
On Defining Multiple-valued Logics for

Knowledge-based Systems Communication

José Antonio Reyes, Josep Puyol-Gruart, Francesc Esteva
Artificial Intelligence Research Institute (IIIA)

Spanish Scientific Research Council (CSIC)
Campus UAB. 08193 Bellaterra, Catalonia, Spain

E–mail: {reyes, puyol, esteva}@iiia.csic.es

Abstract

Multiple-valued logics are useful for dealing with uncertainty and impre-

cision in Knowledge-Based Systems. Different problems can require different

logics. Then we need mechanisms to translate the information exchanged

between two problems with different logics. In this paper, we introduce the

logical foundations of such logics and the communication mechanisms that

preserve some deductive properties. We also describe a tool to assist users in

the declaration of logics and their communication mechanisms.

Keywords: Uncertain Reasoning, Multiple-Valued logics, Knowledge-Based

Systems.

1 Introduction

The management of uncertainty and imprecision in knowledge-based systems (KBS)
becomes essential to model many real problems. Multiple-valued logics (MV-
Logics) have been proved to be useful in knowledge-based systems [2, 4, 6, 12].
Different problems can require different MV-Logics, those more adapted to them.

This paper is related to the problem of how to make compatible the commu-
nication of information among different MV-Logics maintaining some properties
of the deduction. We present the theoretical foundations of our MV-logics and
their combinations, and QMORPH [11], a tool which makes automatic the pro-
cess of defining and combining finite MV-Logics. This tool has been designed to
be incorporated to the shell Milord II [10, 9]—a shell and a language to develop
KBS—although it can be used in a more extensive framework. The basic construct
of Milord II language is the module. A Milord II application is a hierarchy
of modules. Each module is a complete KBS containing the declaration of sub-
modules, facts, rules, meta-rules, and the particular MV-Logic of the module. The
declaration of this local logic includes how to make the translation of the informa-
tion provided by a module with a different MV-Logic.

0

Defining and combining Multiple-valued Logics for KBS 1

This paper is organized as follows. In section 2, we introduce a parametric
family of MV-logics determined by a particular algebra of truth-values and the
extension of that algebra to an algebra of intervals of truth-values. In Section 3
we discuss the eficient generation of conjunction operators. Section 4 is devoted to
establish the essential requirements needed to preserve several deductive properties
when we communicