.e. qi are not negated literals, and the monotonicity property
of function T , it always holds that:

ρ′′(q1∧· · ·∧qn) = T (ρ′′(q1), . . . , ρ′′(qn)) ≤ T (ρ(q1), . . . , ρ(qn)) = ρ(q1∧· · ·∧qn)

and, given that IT is not increasing in the first argument, it always
holds that:

ρ′′(r) = IT (ρ′′(q1 ∧ · · · ∧ qn), α) ≥ IT (ρ(q1 ∧ · · · ∧ qn), α) = ρ(r) ≥ vr

that is, M ′′
ρ |= R1.

4. Mρ′′ |= R2: Analogously to the previous case.

Summarizing, we have found Mρ′′ such that ρ′′(p) = α, Mρ′′ |= ΓL,
Mρ′′ |= R1 and Mρ′′ |= R2, i.e. {ΓL, R1, R2} 6|= (p,W) which is in contra-
diction with the enunciate of the lemma.2

194 Appendix B. Proofs

Next Lemma shows that previous deductions over a Mv-Atom p do
not restrict the models of Mv-Atoms belonging to premises of other rules
concluding the same Mv-Atom p. In practical terms, having previous de-
ductions over an atom r means that we know r with an interval of truth
values of type [v, 1]. Otherwise, if we knew r with a general interval of
type [b, c] it could be the case that premises of rules concluding r would
be semantically deduced with intervals different of [0, 1]. On the contrary,
it would not be possible to syntactically deduce them. So, next Lemma
allows us, when considering atom deducibility, to only consider those rules
that deduce it and not the rules that use it as a premise.

Lemma B.2
⋂

{V ′′|{(p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]), (r, [b, 1])} |= (p, V ′′)} = [0, 1]

Proof. It is sufficient to prove that ∀α ∈ [0, 1], we can find a model
Mρ such that ρ(p) = α and that Mρ |= (p ∧ q1 ∧ · · · ∧ qn → r, [a, 1]) and
Mρ |= (r, [b, 1]). Actually, every model Mρ such that ρ(p) = α and ρ(r) = 1,
satisfies that ρ(p∧q1∧· · ·∧qn → r) = 1, and thus Mρ |= (p∧q1∧· · ·∧qn →
r, [a, 1]) and Mρ |= (r, [b, 1]). 2

B.3.2 Restricted Literal Completeness Theorem

Theorem B.2 (Restricted Literal Completeness) If Γ |= (p, V), then
Γ ` (p, V), provided that p ∈ ΓA, where Γ is such that the following condi-
tions hold:

1. Γ ⊂ RSn

2. ∀r ∈ ΓR : concl(r) 6∈ ΓA
L

3. The deductive and/or graph associated to Γ is acyclic.

Proof. Given that the and/or deductive graph associated to Γ is acyclic,
we can decompose the set ΓA of atomic symbols appearing in Γ in a set of
disjoint layers. The definition of the layers is the following:

• S0 = {q ∈ ΓA| 6 ∃r ∈ ΓR : Concl(r) = q}

• S1 = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈ S0}

• ...

• Si = {q ∈ ΓA|∀r ∈ ΓR : Concl(r) = q ⇒ ∀x ∈ Prem(r), x ∈
Sj , being j < i and ∃r : ∃x ∈ Prem(r), x ∈ Si−1}

B.3. Restricted Completeness 195

• ...

The proof of the theorem is by induction over the layer number n to
which p belongs. Suppose that V 6= [0, 1], otherwise the proof of the theo-
rem is trivial.

The set ΓA is decomposed in layers ΓA =
⋃

i=1,n Si. Because of Lemma
2, in order to deduce p we only need to consider that part of Γ containing
rules using atoms belonging to layers lower than the layer of p. That is, we
consider only those rules of Γ belonging to the deductive subgraph of p.

Case n = 0: In this case Γ contains a set of mv-atoms as

{(p, Vi)|i ∈ I} ⊆ ΓL

Then, it is easy to see that every model Mρ that satisfies Γ must hold
ρ(p) ∈ (

⋂

i∈I Vi), and then (
⋂

i∈I Vi) ⊆ V . Therefore, we can assure
that if we apply repeatedly the composition and weakening rules, we
also can deduce syntactically (p, V). Then the theorem is true for
n = 0.

Induction hypothesis: The theorem is true for n − 1.

Case n: Suppose that p ∈ Sn. Given Rp, the set of rules of Γ with con-
clusion p, then ∀r ∈ Rp, the premises of r belong to lower layers. Let
be Vq =

⋂

{V |Γ |= (q, V)}, ∀q ∈ Prem(r), ∀r ∈ Rp. By the induction
hypothesis we have that Γ |= (q, Vq) ⇒ Γ ` (q, Vq), ∀q ∈ Prem(r),
∀r ∈ Rp.

By induction over nrp, the number of rules of Rp, and together with
the conditions of the theorem, we will prove that Γ |= (p, V) implies
Γ ` (p, V).

1. nrp = 1. In this case we have Rp = {(q1 ∧ · · · ∧ qm → p,W)},
Γ |= (qi, Vqi

) for i = 1, . . . ,m, where Vqi
are minimals. From

Lemma 2 we have that Γ |= (p, V) if and only if

{(q1 ∧ · · · ∧ qm → p,W)(q1, Vq1
), . . . , (qm, Vqm

)} |= (p, V)

but from properties SR-4 and SR-5 of proposition 2, this holds
if and only if

V ⊇ MP ∗
T (T ∗(Vq1

, Vq2
, . . . , Vqm

),W)

Given that

196 Appendix B. Proofs

MP ∗
T (T ∗(Vq1

, Vq2
, . . . , Vqm

,W) = MP ∗
T (Vq1

,MP ∗
T (Vq2

, . . . ,
MP ∗

T (Vqm
,W) · · ·))

it is easy to see that by successive applications of SIR inference
rule we can obtain Γ ` (p, V), and thus for nrp = 1 the theorem
is true.

2. Suppose that the theorem is true for nrp = k − 1.

3. nrp = k. In this case we have that Rp = {r1, r2, . . . , rk} and
Γ |= (qij,Wqij

) for all qij ∈ Prem(ri), i = 1, . . . , k, being Wqij

minimal. Let be ri = (∧qij → p, Vi) and Ap =
⋃

i,j(qij ,Wqij
).

Again Lemma 2 allows us to state that Γ |= (p, V) if and only
if V ⊇ U , where {r1, . . . , rk} ∪ Ap |= (p,U) and U minimal,.
Consider Rp = R∗

p ∪ rk, where R∗
p = {r1, . . . , rk−1} and let

be V ∗ =
⋂

{V ′′|{R∗
p, Ap} |= (p, V ′′)}. By induction hypothe-

sis we have also R∗
p ` (p, V ∗). Furthermore we have {rk, Ap} `

(p,MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)), and because of Lemma 1 we

know that MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk) =

⋂

{V ′′|{rk, Ap} |=
(p, V ′′)}. Then from Lemma 1, we have:

{Rp, Ap} |= (p, V) iff V ⊇ V ∗ ∩ MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)

Finally it is easy to notice that V ∗∩MP ∗
T (T ∗(Wqk1

, . . . ,Wqkjk
, Vk)

can be obtained by successive applications of SIR and com-
position inference rules, that is, we can finally conclude that
Γ ` (p, V).2

Appendix C

Examples

C.1 Terap–IA Example

In the following we present an small selection of the code of Terap–IA that
has been explained in Section 6.2.

;; 17-3-93
;; MODULS DE TRACTAMENT DE LES PNEUMONIES ATIPIQUES

Module pneumonia_chlam_pneum_tractament_1: antibiotics_chlamydia_pneum =
Begin
Inherit ant
Inherit situacio_clinica
Open insuf_renal:
Begin
Export quinol, tetras_1, tetras_2, macrol
End

Export cipro, oflox, tetras_ac_rap, doxi, doxi_DI,
eritro_DB, eritro_DA, roxi

Deductive Knowledge
Rules:

;; quinolones per chlamydia_pneum
R004 If quinol then conclude cipro is modp
R005 If quinol and situacio_clinica/tract_OR then conclude oflox is p

;;tetraciclines per chlamydia_pneum
R006 If tetras_1 then conclude tetras_ac_rap is mp
R007 If tetras_2 then conclude doxi is mp
R008 If tetras_2 then conclude doxi_DI is mp

;; macrolids per chlamydia_pneum
R001 If macrol then conclude eritro_DB is fp
R002 If macrol then conclude eritro_DA is fp
R003 If macrol and situacio_clinica/tract_OR then conclude roxi is p

End deductive
End
;;-------------------------------

197

198 Appendix C. Examples

;; Atmar RL, Greenberg SB, Pneumonia caused by Mycoplasma
;; pneumoniae and the TWAR Agent. Semin Respir Infect 1989; 4:
;; l9-31

;; Grayston JT, Wang SP, Kuo CC,Campbell LA, Current knowledge
;; on Chlamydia Pneumoniae , strain TWAR, an important cause of
;; pneumonia and other acute respiratory diseases. Eur J Clin
;; Microbiol Infect Dis 1989; 8: 191-202

;; Lipski BA, Tack KJ, Kuo C, Wang S, Grayston T. Ofloxacin
;; treatment of Chlamydia Pneumoniae (Strain TWAR) Lower
;; Respiratory Tract Infections. Am J Med 1990,89: 722-724

;; Grayston JT, Thom DH. The chlamydial pneumonias, in Remington
;; JS, Swartz MN. Current Clinical Topics in Infectious Diseases.
;; Boston, Blackwell Scientific Publications, 1991: 1-18

;; Finegold SM. Aspiration Pneumonia, Lung abscess and Empiema.
;; Pennington JE. Respiratory Infections: Diagnosis and Management.
;; Raven Press, New York 1988: 264_275
;;--------------------------------

Module antibiotics_chlamydia_pneum=antimicrobians:
Begin

Export cipro, oflox, tetras_ac_rap, doxi, doxi_DI, eritro_DB,
eritro_DA, roxi

End

Module ABS=
;; MODUL ABS GRUPS D’ANTIMICROBIANS QUE S’UTILITCEN A TERAPIA

Begin
Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive knowledge
Dictionary:
Predicates:

quinol= name: "quinolones"
type: logic

tetras_1= name: "tetraciclines d’accio rapida"
type: logic
relation: belongs_to_group tetraciclines

tetras_2= name: "tetraciclines de accio retardada"
type: logic
relation: belongs_to_group tetraciclines

cotri= name: "cotrimoxazol"
type: logic

sulfas= name: "sulfamidas"
type: logic

vanco= name: "vancomicina"
type: logic

teico= name: "teicoplanina"
type: logic

amino= name: "aminoglucosids"
type: logic

C.1. Terap–IA Example 199

metro= name: "metronidazol"
type: logic

clinda= name: "clindamicina"
type: logic

carbapen= name: "carbapenems"
type: logic
relation: belongs_to_group atb_betalactamics

INH= name: "isoniacida"
type: logic
relation: belongs_to_group tuberculostatics

RFM= name: "rifampicina"
type: logic
relation: belongs_to_group tuberculostatics

ETM= name: "etambutol"
type: logic
relation: belongs_to_group tuberculostatics

PZ= name: "pirazinamida"
type: logic
relation: belongs_to_group tuberculostatics

anf_B= name: "anfotericina_B"
type: logic

ACV= name: "aciclovir"
type: logic
relation: belongs_to_group antivirics

GCV= name: "ganciclovir"
type: logic
relation: belongs_to_group antivirics

ARA_A= name: "vidarabina"
type: logic
relation: belongs_to_group antivirics

RBV= name: "ribaravina"
type: logic
relation: belongs_to_group antivirics

AMD= name: "amantadina"
type: logic
relation: belongs_to_group antivirics

RMD= name: "rimantadina"
type: logic
relation: belongs_to_group antivirics

peni= name: "penicil.lines"
type: logic
relation: belongs_to_group atb_betalactamics

macrol= name: "macrolids"
type: logic

b_lactam_inh= name: "inhibidors de les betalactamases"
type: logic
relation: belongs_to_group atb_betalactamics

cef= name: "cefalosporines"
type: logic
relation: belongs_to_group atb_betalactamics

monobac= name: "monobactams"
type: logic
relation: belongs_to_group atb_betalactamics

atb_betalactamics= name: "antibiotics betalactamics"
type:class

200 Appendix C. Examples

tetraciclines name: "tetraciclines"
type: class

antivirics= name: "farmacs antivirics"
type: class

tuberculostatics= name: "agents antituberculosos"
type: class

End deductive
End

;; 18-3-93
;;----------------------DOCUMENT CONDICIONS GENERALS--------------
;; EL MODUL ABS_1 ES UN REFINAMENT DEL MODUL ABS (VEURE
;; DOCUMENT DIC) EN EL QUE ES DONA UN VALOR DE CERTESA SEGUR A
;; TOTS ELS GRUPS D’ANTIBIOTICS UTILITZATS A TERAP-IA

Module ABS_1:ABS =
Begin
Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge
Rules:

R001 If s then conclude quinol is s
R002 If s then conclude tetras_1 is s
R003 If s then conclude tetras_2 is s
R004 If s then conclude cotri is s
R005 If s then conclude sulfas is s
R006 If s then conclude vanco is s
R007 If s then conclude teico is s
R008 If s then conclude amino is s
R009 If s then conclude metro is s
R010 If s then conclude clinda is s
R011 If s then conclude carbapen is s
R012 If s then conclude INH is s
R013 If s then conclude RFM is s
R014 If s then conclude ETM is s
R015 If s then conclude PZ is s
R016 If s then conclude anf_B is s
R017 If s then conclude ACV is s
R018 If s then conclude GCV is s
R019 If s then conclude ARA_A is s
R020 If s then conclude RBV is s
R021 If s then conclude AMD is s
R022 If s then conclude RMD is s
R023 If s then conclude peni is s
R024 If s then conclude macrol is s
R025 If s then conclude b_lactam_inh is s
R026 If s then conclude cef is s
R027 If s then conclude monobac is s
R028 If s then conclude (macrol plus RFM) is s
R029 If s then conclude (peni plus metro) is s
R030 If s then conclude (macrol plus metro) is s

End deductive
End

;; ELS MODULS GESTACIO, LACTANCIA, ALERGIA, INSUFICIENCIA RENAL I
;; FACTORS GENETICS SON MODULS DE CONDICIONS GENERALS DEL
;; PACIENT QUE MODIFIQUEN LA TERAPIA I QUE ES PODEN APLICAR SOBRE
;; GRUPS D’ANTIBIOTICS. CADA UNA D’AQUESTES CONDICIONS AFECTEN

C.1. Terap–IA Example 201

;; PER IGUAL A TOTS ELS ANTIBIOTIC DE UN MATEIX GRUP I PER TANT ES
;; PODEN APLICAR SOBRE EL GRUP

Module insuf_renal:ABS=
Begin
Module x = alergia

;; anam_R es un refinament d’anam per insuficiencia renal
Module anam_R= anam:

Begin
Export insuf_renal
End

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,
metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge
Rules:

R001 If anam_R/insuf_renal then conclude no(tetras_1) is s
R002 If anam_R/insuf_renal then conclude tetras_2 is p
R003 If anam_R/insuf_renal then conclude amino is p
R004 If anam_R/insuf_renal then conclude anf_B is p
R005 If anam_R/insuf_renal then conclude AMD is p

End Deductive
Control knowledge
Evaluation type: eager
Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)
End control
End

Module Alergia:ABS=
Begin
Module x = lactancia
;; anam_R es anam refinat per alergia
Module anam_R= anam:

Begin
Export alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec
End

Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,
metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge
Rules:

R001 If anam_R/alergia_grups_ABS=(quinol) then conclude no(quinol) is s
R002 If anam_R/alergia_grups_ABS=(tetras_1) then conclude no(tetras_1) is s
R003 If anam_R/alergia_grups_ABS=(tetras_2) then conclude no(tetras_2) is s
R004 If anam_R/alergia_grups_ABS=(cotri) then conclude no(cotri) is s
R005 If anam_R/alergia_grups_ABS=(sulfas) then conclude no(cotri) is s
R006 If anam_R/alergia_grups_ABS=(sulfas) then conclude no(sulfas) is s
R007 If anam_R/alergia_grups_ABS=(vanco) then conclude no(vanco) is s
R008 If anam_R/alergia_grups_ABS=(teico) then conclude no(teico) is s
R009 If anam_R/alergia_grups_ABS=(vanco) then conclude teico is llp
R010 If anam_R/alergia_grups_ABS=(amino) then conclude no(amino) is s
R011 If anam_R/alergia_grups_ABS=(metro) then conclude no(metro) is s

202 Appendix C. Examples

R012 If anam_R/alergia_grups_ABS=(clinda) then conclude no(clinda) is s
R013 If anam_R/alergia_grups_ABS=(carbapen) then conclude no(carbapen) is s
R014 If anam_R/alergia_inmed_peni then conclude no(carbapen) is s
R015 If anam_R/alergia_retard_peni then conclude carbapen is p
R016 If anam_R/alergia_infrec then conclude carbapen is p
R017 If anam_R/alergia_grups_ABS=(INH) then conclude no(INH) is s
R018 If anam_R/alergia_grups_ABS=(RFM) then conclude no(RFM) is s
R019 If anam_R/alergia_grups_ABS=(ETM) then conclude no(ETM) is s
R020 If anam_R/alergia_grups_ABS=(PZ) then conclude no(PZ) is s
R021 If anam_R/alergia_grups_ABS=(anf_B) then conclude no(anf_B) is s
R022 If anam_R/alergia_grups_ABS=(ACV) then conclude no(ACV) is s
R023 If anam_R/alergia_grups_ABS=(GCV) then conclude no(GCV) is s
R024 If anam_R/alergia_grups_ABS=(ARA_A) then conclude no(ARA_A) is s
R025 If anam_R/alergia_grups_ABS=(RBV) then conclude no(RBV) is s
R026 If anam_R/alergia_grups_ABS=(AMD) then conclude no(AMD) is s
R027 If anam_R/alergia_grups_ABS=(RMD) then conclude no(RMD) is s
R028 If anam_R/alergia_grups_ABS=(peni) then conclude no(peni) is s
R029 If anam_R/alergia_grups_ABS=(macrol) then conclude no(macrol) is s
R030 If anam_R/alergia_grups_ABS=(b_lactam_inh) then conclude no(b_lactam_inh) is s
R031 If anam_R/alergia_grups_ABS=(peni) then conclude no(b_lactam_inh) is s
R032 If anam_R/alergia_grups_ABS=(cef) then conclude no(cef) is s
R033 If anam_R/alergia_inmed_peni then conclude no(cef) is s
R034 If anam_R/alergia_retard_peni then conclude cef is p
R035 If anam_R/alergia_infrec then conclude cef is p
R036 If anam_R/alergia_grups_ABS=(monobac) then conclude no(monobac) is s
R037 If anam_R/alergia_grups_ABS=(metro) then conclude no(peni plus metro) is s
R038 If anam_R/alergia_grups_ABS=(peni) then conclude no(peni plus metro) is s
R039 If anam_R/alergia_grups_ABS=(macrol) then conclude no(macrol plus metro) is s
R040 If anam_R/alergia_grups_ABS=(metro) then conclude no(macrol plus metro) is s
R041 If anam_R/alergia_grups_ABS=(RFM) then conclude no(macrol plus RFM) is s
R042 If anam_R/alergia_grups_ABS=(macrol) then conclude no(macrol plus RFM) is s

End Deductive
Control knowledge

Evaluation type: eager
Deductive control:
M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)

End control
End

;; LACTANCIA NO MODIFICA EL VALOR DELS GRUPS
;; D’ANTIBIOTICS. SI UN ANTIBIOTIC NO ESTA RECOMANAT EN LA
;; LACTANCIA S’ACONSELLA DEIXAR DE LACTAR.

Module lactancia:ABS=
;; falta posar bibliografia

Begin
Module X = gestacio
Module AD = anam_dona
Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive knowledge

C.1. Terap–IA Example 203

Dictionary:
Predicates:

d_d_lact= name: "deixar de lactar"
type: logic

Rules:
R001 If quinol and AD/lact then conclude d_d_lact is s
R002 If cotri and AD/neonatg6pd then conclude d_d_lact is s
R003 If cotri and AD/premat then conclude d_d_lact is s
R004 If teico and AD/lact then conclude d_d_lact is s
R005 If sulfas and AD/neonatg6pd then conclude d_d_lact is s
R006 If sulfas and AD/premat then conclude d_d_lact is s
R007 If metro and AD/lact then conclude d_d_lact is s
R008 If GCV and AD/lact then conclude d_d_lact is s
R009 If ARA_A and AD/lact then conclude d_d_lact is s
R010 If RBV and AD/lact then conclude d_d_lact is s
R011 If (peni plus metro) and AD/lact then conclude d_d_lact is s
R012 If (macrol plus metro) and AD/lact then conclude d_d_lact is s

End Deductive
Control knowledge

Evaluation type: eager
Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)
End control
End

Module Gestacio:ABS=
Begin
Module x = ABS_1
Module AD =anam_dona
Export quinol, tetras_1, tetras_2, cotri, sulfas, vanco, teico, amino,

metro, clinda, carbapen, INH, RFM, ETM, PZ, anf_B, ACV, GCV,
ARA_A, RBV, AMD, RMD, peni, macrol, b_lactam_inh, cef, monobac

Deductive Knowledge
Dictionary:

Predicates:
adm_GCV_si_no_alt= name: "administrar el farmac nomes si no hi ha un

altra alternativa i es imprescindible"
type: logic

adm_RBV_si_no_alt= name: "administrar el farmac nomes si no hi ha un
altra alternativa i es imprescindible"

type: logic
Rules:

R001 If AD/gest then conclude no(quinol) is s
R002 If AD/gest then conclude no(tetras_1) is s
R003 If AD/gest then conclude no(tetras_2) is s
R004 If AD/gest_t then conclude no(cotri) is s
R005 If AD/gest then conclude cotri is p
R006 If AD/gest_t then conclude no(sulfas) is s
R007 If AD/gest then conclude sulfas is p
R008 If AD/gest then conclude vanco is p
R009 If AD/gest_t then conclude no(teico) is s
R010 If AD/gest then conclude amino is p
R011 If AD/temps_gest=(gest_1_t) then conclude no(metro) is s
R012 If AD/temps_gest=(gest_2_t or gest_3_t) then conclude metro is llp

204 Appendix C. Examples

R013 If AD/gest then conclude clinda is p
R014 If AD/gest then conclude carbapen is p
R015 If AD/gest then conclude RFM is p
R016 If AD/gest then conclude PZ is llp
R017 If AD/gest then conclude anf_B is p
R018 If AD/gest then conclude ACV is p

R019 If AD/gest then conclude GCV is llp
R020 If AD/gest then conclude no(ARA_A) is s
R021 If AD/gest then conclude RBV is llp
R022 If AD/gest then conclude no(AMD) is s

R023 If AD/gest then conclude RMD is llp
R024 If AD/gest then conclude (macrol plus RFM) is p
R025 If AD/temps_gest=(gest_1_t) then conclude no(peni plus metro) is s
R026 If AD/temps_gest=(gest_2_t or gest_3_t) then conclude (peni plus metro) is llp
End Deductive

Control knowledge
Evaluation type: eager
Deductive control:

M001 If K(x/$y,$c) and NP($y) then conclude K($y,$c)
End control
End

;;18-3-93
;;------------------------------MODULS MENU-------------------------

;; ELS MODULS QUE ANOMENO "MENU" SON MODULS DE PREGUNTES AL
;; USUARI DE LES DADES DEL MALALT QUE AJUDEN A DECIDIR EL
;; TRACTAMENT DE LES PNEUMONIES INCLOU EL MODUL DIAG QUE
;; PREGUNTA AL USUARI QUINS GERMENS VOL TRACTAR

MODULE DIAG=
;; DIAG PREGUNTA AL USUARI QUINS GERMENS VOL TRACTAR
;; pendent demanar la certesa del diag de un altra forma

Begin
Import diagnostics, pneum_leg, pneum_asper, pneum_tbc
Export diagnostics, pneum_leg, pneum_asper, pneum_tbc
Deductive Knowledge
Dictionary:
Predicates:

diagnostics=
name: "diagnostics"
question: "quina de les seguents vol tractar"
type: (pneum_myc or pneum_cox or pneum_chlam_psit or pneum_chlam_pneum

or pneum_leg or pneum_pneum or pneum_anaer or pneum_enterobac or
pneum_H_inf or pneum_branh or pneum_pseud or pneum_meningo or
pneum_S_pyog or pneum_S_aur or pneum_asper or pneum_crip
or pneum_nocar or pneum_CMV or pneum_VVZ or pneum_HSV or pneum_EBV
or pneum_VRS or pneum_ADV or pneum_influenza)

pneum_leg= name: "pneumonia per legionella pneumophila"
question: "quina es la certesa de pneum_leg"
type: logic

pneum_asper= name: "pneumonia per aspergilus"
question: "quina es la certesa de pneum_aspergilus"
type: logic

C.1. Terap–IA Example 205

pneum_tbc= name: "pneumonia tuberculosa"
question: "quina es la certesa de pneum_myc_tuberculosis"
type: logic

End deductive
End

MODULE ANAM_GENERAL=
;; ES UN MODUL EN EL QUE ES DEFINEIXEN LES INTERFICIES D’IMPORTACIO
;; I EXPORTACIO DE LES DADES MES GENERALS DE L’ANAMNESI

Begin
Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec, reaccions_adv_atb,
g6pd, insuf_hepatica, insuf_renal

End

MODULE ANAM_SPEC:ANAM_GENERAL=
;; ES UN MODUL DE REFINAMENT D’ANAM GENERAL EN EL QUE ES
;; DEFINEIXEN ELS SUBMODULS ANT I ANALITICA QUE ES NECESITAN PER
;; DEDUIR EL VALOR DEL FET INSUFICIENCIA RENAL.I ES DECLAREN ELS FETS
;; EN EL DICCIONARI

Begin
Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,
alergia_retard_peni, alergia_infrec,reaccions_adv_atb, g6pd,
insuf_hepatica, insuf_renal

Deductive Knowledge
Dictionary:
Predicates:

edat= name: "edat"
question: "quina es l’edat del pacient?"
type: numeric

sexe= name: "sexe"
question:"es una dona o un home?"
type: (home or dona)

insuf_renal= name: "insuficiencia renal"
type: logic

alergia= name:"alergia a antibiotics"
question: "hi han antecedents d’alergia a antibiotics?"
type: boolean

alergia_grups_ABS=
name:"alergia a algun grup d’ antibiotics "
question: "hi han antecedents d’ alergia a algun dels seguents

grups d’ antibiotics?"
type: (peni or cef or monobac or carbapen or b_lactam_inh or

tetras_1 or tetras_2 or quinol or amino or clinda or cotri
or INH or RFM or ETM or PZ or macrol or vanco or anf_B or
ACV or GCV or ARA_A or RBV or AMD or RMD or metro or sulfas
or teico)

relation: needs alergia
alergia_inmed_peni=

name:"reaccio alergica inmediata a la penicil.lina "
question: "la reaccion alergica a la penicil.lina s’ha

produit en les primeres 72 hores de l’administracio
del antibiotic?"

type: boolean
relation: needs alergia_grups_ABS

alergia_retard_peni=

206 Appendix C. Examples

name:"reaccio alergica retardada a la penicil.lina"
question: "la reaccion alergica s’ha produit despres

de 72 hores de l’administracio del antibiotic?"
type: boolean
relation: needs alergia_grups_ABS
relation: needs alergia_inmed_peni

alergia_infrec=
name:"reaccions alergiques infrecuents"
question: "hi han antecedents de anemia hemolitica,

infiltrats pulmonars amb eosinofilia, nefritis
intersticial, granulopenia, trombocitopenia,
febre per drogues, vasculitis per hiper
sensibilitat, eritema multiforme, sindrom lupus like?"

type: boolean
relation: needs alergia_grups_ABS
relation: needs alergia_inmed_peni
relation: needs alergia_retard_peni

reaccions_adv_atb=
name:"reaccions adverses a antibiotics"
question: "ha presentat reaccions adverses a algun
antibiotic?"
type: boolean

g6pd= name: "deficit de glucosa 6 fosfat deshidrogenasa"
question:"Te el pacient un deficit de glucosa 6 fosfat

deshidrogenasa?"
type: boolean

insuf_hepatica= name: "insuf_hepatica"
question: "hi han signes d’insuficiencia hepatica?"
type: boolean

End deductive
End

MODULE ANAM:ANAM_SPEC=
;; ANAM ES UN REFINAMENT D’ANAM_SPEC. EN AQUEST MODUL HI HAN LES
;; REGLES QUE PERMETEN DEFINIR EL FET INSUFICIENCIA RENAL I LES
;; METARREGLES QUE ORDENAN DE FORMA LLOGICA LES PREGUNTES SOBRE
;; ANTECEDENTS D’ALERGIA

Begin
Inherit ant
Inherit analitica
Import edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,

alergia_retard_peni, alergia_infrec, reaccions_adv_atb, g6pd,
insuf_hepatica

Export edat, sexe, alergia, alergia_grups_ABS, alergia_inmed_peni,
alergia_retard_peni, alergia_infrec, reaccions_adv_atb, g6pd,
insuf_hepatica, insuf_renal

Deductive Knowledge
Rules:

R001 If analitica/insuf_renal_ag then conclude insuf_renal is s
R002 If ant/mal_cron_assoc and

ant/tipus_mal_cron_assoc=(insuf_renal_cron)
then conclude insuf_renal is s

End deductive
Control Knowledge
Deductive control:
M001 If K(not(alergia),s) then conclude K(=(alergia_grups_ABS, none), s)

C.1. Terap–IA Example 207

M002 If K(not(alergia_grups_ABS),s)
then conclude K(not(alergia_inmed_peni),s)

M003 If K(not(alergia_grups_ABS),s)
then conclude K(not(alergia_retard_peni),s)

M004 If K(not(alergia_grups_ABS),s)
then conclude K(not (alergia_infrec), s)

M005 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))
then conclude K(not(alergia_inmed_peni),s)

M006 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))
then conclude K(not(alergia_retard_peni),s)

M007 If K(=(alergia_grups_ABS,$x),s) and no(member($x,(peni)))
then conclude K(not (alergia_infrec), s)

M008 If K(alergia_inmed_peni, s)
then conclude K(not(alergia_retard_peni),s)

M009 If K(alergia_inmed_peni, s)
then conclude K(not (alergia_infrec), s)

M010 If K(alergia_retard_peni, s)
then conclude K(not (alergia_infrec), s)

End control
End

MODULE ANAM_DONA=
;; ANAM_DONA PREGUNTA AL USUARI DADES ESPECIFIQUES PER DONES

Begin
Open anam
Import gest, temps_gest, gest_t, lact, premat, neonatg6pd
Export gest, temps_gest, gest_t, lact, premat, neonatg6pd, sexe, edat
Deductive Knowledge
Dictionary:
Predicates:

gest= name: "gestacio"
question: "es una gestant?"
type: boolean
relation: needs sexe

relation: needs edat
temps_gest= name: "temps de gestacio"

question: "esta en el: primer trimestre de la
gestacio(gest_1_t) segon trimestre de la
gestacio(gest_2_t) tercer trimestre de la
gestacio(gest_3_t)?"

type: (gest_1_t or gest_2_t or gest_3_t)
relation: needs gest

gest_t= name: "gestacio a terme"
question: "es una gestant a terme?"
type: boolean
relation: needs gest
relation: needs temps_gest

lact= name:"lactancia"
question: "esta en periode de lactancia?"
type: boolean
relation: needs sexe
relation: needs edat
relation: needs gest

208 Appendix C. Examples

neonatg6pd= name: "neonat amb deficit de glucosa 6 fosfat deshidrogenasa"
question:"Te el lactant un deficit de glucosa 6 fosfat

deshidrogenasa?"
type: boolean
relation: needs lact

premat= name: "prematur"
question: "es el lactant prematur?"
type: boolean
relation: needs lact

End deductive
Control knowledge
Deductive control:
M001 If K(gest,s) then conclude K(not(lact),s)
M002 If K(=(sexe, (home)),s) then conclude K(not(gest),s)
M003 If K(=(sexe, (home)),s) then conclude K(not(lact),s)
M004 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and lt($x,15)

then conclude K(not(gest),s)
M005 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and lt($x,15)

then conclude K(not(lact),s)
M006 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and gt($x,45)

then conclude K(not(gest),s)
M007 If K(=(sexe, (dona)),s) and K(=(edat,$x),s) and gt($x,45)

then conclude K(not(lact),s)
M008 If K(not(gest),s) then conclude K(not(gest_t),s)
M009 If K(not(gest),s) then conclude K(=(temps_gest, none),s)
M010 If K(not(lact),s) then conclude K(not(premat),s)
M011 If K(not(lact),s) then conclude K(not(neonatg6pd),s)
M012 If K(=(temps_gest,$x),s) and member ($x, (gest_1_t or gest_2_t))

then conclude K(not (gest_T),s)
End control
End

MODULE ANT=
;; EL MODUL ANT PREGUNTA ELS ANTECEDENTS PATOLOGICS D’INTERES

Begin
Import mal_cron_assoc, tipus_mal_cron_assoc, inmuno, tipus_inmuno,

atb_betalactamics_previs, tract_assoc, hosp_previa, pneum_previa
Export mal_cron_assoc, tipus_mal_cron_assoc, inmuno, tipus_inmuno,

atb_betalactamics_previs, tract_assoc, hosp_previa, pneum_previa
Deductive Knowledge
Dictionary:

Predicates:
mal_cron_assoc= name: "malaltia cronica associada"

question: "hi han antecedents de malalties croniques
associades?"

type:boolean
tipus_mal_cron_assoc=

name:"tipus de malaltia cronica associada"
question: "hi han antecedents de:

Malaltia hepatica cronica (hepat_cron)
Insuficiencia cardiaca avanzada (IC)
Diabetes mellitus (DB)
Alcoholisme (OH)
Malaltia pulmonar obstructiva cronica (EPOC)

C.1. Terap–IA Example 209

Vasculitis o colagenosis (vasc_colag)
Sarcoidosis (sarc)
Drogadiccio parenteral (ADVP)
Neoplasia avanzada (neop)
Insuficiencia renal cronica (insuf_renal_cron)"

type: (hepat_cron or IC or DB or OH or EPOC or vasc_colag or sarc
or ADVP or neop or insuf_renal_cron)

relation: needs mal_cron_assoc
tipus_inmuno=

name: "tipus d’inmunosupresio"
question: "hi han antecedents de:

tractament amb corticoides > 5 mgrs al dia o
drogues citotoxiques en els ultims sis mesos (tract_inmuno)
transplant de medula osea (TMO)
transplant d’altres organs (TAO)
infeccio HIV (HIV)
hipogamaglobulinemia o agammaglobulinemia (alt_IG)"

type: (tract_inmuno or TMO or TAO or HIV or alt_IG)
relation: needs inmuno

inmuno= name: "inmunosupresio"
question: "hi han antecedents d’inmunosupresio?"
type: boolean
relation: needs mal_cron_assoc

hosp_previa= name:" hospitalitzacio previa"
question: " el pacient ha estat hospitalitzat:

en el ultim any (hosp_1_any)
en els ultims tres mesos (hosp_3_m)
no ha estat hospitalitzat recentment (no_hosp)?"

type: (hosp_1_any or hosp_3_m or no_hosp)
pneum_previa= name:" pneumonia previa"

question: " el pacient ha sofert una pneumonia
durant l’ultim any?"

type: boolean
atb_betalactamics_previs=

name: "antibiotics betalactamics previs"
question: "hi han antecedents de us de antibiotics

betalactamics en els ultims tres mesos?"
type: boolean

tract_assoc=
name: "tractaments associats"
question: "el pacient pren habitualment algun dels seguents farmacs:

teofilina (teof)
carbamacepina (carbam)
digoxina (digox)
dicumarinics (dicum)
ciclosporina (ciclos)
difenilhidantoina (DFH)?"

type: (teof or carbam or digox or dicum or ciclos or DFH)
End deductive
Control knowledge
Deductive control:
M001 If K(not(mal_cron_assoc),s)

then conclude K(=(tipus_mal_cron_assoc, none),s)
M002 If K(not(mal_cron_assoc),s) then conclude K(not(inmuno),s)

210 Appendix C. Examples

M003 If K(not(inmuno),s) then conclude K(=(tipus_inmuno, none),s)
End control
End

MODULE SITUACIO_CLINICA=
;; MODUL PER EVALUAR L’ESTAT CLINIC DEL PACIENT AL INGRES O
;; VISITA

Begin
Import estat_malalt, febre, TAs, TAd, FC, FR, alt_GI, trans_degl,

shock_septic, alt_neurol
Export estat_malalt, febre, FR, alt_GI, trans_degl, shock_septic, alt_neurol,

signes_clin_grav, tract_OR, tract_parenteral
Deductive knowledge
Dictionary:

Predicates:
alt_GI= name:"alteracions gastrointestinals"

question: "te basques o vomits que dificulten l’ingesta oral?"
type: boolean
relation: needs estat_malalt

trans_degl= name: "transtorns en la deglucio"
question: "te dificultats per empassar?"
type:boolean
relation: needs estat_malalt

febre= name:"febre"
question: "quina es la temperatura?"
type: numeric

TAs= name:"tensio arterial sistolica "
question: "quina es la tensio arterial sistolica?"
type: numeric
relation: needs TAd

TAd= name:"tensio arterial diastolica "
question: "quina es la tensio arterial diastolica?"
type: numeric

FC= name:"frecuencia cardiaca"
question: "quina es la frecuencia cardiaca?"
type: numeric

FR= name:"frecuencia respiratoria "
question: "quina es la frecuencia respiratoria?"
type: numeric

shock_septic= name: "shock septic"
question:"la TAs es<90mHg i s’observan signes de

hipoperfusio periferica?"
type: boolean
relation: needs estat_malalt
relation: needs TAs

alt_neurol= name: "alteracions neurologiques"
question: " Hi ha obnubilacio o coma?"
type: boolean
relation: needs estat_malalt

estat_malalt= name: "estat del malalt"
question: "quin es segons voste l’estat_malalt del malalt:

lleu
moderadament greu (mod_g)
greu
molt greu (molt_g) ?"

type: (lleu or mod_g or greu or molt_g)

C.1. Terap–IA Example 211

signes_clin_grav= name:"signes clinics de gravetat"
type: logic

tract_parenteral= name: "tractament parenteral"
type: logic

tract_OR= name: "tractament oral"
type: logic

Rules:
R001 If TAs<90 then conclude signes_clin_grav is s
R002 If TAd<60 then conclude signes_clin_grav is s
R003 If FC>140 then conclude signes_clin_grav is s
R004 If FR>30 then conclude signes_clin_grav is s
R005 If alt_GI then conclude no(tract_OR) is s
R006 If trans_degl then conclude no(tract_OR) is s
R007 If no(alt_GI) and no(trans_degl) then conclude tract_OR is s
R008 If no(tract_OR) then conclude tract_parenteral is mp
End deductive
Control knowledge
Deductive control:
M001 If K(=(estat_malalt, $x),s) and member($x,(lleu or mod_g))

then conclude K(not(shock_septic),s)
M002 If K(=(TAs,$x),s) and ge($x,90) and K(=(estat_malalt, $y),s)

and member($y,(greu or molt_g))
then conclude K(not(shock_septic),s)

M004 If K(=(estat_malalt, $x),s) and member($x,(lleu or mod_g))
then conclude K(not(alt_neurol),s)

M005 If K(=(estat_malalt, $x),s) and member($x,(greu or molt_g))
then conclude K(not(alt_GI),s)

M006 If K(=(estat_malalt, $x),s) and member($x,(greu or molt_g))
then conclude K(not(trans_degl),s)

End control
End

MODULE ANALITICA=
;; MODUL QUE PREGUNTA DADES ANALITIQUES

Begin
Inherit ant
Inherit situacio_clinica
Import sodi, hematocrit, leucocits, granulocits, urea, creatinina, pO2
Export hematocrit, leucocits, granulocits, sodi, urea, creatinina,
pO2,

insuf_resp, insuf_renal_ag, insuf_resp_greu, signes_anal_grav
Deductive knowledge
Dictionary:
Predicates:

sodi= name: "xifra de sodi en sang"
question: "quin es el valor del sodi en sang?"
type: numeric

hematocrit= name:" hematocrit"
question: "quin es el valor del hematocrit?"
type: numeric

leucocits= name:" nombre de leucocits"
question: "quina es la xifra de leucocits?"
type: numeric

granulocits= name: "nombre de segmentats mes bandes"

212 Appendix C. Examples

question:"quin es el nombre de segmentats mes bandes?"
type: numeric
relation: needs leucocits

creatinina= name: "creatinina"
question:"quina es la xifra de creatinina en mmol/l?"
type: numeric

urea= name: "urea"
question: "quina es la xifra d’urea en mmol/l?"
type: numeric

pO2= name: " presion parcial d’oxigen"
question: "quina es la pO2 basal en mmHG?"
type: numeric

insuf_renal_ag= name: "insuficiencia renal aguda"
type: logic

insuf_resp= name:" insuficiencia respiratoria aguda"
type: logic
relation: needs situacio_clinica/estat_malalt

insuf_resp_greu= name: "insuficiencia respiratoria greu"
type: logic
relation: needs situacio_clinica/estat_malalt

signes_anal_grav= name: "signes analitics de gravetat"
type: logic

granulopenia= name:"granulopenia"
type:logic

Rules:
R001 If hematocrit <30 then conclude signes_anal_grav is s
R002 If granulocits<1000 then conclude granulopenia is s
R003 If granulopenia then conclude signes_anal_grav is s
R004 If sodi < 130 then conclude signes_anal_grav is s
R005 If no(ant/tipus_mal_cron_assoc=(insuf_renal_cron)) and urea> 16.6

then conclude insuf_renal_ag is s
R006 If no(ant/tipus_mal_cron_assoc=(insuf_renal_cron)) and creatinina > 220

then conclude insuf_renal_ag is s
R007 If insuf_renal_ag then conclude signes_anal_grav is s
R008 If no(situacio_clinica/estat_malalt=(lleu)) and

situacio_clinica/FR >24 and pO2 < 60
then conclude insuf_resp is s

R009 If no(situacio_clinica/estat_malalt=(lleu or mod_g))
and situacio_clinica/FR >24 and pO2 < 50
then conclude insuf_resp_greu is s

End deductive
End

MODULE COMP=
;; MODUL QUE PREGUNTA SOBRE COMPLICACIONS

Begin
Inherit situacio_clinica
Import comp_sept, embass, emp, cav, afect_mult, afect_radiol_ext
Export comp_sept, embass, emp, cav, afect_mult, afect_radiol_ext
Deductive Knowledge
Dictionary:

predicates:
comp_sept= name: "Complicacions septiques"

question: "s’observan altres focos d’infeccio associats com

C.1. Terap–IA Example 213

artritis, meningitis, endocarditis?"
type: boolean
relation: needs situacio_clinica/estat_malalt

emp= name: "empiema"
question: "l’ embassament pleural te criteris d’empiema pleural?"
type: boolean
relation: needs embass

embass= name: "embassament pleural"
question: " hi ha embassament pleural ?"
type: boolean
relation: needs situacio_clinica/estat_malalt

cav= name: "cavitacio "
question: "la radiografia de torax mostra cavitacio?"
type: boolean
relation: needs situacio_clinica/estat_malalt

afect_radiol_ext= name: "afectacio simultanea de mes de dos lobuls pulmonars"
question: "la RX de torax mostra afectacio de mes de

dos lobuls pulmonars?"
type: boolean
relation: needs afect_mult
relation: needs situacio_clinica/estat_malalt

afect_mult= name:" afectacio multilobar"
question: "la radiografia de torax mostra afectacio

simultanea de dos lobuls pulmonars?"
type: boolean
relation: needs situacio_clinica/estat_malalt

End deductive
Control knowledge
Deductive control:
M001 If K(not(embass),s) then conclude K(not(emp),s)
M002 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(comp_sept),s)
M003 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(embass),s)
M004 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(cav),s)
M005 If K(=(situacio_clinica/estat_malalt, (lleu)),s)

then conclude K(not(afect_mult),s)
M006 If K(not(afect_mult),s) then conclude K(not(afect_radiol_ext),s)
M007 If K(=(situacio_clinica/estat_malalt, $x),s) and

member ($x, (lleu or mod_g))
then conclude K(not (afect_radiol_ext),s)

End control
End

MODULE CRITERIS_PNEUMONIA_GREU=
;; MODUL PER DEDUIR SI HI HAN CRITERIS DE PNEUMONIA GREU

Begin
Inherit situacio_clinica
Inherit analitica
Inherit comp
Export crit_pneum_greu
Deductive knowledge
Dictionary:
Predicates:

214 Appendix C. Examples

crit_pneum_greu= name: "criteris de pneumonia greu"
type: logic

Rules:
R001 If situacio_clinica/shock_septic then conclude crit_pneum_greu is s
R002 If situacio_clinica/alt_neurol then conclude crit_pneum_greu is s
R003 If analitica/insuf_resp_greu then conclude crit_pneum_greu is s
R004 If comp/afect_radiol_ext then conclude crit_pneum_greu is s

End deductive
End

Module generar_com(x:antimicrobians_general; y:antimicrobians_general)
: antimicrobians_general=

Begin
Export peni_procaina, peni_G_Na, peni_G_Na_DA, peni_amp_espectre, cloxa,

ampi, amoxi, eritro_DB, eritro_DA, roxi, imip, amoxi_clav_DB,
amoxi_clav_DA, ticar_clav, cefuro_OR, cefuro_EV, ceftriax, cefazol,
cefra, cefmet, cefoxi, ceftaz, clinda_DB, clinda_DA, cipro, oflox,

tetras_ac_rap, doxi, doxi_DI, cotri_DB, cotri_DI, vanco_tract,
teico_tract, amika, genta, aztreo, metro_tract, RFM_DA, GCV_tract,
ACV_DB, ACV_DA, ARA_A_tract, RBV_tract, AMD_DB, AMD_DA, RMD_tract

Control knowledge
Evaluation type: eager
Deductive control:
;;creacio de la relacio subsumeix a partir de la relacio belongs_to
M002 If belongs_to_group($x,$z) and belongs_to_group($y,$z) and

diff($x,$y)
then conclude subsumeix($x,$y)

;;Mateixa exportacio de dos submoduls
M003 If K(x/$c,int($tc11,$tc12)) and K(y/$c,int($tc21,$tc22))

then conclude WK($c ,and2(int($tc11,$tc12),int($tc21,$tc22)))
;;Cocktails de tipus 11 diferents
M004 If K(x/$x,int($tc11,$tc12)) and K(y/$y,int($tc21,$tc22)) and atom($x)

and atom($y) and diff($x,$y) and no(subsumeix($x,$y)) and
no(subsumeix($y,$x)) and no(espectre_equivalent($x,$y))
then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

;;potser es perd alguna combinacio amb el subsumir!
;;Cocktails de tipus 21
M005 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/$x,int($tc21,$tc22))

and atom($x)
then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M006 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/$y,int($tc21,$tc22)) and atom($y)
then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))

M007 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/$z,int($tc21,$tc22))
and atom($z) and diff($z,$x) and diff($z,$y)
and no(subsumeix($x,$z)) and no(subsumeix($y,$z))
and no(espectre_equivalent($x,$z))

and no(espectre_equivalent($y,$z))
then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))
M008 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$x,int($tc21,$tc22)) and atom($x)

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))
M009 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$y,int($tc21,$tc22)) and atom($y)

C.1. Terap–IA Example 215

then conclude WK(($x plus $y) ,and2(int($tc11,$tc12),int($tc21,$tc22)))
M010 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/$z,int($tc21,$tc22))

and atom($z) and diff($z,$x) and diff($z,$y) and no(subsumeix($x,$z))
and no(subsumeix($y,$z)) and no(espectre_equivalent($x,$z))

and no(espectre_equivalent($y,$z))
then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))
;;Cocktails de tipus 22
M011 If K(x/($x plus $y),int($tc11,$tc12)) and K(y/($x plus $z),int($tc21,$tc22))

and atom($z) and atom($y) and diff($z,$y) and no(subsumeix($y,$z))
and no(subsumeix($z,$y)) and no(espectre_equivalent($y,$z))
then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))
M012 If K(x/($x plus $y),int($tc11,$tc12)) and

K(y/($z plus $y),int($tc21,$tc22)) and atom($z) and
atom($x) and diff($z,$x) and no(subsumeix($x,$z)) and
no(subsumeix($z,$x)) and no(espectre_equivalent($z,$x))
then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))
M013 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/($x plus $z),int($tc21,$tc22))

and atom($z) and atom($y) and diff($z,$y) and no(subsumeix($y,$z))
and no(subsumeix($z,$y)) and no(espectre_equivalent($y,$z))
then conclude WK(($x plus ($y plus $z))

,and2(int($tc11,$tc12),int($tc21,$tc22)))
M014 If K(y/($x plus $y),int($tc11,$tc12)) and K(x/($z plus $y),int($tc21,$tc22))

and atom($z) and atom($x) and diff($z,$x) and no(subsumeix($x,$z))
and no(subsumeix($z,$x)) and no(espectre_equivalent($z,$x))

then conclude WK(($x plus ($y plus $z))
,and2(int($tc11,$tc12),int($tc21,$tc22)))

End control
End

Module eliminar_com(x:antimicrobians_general) : antimicrobians_general=
Begin
Export peni_procaina, peni_G_Na, peni_G_Na_DA, peni_amp_espectre, cloxa,

ampi, amoxi, eritro_DB, eritro_DA, roxi, imip, amoxi_clav_DB,
amoxi_clav_DA, ticar_clav, cefuro_OR, cefuro_EV, ceftriax, cefazol,
cefra, cefmet, cefoxi, ceftaz, clinda_DB, clinda_DA, cipro, oflox,

tetras_ac_rap, doxi, doxi_DI, cotri_DB, cotri_DI, vanco_tract,
teico_tract, amika, genta, aztreo, metro_tract, RFM_DA, GCV_tract,
ACV_DB, ACV_DA, ARA_A_tract, RBV_tract, AMD_DB, AMD_DA, RMD_tract

Control knowledge
Evaluation type: eager
Deductive control:
M001 If K(x/$x,int($tc1,$tc2)) then conclude K($x,int($tc1,$tc2))
M006 If K(($x plus $y),$V) and belongs_to($y,administracio_oral) and

belongs_to($x,administracio_parenteral)
then conclude K(($x plus $y) ,int(gp,s))

M007 If K(($x plus $y),$V) and belongs_to($x,administracio_oral)
and belongs_to($y,administracio_parenteral)

then conclude K(($x plus $y) ,int(gp,s))
;;IMPROVEMENT No es combinaran antibiotics bacteriostatics

216 Appendix C. Examples

;; amb bactericides
M008 If K(($x plus $y),$V) and belongs_to($y,bacteriostatics)

and belongs_to($x,bactericides)
then conclude K(($x plus $y) ,int(gp,s))

M009 If K(($x plus $y),$V) and belongs_to($x,bacteriostatics)
and belongs_to($y,bactericides)

then conclude K(($x plus $y) ,int(gp,s))
;;IMPROVEMENT Nomes es matxequen si la certesa de la monoterapia
;; esta per sobre de mod-p.
M010 If K(($x plus $y),int($tc11,$tc12)) and K($y,int($tc21,$tc22))

AND GT($tc21,modp)
then conclude K(($x plus $y) ,int(gp,s))

M011 If K(($x plus $y),int($tc11,$tc12)) and
K($y,int($tc21,$tc22)) AND LE($tc21,modp) AND LE($tc11, $tc21)
then conclude K(($x plus $y) ,int(gp,s))

M012 If K(($x plus $y),int($tc11,$tc12)) and K($x,int($tc21,$tc22))
AND GT($tc21,modp)

then conclude K(($x plus $y) ,int(gp,s))
M013 If K(($x plus $y),int($tc11,$tc12)) and K($x,int($tc21,$tc22))

AND LE($tc21,modp) AND LE($tc11, $tc21)
then conclude K(($x plus $y) ,int(gp,s))

End control
End

Module combmycochlam=
eliminar_com(generar_com(pneumonia_mycoplasma_tractament_2,

pneumonia_chlamydia_psit_tractament_2))

C.2 Fuzzy Control Example

Here there is the complete code of the example given in the Section 6.5.

C.2.1 Controller

We use four modules to implement the controller: Data, Defuzzifier, Fuz-
zy Inference and Fuzzifier. The module Data imports the data of the prob-
lem relative to the fuzzifier (slope and width) and the physical measures
of the system (the level in the second tank and its variation). The module
Defuzzifier exports the quantitative value of the control.

Module Data =
Begin
Import s, w, reference, h2b, deltah2b
Export s, w, reference, h2b, deltah2b
Deductive knowledge

Dictionary:
Predicates:
s = Name: "Slope"

C.2. Fuzzy Control Example 217

Question: "Slope?"
Type: Numeric

w = Name: "Width"
Question: "Width?"
Type: Numeric

reference = Name: "Reference Level"
Question: "Reference Level?"
Type: Numeric

h2b = Name: "Level in the second tank"
Question: "Level in the second tank?"
Type: Numeric

deltah2b = Name: "Variation of the Level in the second tank"
Question: "Variation of the Level in the second tank?"
Type: Numeric

End Deductive
End

Module Defuzzifier =
Begin
Inherit Data
Inherit Fuzzy_Inference
Export v
Deductive knowledge

Dictionary:
Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:
v = Name: "Value"

Type: Numeric
Function:
(lambda ()

(let* ((slope (fact_value Data/s))
(terms (type Fuzzy_Inference/Var_u))
(values (mapcar

(function
(lambda (x) (list (first x)

(first (second x)))))
(fact_value Fuzzy_Inference/Var_u)))

(ling_terms (linguistic_terms))
(width (fact_value Data/w)))

(labels
((real_value (ling_term)

(division (position ling_term ling_terms)
(- (length ling_terms) 1)))

(reflevel (term)
(* (- (+ 1 (position term terms))

(division (length terms) 2))
width))

(recursive_zones (values)
(let* ((value (first values))

(rest_values (cdr values))
(pla_value (center_A_n (second value)

(third value))))
(cond
(rest_values
(let ((next (recursive_zones rest_values))

(inter_value (center_union_A_n_A_np1

218 Appendix C. Examples

(second value)
(third value)
(third (first rest_values)))))

(list (+ (first pla_value)
(first inter_value)
(first next))

(+ (second pla_value)
(second inter_value)
(second next)))))

(t pla_value))))
(int_xmpot (pot sup inf)

(division (- (expt sup (+ pot 1)) (expt inf (+ pot 1)))
(+ pot 1)))

(int_constant (constant sup inf)
(* constant (int_xmpot 0 sup inf)))

(int_xmconstant (constant sup inf)
(* constant (int_xmpot 1 sup inf)))

(center_A_n (where A_n)
(let* ((origin (+ (- where width) slope))

(final (- where slope)))
(list (int_xmconstant A_n origin final)

(int_constant A_n origin final))))
(center_union_A_n_A_np1 (where A_n A_np1)

(let* ((X_A_n (+ where (* (- (* 2 A_n) 1) slope)))
(X_A_np1 (+ where (* (- 1 (* 2 A_np1)) slope)))
(X_A_n_A_np1 (+ where (* (- 1 (* 2 A_n)) slope)))
(X_A_np1_A_n (+ where (* (- (* 2 A_np1) 1) slope)))
(origin (- where slope))
(final (+ where slope)))

(labels ((int_down (sup inf)
(+ (* 0.5 (int_xmpot 0 sup inf))

(* (* 0.5 slope)
(- (int_xmpot 1 sup inf)

(* where (int_xmpot 0 sup inf))))))
(int_xmdown (sup inf)

(+ (* 0.5 (int_xmpot 1 sup inf))
(* (* 0.5 slope)

(- (int_xmpot 2 sup inf)
(* where (int_xmpot 1 sup inf))))))

(int_up (sup inf)
(- (* 0.5 (int_xmpot 0 sup inf))

(* (* 0.5 slope)
(- (int_xmpot 1 sup inf)

(* where (int_xmpot 0 sup inf))))))
(int_xmup (sup inf)

(- (* 0.5 (int_xmpot 1 sup inf))
(* (* 0.5 slope)

(- (int_xmpot 2 sup inf)
(* where (int_xmpot 1 sup inf)))))))

(cond
((and (greateq A_n 0.5)

C.2. Fuzzy Control Example 219

(greateq A_np1 0.5))
(list (+ (int_xmconstant A_n origin X_A_n)

(int_xmdown X_A_n where)
(int_xmup where X_A_np1)
(int_xmconstant A_np1 X_A_np1 final))

(+ (int_constant A_n origin X_A_n)
(int_down X_A_n where)
(int_up where X_A_np1)
(int_constant A_np1 X_A_np1 final))))

((and (greateq A_n A_np1)
(lesseq A_np1 0.5))

(list (+ (int_xmconstant A_n origin X_A_n)
(int_xmdown X_A_n X_A_np1_A_n)
(int_xmconstant A_np1 X_A_np1_A_n final))

(+ (int_constant A_n origin X_A_n)
(int_down X_A_n X_A_np1_A_n)
(int_constant A_np1 X_A_np1_A_n final))))

((and (lesseq A_n 0.5)
(greateq A_np1 A_n))

(list (+ (int_xmconstant A_n origin X_A_n_A_np1)
(int_xmup X_A_n_A_np1 X_A_np1)
(int_xmconstant A_np1 X_A_np1 final))

(+ (int_constant A_n origin X_A_n_A_np1)
(int_up X_A_n_A_np1 X_A_np1)
(int_constant A_np1 X_A_np1 final)))))))))

(let ((result
(recursive_zones
(mapcar
(function
(lambda (term)

(list term (reflevel term)
(let ((exists

(position term
(mapcar

(function first)
values))))

(cond
(exists
(real_value (second

(nth exists values))))
(t 0))))))

terms))))
(division (first result) (second result))))))

End deductive
Control Knowledge

Evaluation type: eager
End control
End

Module Fuzzy_Inference =
Begin
Module F = Fuzzifier
Export Var_u
Deductive knowledge

220 Appendix C. Examples

Dictionary:
Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:

Var_u = Name: "Qualitative ACtion"
Type: Q_domain

Rules:
R001 IF F/e int (NL) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s
R002 IF F/e int (NL) and F/Var_e int (NM) THEN conclude Var_u = (PL) is s
R003 IF F/e int (NL) and F/Var_e int (NS) THEN conclude Var_u = (PL) is s
R004 IF F/e int (NL) and F/Var_e int (N0) THEN conclude Var_u = (PL) is s
R005 IF F/e int (NL) and F/Var_e int (P0) THEN conclude Var_u = (PL) is s
R006 IF F/e int (NL) and F/Var_e int (PS) THEN conclude Var_u = (PL) is s
R007 IF F/e int (NL) and F/Var_e int (PM) THEN conclude Var_u = (P0) is s
R008 IF F/e int (NL) and F/Var_e int (PL) THEN conclude Var_u = (P0) is s

R009 IF F/e int (NM) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s
R010 IF F/e int (NM) and F/Var_e int (NM) THEN conclude Var_u = (PL) is s
R011 IF F/e int (NM) and F/Var_e int (NS) THEN conclude Var_u = (PM) is s
R012 IF F/e int (NM) and F/Var_e int (N0) THEN conclude Var_u = (PM) is s
R013 IF F/e int (NM) and F/Var_e int (P0) THEN conclude Var_u = (PM) is s
R014 IF F/e int (NM) and F/Var_e int (PS) THEN conclude Var_u = (PS) is s
R015 IF F/e int (NM) and F/Var_e int (PM) THEN conclude Var_u = (P0) is s
R016 IF F/e int (NM) and F/Var_e int (PL) THEN conclude Var_u = (P0) is s

R017 IF F/e int (NS) and F/Var_e int (NL) THEN conclude Var_u = (PL) is s
R018 IF F/e int (NS) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s
R019 IF F/e int (NS) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s
R020 IF F/e int (NS) and F/Var_e int (N0) THEN conclude Var_u = (PS) is s
R021 IF F/e int (NS) and F/Var_e int (P0) THEN conclude Var_u = (PS) is s
R022 IF F/e int (NS) and F/Var_e int (PS) THEN conclude Var_u = (P0) is s
R023 IF F/e int (NS) and F/Var_e int (PM) THEN conclude Var_u = (NS) is s
R024 IF F/e int (NS) and F/Var_e int (PL) THEN conclude Var_u = (NS) is s

R025 IF F/e int (N0) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s
R026 IF F/e int (N0) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s
R027 IF F/e int (N0) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s
R028 IF F/e int (N0) and F/Var_e int (N0) THEN conclude Var_u = (P0) is s
R029 IF F/e int (N0) and F/Var_e int (P0) THEN conclude Var_u = (N0) is s
R030 IF F/e int (N0) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s
R031 IF F/e int (N0) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s
R032 IF F/e int (N0) and F/Var_e int (PL) THEN conclude Var_u = (NM) is s

R033 IF F/e int (P0) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s
R034 IF F/e int (P0) and F/Var_e int (NM) THEN conclude Var_u = (PM) is s
R035 IF F/e int (P0) and F/Var_e int (NS) THEN conclude Var_u = (PS) is s
R036 IF F/e int (P0) and F/Var_e int (N0) THEN conclude Var_u = (P0) is s
R037 IF F/e int (P0) and F/Var_e int (P0) THEN conclude Var_u = (N0) is s
R038 IF F/e int (P0) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s
R039 IF F/e int (P0) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s
R040 IF F/e int (P0) and F/Var_e int (PL) THEN conclude Var_u = (NM) is s

R041 IF F/e int (PS) and F/Var_e int (NL) THEN conclude Var_u = (PM) is s
R042 IF F/e int (PS) and F/Var_e int (NM) THEN conclude Var_u = (PS) is s
R043 IF F/e int (PS) and F/Var_e int (NS) THEN conclude Var_u = (N0) is s
R044 IF F/e int (PS) and F/Var_e int (N0) THEN conclude Var_u = (NS) is s
R045 IF F/e int (PS) and F/Var_e int (P0) THEN conclude Var_u = (NS) is s
R046 IF F/e int (PS) and F/Var_e int (PS) THEN conclude Var_u = (NS) is s
R047 IF F/e int (PS) and F/Var_e int (PM) THEN conclude Var_u = (NM) is s
R048 IF F/e int (PS) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

C.2. Fuzzy Control Example 221

R049 IF F/e int (PM) and F/Var_e int (NL) THEN conclude Var_u = (PS) is s
R050 IF F/e int (PM) and F/Var_e int (NM) THEN conclude Var_u = (N0) is s
R051 IF F/e int (PM) and F/Var_e int (NS) THEN conclude Var_u = (NS) is s
R052 IF F/e int (PM) and F/Var_e int (N0) THEN conclude Var_u = (NM) is s
R053 IF F/e int (PM) and F/Var_e int (P0) THEN conclude Var_u = (NM) is s
R054 IF F/e int (PM) and F/Var_e int (PS) THEN conclude Var_u = (NM) is s
R055 IF F/e int (PM) and F/Var_e int (PM) THEN conclude Var_u = (NL) is s
R056 IF F/e int (PM) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

R057 IF F/e int (PL) and F/Var_e int (NL) THEN conclude Var_u = (P0) is s
R058 IF F/e int (PL) and F/Var_e int (NM) THEN conclude Var_u = (PS) is s
R059 IF F/e int (PL) and F/Var_e int (NS) THEN conclude Var_u = (NS) is s
R060 IF F/e int (PL) and F/Var_e int (N0) THEN conclude Var_u = (NL) is s
R061 IF F/e int (PL) and F/Var_e int (P0) THEN conclude Var_u = (NL) is s
R062 IF F/e int (PL) and F/Var_e int (PS) THEN conclude Var_u = (NL) is s
R063 IF F/e int (PL) and F/Var_e int (PM) THEN conclude Var_u = (NL) is s
R064 IF F/e int (PL) and F/Var_e int (PL) THEN conclude Var_u = (NL) is s

End deductive
Control Knowledge

Evaluation type: eager
End control
End

Module Fuzzifier =
Begin
Inherit Data
Export e, Var_e
Deductive knowledge

Dictionary:
Types:

Q_domain = (PL, PM, PS, P0, N0, NS, NM, NL)
Predicates:
e = Name: "Qualitative Value"

Type: Q_domain
Function:
(lambda ()

(let* ((slope (fact_value Data/s))
(terms (type e))
(ratio (* (- (division (fact_value Data/h2b)

(fact_value Data/reference))
1)

250))
(ling_terms (linguistic_terms))
(width (fact_value Data/w))
(Num_terms (length terms)))

(labels ((fuzzy_value (level)
(nth (truncate

(* (length ling_terms)
(division (- ratio (- level slope))

(* 2 slope))))
ling_terms))

(duplicate (x)
(list x x)))

(dolist (term terms)
(let ((reflevel

(* (- (+ 1 (position term terms))
(division Num_terms 2))

width)))

222 Appendix C. Examples

(cond ((or (eq (car (last terms)) term)
(lessthan ratio (- reflevel slope)))

(return
(list (list term

(car (last ling_terms))))))
((lessthan ratio (+ reflevel slope))
(return
(list
(list
term
(duplicate
(nth (-

(- (length ling_terms)
(position (fuzzy_value reflevel)

ling_terms)) 1)
ling_terms)))

(list
(nth (+ 1 (position term terms)) terms)
(duplicate (fuzzy_value reflevel))))))))))))

Var_e = Name: "Qualitative Value"
Type: Q_domain
Function:
(lambda ()

(let* ((slope (fact_value Data/s))
(terms (type e))
(ratio (fact_value Data/deltah2b))
(ling_terms (linguistic_terms))
(width (fact_value Data/w))
(Num_terms (length terms)))

(labels ((fuzzy_value (level)
(nth (truncate

(* (length ling_terms)
(division (- ratio (- level slope))

(* 2 slope))))
ling_terms))

(duplicate (x)
(list x x)))

(dolist (term terms)
(let ((reflevel

(* (- (+ 1 (position term terms))
(division Num_terms 2))

width)))
(cond ((or (eq (car (last terms)) term)

(lessthan ratio (- reflevel slope)))
(return
(list (list term

(car (last ling_terms))))))
((lessthan ratio (+ reflevel slope))
(return
(list
(list
term
(duplicate
(nth (-

(- (length ling_terms)

C.2. Fuzzy Control Example 223

(position (fuzzy_value reflevel)
ling_terms)) 1)

ling_terms)))
(list
(nth (+ 1 (position term terms)) terms)
(duplicate (fuzzy_value reflevel))))))))))))

End deductive
Control Knowledge

Evaluation type: eager
End control
End

C.2.2 Simulator

We use the following Lisp function to implement the simulation of the
process.

(defun simulator (h1a h2a S Q Ts)
(let* ((p1 (- (/ (+ 3 (sqrt 5)) (* 2 S))))

(p2 (/ (+ -3 (sqrt 5)) (* 2 S)))
(c2 (/ (- (* h2a (+ (* S p1) 2)) h1a (* Q S p1))

(* S (- p1 p2))))
(c1 (- h2a c2 Q))
(hb1 (+ (* c1 (exp (* p1 Ts))

(+ 2 (* S p1)))
(* c2 (exp (* p2 Ts))

(+ 2 (* S p2)))
(* 2 Q)))

(hb2 (+ (* c1 (exp (* p1 Ts)))
(* c2 (exp (* p2 Ts)))
Q))

(deltah2b (+ (* c1 p1 (exp (* p1 Ts)))
(* c2 p2 (exp (* p2 Ts))))))

(list hb1 hb2 deltah2b)))

C.2.3 Whole Process

The following Lisp functions implements the loop simulator–controller. In
the case we use a facility of the shell that consist in using a program with
the external mode. Using this mode the modules import facts by mean of
an external function named name of the module–import. The argument of
this function is the fact to be imported, and it returns the value of that
fact. The facts required from outside the ES are exported by mean of
another function named name of the module–export. Its argument is a list
composed by the fact to be exported and its value.

(defvar Simulator_h2b 0)
(defvar Simulator_deltah2b 0)

224 Appendix C. Examples

(defvar defuzzifier_v 0)

(defun data-import (fact)
(case fact

(s 2.5)
(w 5.0)
(reference 800)
(h2b Simulator_h2b)
(deltah2b Simulator_deltah2b)))

(defun defuzzifier-export (fact-value)
(setq defuzzifier_v (second fact-value)))

(defun two-coupled-tanks-process ()
(setq Simulator_h2b 0)
(setq Simulator_deltah2b 0)
(setq defuzzifier_v 0)
(let* ((h1a 0)

(h2a 0)
(action 0))

(dotimes (x 1000)
(let ((defuzzifier_v_old action))

(Execute ’defuzzifier ’v))
(setq action (+ defuzzifier_v_old defuzzifier_v))
(format t "(~S ~S ~S ~S ~S ~S)~%"

h1a h2a Simulator_deltah2b defuzzifier_v action (abs (- h2a 800)))
(let ((result (simulator

h1a
h2a
50
action
20)))

(setq h1a (first result))
(setq h2a (second result))
(setq Simulator_h2b (second result))
(setq Simulator_deltah2b (third result))
(ResetKB))))))

Notice that the function Execute queries the module defuzzifier for the
value of the fact v, and the function ResetKB return the ES to its original
state.

Example of output:

(0 0 0 16.674 16.674 800)
(5.618 0.917 0.075 16.674 33.348 799.082)
(15.478 3.559 0.167 16.674 50.022 796.440)
(28.777 8.012 0.255 16.674 66.696 791.987)
(44.955 14.134 0.333 16.674 83.371 785.865)
(63.579 21.729 0.402 16.674 100.045 778.270)
(84.295 30.603 0.461 16.674 116.719 769.396)
(106.801 40.580 0.512 16.674 133.393 759.419)
(130.845 51.504 0.556 16.674 150.067 748.495)

C.3. Polytrees Example 225

C.3 Polytrees Example

This is the complete code of the belief propagation in bayesian polytrees
given in Section 6.6

Module POLYTREE =
Begin
Export A, B, C, D, E, F, G
Deductive knowledge
Dictionary:
Types:

dom_A = (a0 or a1)
dom_B = (b0 or b1 or b2)
dom_C = (c0 or c1 or c2)
dom_D = (d0 or d1)
dom_E = (e0 or e1)
dom_F = (f0 or f1 or f2)
dom_G = (g0 or g1 or g2)

Predicates:
A =

Name: "A"
Type: array [dom_A]

A_prior =
Name: "P(A) Prior probability of A"
Question: "Enter P(A), prior probability for A"
Type: array [dom_A]
Relation: prior A

A_ptr =
Name: "Pointer to A"
Type: logic
Relation: points_to A

B =
Name: "B"
Type: array [dom_B]

B_prior =
Name: "P(B) Prior probability of B"
Question: "Enter P(B), prior probability for B"
Type: array [dom_B]
Relation: prior B

B_ptr =
Name: "Pointer to B"
Type: logic
Relation: points_to B

C =
Name: "C"
Type: array [dom_C]

C_prior =
Name: "P(C), prior probability of C"
Question: "Enter P(C), prior probability for C"
Type: array [dom_C]
Relation: prior C

C_ptr =
Name: "Pointer to C"
Type: logic

226 Appendix C. Examples

Relation: points_to C
D =

Name: "D"
Type: array [dom_D]

D_ptr =
Name: "Pointer to D"
Type: logic
Relation: points_to D

E =
Name: "E"
Type: array [dom_E]

E_ptr =
Name: "Pointer to E"
Type: logic
Relation: points_to E

E_evid =
Name: "Evidence for E"
Question: "Enter evidence for E"
Type: array [dom_E]
Relation: evid E

F =
Name: "F"
Type: array [dom_F]

F_ptr =
Name: "Pointer to F"
Type: logic
Relation: points_to F

F_evid =
Name: "Evidence for F"
Question: "Enter evidence for F"
Type: array [dom_F]
Relation: evid F

G =
Name: "G"
Type: array [dom_G]

G_ptr =
Name: "Pointer to G"
Type: logic
Relation: points_to G

G_evid =
Name: "Evidence for G"
Question: "Enter evidence for G"
Type: array [dom_G]
Relation: evid G

Rules:
R01 If A_ptr and B_ptr and C_ptr then conclude D_ptr is

((((0.3 0.7) (0.4 0.6) (0.5 0.5))
((0.75 0.25) (0.82 0.18) (0.35 0.65))
((0.45 0.55) (0.8 0.2) (0.1 0.9)))

(((0.3 0.7) (0.99 0.01) (1 0))
((0.37 0.63) (0.85 0.15) (0.21 0.79))
((0.45 0.55) (0.99 0.01) (0.27 0.73))))

;; pi_jkl = p (Di / Aj Bk Cl)
;; ((((p0_000 p1_000) (p0_001 p1_001) (p0_002 p1_002))
;; ((p0_010 p1_010) (p0_011 p1_011) (p0_012 p1_012))
;; ((p0_020 p1_020) (p0_021 p1_021) (p0_022 p1_022)))

C.3. Polytrees Example 227

;; (((p0_100 p1_000) (p0_101 p1_001) (p0_102 p1_002))
;; ((p0_110 p1_010) (p0_111 p1_011) (p0_112 p1_012))
;; ((p0_120 p1_020) (p0_121 p1_021) (p0_122 p1_022))))

R02 If D_ptr and B_ptr then conclude E_ptr is ((0.75 0.25) (0.55 0.45))
R03 If D_ptr then conclude F_ptr is ((0.3 0.2 0.5) (0.1 0.5 0.4))
R04 If D_ptr then conclude G_ptr is ((0.3 0.6 0.1) (0.5 0.2 0.3))

End deductive
Control knowledge

Evaluation type: reified
Deductive control:

;; --
;; Translation metarules

M01 If K(implies ($list_of_premises,$conclusion),$matrix) and
points_to ($conclusion,$child) and
set_of_instances ($father,

conj (position ($prem,$list_of_premises,$i),
points_to ($prem,$father)),
$list_of_fathers)

then conclude
K(cause ($list_of_fathers,$child),$matrix)

M02 If points_to ($x_ptr,$x) then conclude node($x)
;; --
;; Initializes nodes with evidence

M03 If evid($x_evid,$x) and K($x_evid,$v)
then conclude K(lambda ($x),$v)

;; --
;; Initializes root nodes

M04 If prior($x_prior,$x) and K($x_prior,$v)
then conclude K(pi($x),$v)

;; --
;; Lambda propagation
;; Calculates lambda messages for nodes with several fathers.

M05 If K(cause ($list_of_fathers,$child),$matrix) and
K(lambda ($child),$lambda_child) and
position($father_i,$list_of_fathers,$i) and
set_of_instances($msg,

conj(position($father_k,$list_of_fathers,$k),
neg(equal($k,$i)),
K(pi_msg($father_k,$child),$msg)),

$pi_msgs_fathers_minus_i)

then conclude K(lambda_msg($child,$father_i),
matrix_prod ($lambda_child,

transpose (matrix_prod%
(cartesian_prod%($pi_msgs_fathers_minus_i),
reduce_dim ($matrix, $i)))))

;; Calculates lambda messages for nodes with only one father
M06 If K(cause($list_of_fathers,$child),$matrix) and

cardinal($list_of_fathers,1) and
position ($father,$list_of_fathers,$i) and
K(lambda($child),$lambda_child)

then conclude K(lambda_msg($child,$father),

228 Appendix C. Examples

matrix_prod($lambda_child,transpose($matrix)))
;; lambda update

M07 If node($father) and
set_of_instances($msg,K(lambda_msg($child,$father),

$msg),$lambda_msgs_children)
then conclude K(lambda($father),

inner_product($lambda_msgs_children))
;; --
;; Pi propagation
;; Calculates pi messages for nodes with several children

M08 If K(cause($list_of_fathers,$child_j),$matrix) and
position($father,$list_of_fathers,$i) and
K(pi($father),$pi_father) and
set_of_instances($msg,
conj(K(lambda_msg($child_k,$father),$msg),

neg (equal($child_k,$child_j))),
$lambda_msgs_children_minus_j)

then conclude K(pi_msg($father,$child_j),
norm (inner_product
(inner_product ($lambda_msgs_children_minus_j),

$pi_father)))
;; Calculates pi messages for nodes with a unique child

M09 If K(cause($list_of_fathers,$child),$matrix) and
position($father,$list_of_fathers,$i) and
K(pi($father),$pi_father) and
no(set_of_instances ($child_j,

conj(K(lambda_msg($child_j,$father),$msg),
neg(equal($child_j,$child))),

$other_children))
then conclude K(pi_msg($father,$child),$pi_father)

;; Pi update
M10 If K(cause($list_of_fathers,$child),$matrix) and

set_of_instances ($msg,
conj(position($father_i,$list_of_fathers,$i),

K(pi_msg($father_i,$child),$msg)),
$pi_msgs_fathers)

then conclude K(pi($child),
norm(matrix_prod
(cartesian_prod% ($pi_msgs_fathers),

$matrix)))
;; --
;; Belief update

M11 If K(lambda($x),$lambda_x) and
K(pi($x),$pi_x)

then conclude K($x,norm(inner_product($lambda_x,$pi_x)))
End control
End

References

Agust́ı, J., Sierra, C. and Sannella, D. (1989). Methodologies for Intelligent
Systems, 4, chapter Adding generic modules to flat rule–based languages:
A low cost approach, pages 43–51. Elsevier Science Publishing Co., Inc.

Agust́ı, J., Esteva, J., Garcia, P., Godo, L. and Sierra, C. (1991). Combin-
ing multiple–valued logics in modular expert systems. In Proceedings 7th
Conference on Uncertainty in AI.

Agust́ı, J., Esteva, F., Garcia, P., Godo, L., López de Mántaras, R., Puyol,
J., Sierra, C. and Murgui, L. (1992). Fuzzy Logic for the Management of
Uncertainty, chapter Structured Local Fuzzy Logics in Milord, pages 523–
551. John Wiley and Sons, Inc.

Alsina, C., Grané, J., Sales, T. and Trillas, E. (1984). Algunes considera-
cions sobre el modus ponens: Funcions de modus ponens. In Actes del III
Congrés Català de Lògica Matemàtica. Barcelona, pages 55–77.

Barroso, C. (1992). ENS–AI: un sistema experto para la enseñanza. In
Proceedings of the European Conference about Information Technology in
Education: a critical insight. Barcelona., volume 2, pages 373–382.

Belmonte, M. (1991). Renoir: Un sistema experto para la ayuda en el diag-
nostico de colagenosis y artropatias inflamatorias. PhD thesis, Universitat
Autònoma de Barcelona.

Berenji, H. R. (1992). An Introduction to Fuzzy Logic Applications in In-
telligent Systems, chapter Fuzzy Logic Controllers, pages 69–96. Kluwer
Academic Publishers.

Bonissone, P., Gans, S. and Decker, K. (1987). Rum: A layered architecture
for reasoning with uncertaintyg. In IJCAI’87, pages 891–898.

229

230 Appendix C. Examples

Chandrasekaran, B. (1986). Generic tasks in knowledge–based reasoning:
High–level building blocks for expert systems design. Technical report, Ohio
State University.

Chandrasekaran, B. (1987). Towards a functional architecture for intelli-
gence based on generic information processing tasks. In Proceedings of the
IJCAI’87, pages 1183–1192.

Davis, R. (1982). Knowledge–Based Systems in Artificial Intelligence, chap-
ter TEIRESIAS: Applications of Meta–Level Knowledge, pages 920–927.
McGraw–Hill, New York.

Dechter, R., Meiri, I. and Pearl, J. (1991). Temporal constraint networks.
Artificial Intelligence, 49:61–95.

Demolombe, R. (1990). Strategies for the computation of conditional an-
swers. In Proceedings of the Workshop on Partial Deduction, Partial Eval-
uation and Intelligent Reasoning, ECAI’90, pages 5–23.

Dempster, A. P. (1967). Upper and lower probabilities induced by a mul-
tivalued mapping. Annals of Mathematical Statistics, 38:325–339.

Domingo, M. (1993a). Evaluating the expert system approach to biological
identification through application to porifera. In Sponges in Time and
Space. Proceedings 4th International Porifera Congress, page In press.

Domingo, M. (1993b). Towards a knowledge level analysis of classification
in biological domains. In Proceedings of the IMACS International Workshop
on Qualitative Reasoning and Decision Technologies QUARDET’93., pages
535–544.

Dubois, D. and Prade, H. (1988). Possibility Theory: An Approach to
Computerized Processing of Uncertainty. Plenum Press.

Duda, R. O., Hart, P. E. and Nilsson, N. J. (1976). Subjective bayesian
methods for rule–based inference systems. In Proceedings of the AFIPS
National Computer Conference, volume 7, pages 1075–1082.

Esteva, F., Garcia-Calves, P. and Godo, L. (1994). Enriched interval bilat-
tices: An approach to deal with uncertainty and imprecision. Uncertainty,
Fuzzyness and Knowledge–Based Systems (to appear).

Fensen, D., Angele, J. and Landes, D. (1991). Karl: A knowledge adqui-
sition and representation language. In Proceedings of the 11th Conference
on Expert Systems and their Applications (Avignon), pages 513–525.

C.3. Polytrees Example 231

Forgy, C. (1981). OPS5 user manual. Technical Report CMU–CS–81–135,
Computer Science Department, Carnegie Melon University.

Foulloy, L. (1993). Qualitative control and fuzzy control: Towards a writing
methodology. AICOM, 6(3/4).

Fox, J. (1989). Knowledge Engeneering, chapter Symbolic Decision Proce-
dures for Knowledge Based Systems. McGraw Hill.

Gallagher, J. (1986). Transforming logic programming by specialising in-
terpreters. In Proceedings ECAI’86, pages 109–122.

Giunchiglia, E., Traverso, P. and Giunchiglia, F. (1993). Formal Specifica-
tion of Complex Reasoning Systems, chapter Multi–Context Systems as a
Specification Framework for Complex Reasoning Systems. Ellis Horwood.

Godo, L., López de Mántaras, R., Sierra, C. and Verdaguer, A. (1988). Man-
aging linguistically expressed uncertainty in milord application to medical
diagnosis. AI Communication, 1(1):14–31.

Godo, L., López de Mántaras, R., Sierra, C. and Verdaguer, A. (1989).
Milord: The architecture and management of linguistically expressed un-
certainty. International Journal of Intelligent Systems, 4:471–501.

Godo, L. and Meseguer, P. (1991). A constraint–based approach to generate
finite truth–values algebras. Technical Report 91/9, IIIa–CEAB.

Goguen, J. A. (1986). Reusing and interconnecting software components.
IEEE Computer, February:16–28.

Gréboval, C. and Kassel, G. (1992). Modelling at the knowledge level: The
shell AIDE. In Proceedings of the 12th International Conference on Artifi-
cial Intelligence, Expert Systems and Natural Language, Avignon, France.

Hàjek, P., Havrànek, T. and Jirousek, R. (1992). Processing Uncertain
Information in Expert Systems. CRC Press.

Harper, R., McQueen, D. and Milner, R. (1986). Standard ML. Technical
Report ECS–LCFS–86–2, Edinburgh University.

Harper, R., Sannella, D. and Tarlecki, A. (1989). Structure and represen-
tation in LCF. In Proceedings of 4th IEEE Symp. on Logic of Computer
Science.

Jonckers, V., Geldof, S. and De Vroede, K. (1992). The COMMET method-
ology and workbench in practice. Technical Report 92–8, Vrije Universiteit
Brussel. Laboratory for Artificial Intelligence.

232 Appendix C. Examples

Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand.

Komorowski, H. J. (1981). A specification of an abstract Prolog machine
and its application to partial evaluation. PhD thesis, Linkoping University.

Komorowski, H. J. (1990). Towards a programming methodology founded
on partial deduction. In Proceedings ECAI’90, pages 404–409.

Kuipers, B., Moskowitz, A. and Kassirer, J. (1988). Critical decisions under
uncertainty: Representation and structure. Cognitive Science, 12:177–210.

Langevelde, I. v., Philipsen, A. and Treur, J. (1993). Formal Specification
of Complex Reasoning Systems, chapter A Compositional Architecture for
Simple Design Formally Specified in DESIRE. Ellis Horwood.

Lloyd, J. W. and Shepherson, J. C. (1991). Partial evaluation in logic
programming. The Journal of Logic Programming, 11(3/4):217–242.

López de Mántaras, R. (1990). Approximate Reasoning Models. Ellis Hor-
wood Series in Artificial Intelligence.

López, B. (1993). Aprenentatge i generació de plans per a Sistemes Experts.
PhD thesis, Universitat Politècnica de Catalunya, Barcelona.

Meseguer, P. (1992). Validation of Multi–Level Rule–Based Expert Systems.
PhD thesis, Universitat Politècnica de Catalunya, Barcelona.

Miller, D. A. (1986). A theory of modules for logic programming. In AAVV:
Proceedings of 1986 IEEE Sympos. on Logic Programming.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence Journal,
28:71–88.

O’Keefe, R. (1985). Towards an algebra for constructing logic programs. In
AAVV: Proceedings of 1985 IEEE Sympos. on Logic Programming, pages
152–160.

Pearl, J. (1986). A constrain–propagation approach to probabilistic reason-
ing. In Kanal, N. L. and Lemmer, J. F., editors, Uncertainty in Artificial
Intelligence, pages 357–369. North Holland.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann.

Pearl, J. (1990). Reasoning under uncertainty. Annual Review in Computer
Science, 4:37–42.

C.3. Polytrees Example 233

Plaza, E. and López de Mántaras, R. (1989). Model–based knowledge acqui-
sition for heuristic classification systems. SIGART Newsletter, 108:98–105.

Puyol, J. (1989a). Hacia un modelo de computación concurrente para
sistemas expertos. In Proceedings III Reunión Técnica de la Asociación
Española para la Inteligéncia Artificial, pages 23–31.

Puyol, J. (1989b). Parallel programming in expert systems. In Proceedings
Third World Conference on Mathematics at the Service of Man.

Puyol, J. (1990). ADES: un entorn per a sistemes experts distribüıts. Mas-
ter’s thesis, Universitat Autònoma de Barcelona.

Puyol, J., Sierra, C. and Agust́ı, J. (1991). Partial evaluation in MILORD
II: A language for knowledge engineering. In Proceedings Europ–IA’91,
pages 193–207.

Puyol, J. (1992a). An inference engine based on specialisation with uncer-
tainty. In Proceedings IPMU’92, pages 725–728.

Puyol, J., Godo, L. and Sierra, C. (1992b). A specialisation calculus to
improve expert system communication. In Proceedings ECAI’92, pages
144–148.

Puyol, J., Godo, L. and Sierra, C. (1992c). A specialisation calculus to
improve expert system communication (long paper). Technical Report 92/8,
IIIA–CSIC.

Sakama, C. and Itoh, H. (1986). Partial evaluation of queries in deductive
databases. Technical Report TR–302, ICOT.

Sannella, D. and Wallen, L. A. (1987). A calculus for the construction of
modular prolog programs. In AAVV: Proceedings of 1987 IEEE Sympos.
on Logic Programming, pages 368–378.

Shafer, G. (1976). A mathematical theory of the evidence. Princeton Uni-
versity Press.

Shortliffe, E. H. and Buchanan, B. G. (1975). A model of inexact reasoning
in medecine. Mathematical Biosciencies, 23:351–379.

Shortliffe, E. H. (1976). Computer Based Medical Consultations: MYCIN.
American Elsevier, New York.

Sierra, C. (1989). MILORD: Arquitectura multi–nivell per a sistemes ex-
perts en classificació. PhD thesis, Universitat Politècnica de Catalunya,
Barcelona.

234 Appendix C. Examples

Sierra, C. and Agust́ı, J. (1991). Colapses: Towards a methodology and a
language for knowledge engineering. In Proceedings AVIGNON’91, pages
407–423.

Steele, G. (1984). Common Lisp: The Language. Digital Press.

Steels, L. (1990). Components of expertise. AI Magazine, 11.

Sticklen, J., Smith, J. W., Chandrasekaran, B. and Josephson, J. R. (1987).
Modularity of domain knowledge. International Journal of Expert Systems,
1(1):1–15.

Takeuchi, A. and Furukawa, K. (1986). Partial evaluation of prolog pro-
grams and its application to meta programming. In Information Processing
86.

Treur, J. and Wetter, T., editors (1993). Formal Specification of Complex
Reasoning Systems. Ellis Horwood.

Trillas, E. and Valverde, L. (1987). On inference in fuzzy logic. In Second
IFSA Congress. Tokyo, pages 294–297.

Turner, R. (1984). Logics for Artificial Intelligence. Ellis Horwood Series
in Artificial Intelligence.

Valverde, L. and Trillas, E. (1985). On modus ponens in fuzzy logic. In
Proceedings 15th ISMVL. Kignston (Ontario), pages 294–301.

van Harmelen, F. and Balder, J. (1992). (ML)2: A formal language for
KADS models of expertise. Knowledge Acquisition, 4(1).

van Harmelen, F., López de Mántaras, R. and Malec, J. (1993). Formal
Specification of Complex Reasoning Systems, chapter Comparing Formal
Specification Languages for Complex Reasoning Systems, pages 257–282.
Ellis Horwood.

Vasey, P. (1986). Qualified answers and their application to transformation.
In Goos, G. and Hartmanis, J., editors, Third International Conference in
Logic Programming, LNCS 225, pages 425–432. Springer–Verlag.

Veld, L., Jonker, W. and Spee, J. (1993). Formal Specification of Complex
Reasoning Systems, chapter Specifications of Complex Reasoning Tasks in
KBSSF . Ellis Horwood.

Venken, R. (1984). A prolog meta–interpreter for partial evaluation and its
application to source transformation and query–optimisation. In Proceed-
ings ECAI’84, pages 91–100.

C.3. Polytrees Example 235

Verdaguer, A. (1989). Pneumon–IA: Desenvolupament i validació d’un sis-
tema expert d’ajuda al diagnòstic mèdic. PhD thesis, Universitat Autònoma
de Barcelona.

Vicar-Whelan, P. J. M. (1976). Fuzzy sets for man–machine interaction.
International Journal of Man–Machine Studies, 84:687–697.

Vila, L. (1993a). Constraints on distances between temporal distances.
Report de Recerca forthcoming, IIIA.

Vila, L. (1993b). Instants, periods and the divided instant problem. In
proc. of QUARDET’93. IMACS.

Vila, L. (1993c). A theory of time based on instants and periods. Report
de Recerca forthcoming, IIIA. Submitted to 1rst Intl. Conf. on Temporal
Logic.

Vila, L. (1993d). Time ontology and temporal occurrence predicates. In
TARRAT’93. IIIA.

Wielinga, B. J., Schreiber, A. T. and Breuker, J. A. (1992). Kads: A
modelling approach to knowledge engineering (special issue). Knowledge
Acquisition, 4(1).

Wolstenholme, D. (1987). Saying i don’t know and conditional answers.
In Moralle, D., editor, Research and Development in Expert Systems IV,
pages 115–125. Cambridge University Press.

Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8:338–353.

Zadeh, L. A. (1975). Fuzzy logic and approximate reasoning. Synthese,
30:407–428.

236 Appendix C. Examples

Index

Ens–AI, 153
Milord, 4
Spong–IA, 153
Terap–IA, 144, 197

Algebra of truth–values, 53

Completeness, 97, 191
Contraction, 36, 44

Deductive Control, 138
Deductive Knowledge, 104
Deductive Process, 82
Dynamic Modules, 49

Eager, 133, 140
Evaluation Strategy, 130
Expansion, 36, 44

Fact Declarations, 106
Fact Types, 107
Fuzzy Control Example, 156, 216
Fuzzy Sets, 65, 110

Generic Modules, 21, 32

Hierarchy of modules, 27

Imprecision, 51, 60
Inference Engine, 98
Information Hiding, 41
Inherit Declaration, 47
Inheritance, 41
Interfaces, 24

Intervals of Truth–values, 61

Lazy, 131, 140
Local Logic Declaration, 73
Local Logics, 69

Metarules, 138
Modules, 20, 29

Open Declaration, 47

Propagation Rules Example, 164,
225

Refinement, 36, 38
Reflection, 133
Reification, 133
Reified, 140
Rule Declarations, 112

Search Process, 82
Search Strategy, 130
Semantics of Specialization, 92
Sharing Declaration, 49
Soundness, 97, 191
Specialization, 11, 85, 101
Specialization Calculus, 90
Structural Control, 138
Subsumption, 122
Syntax of Milord II, 181
Syntax of Specialization, 90

Threshold, 129

Uncertainty, 51, 59

237

238 INDEX

Unnecessary Rules, 128

Validation, 88

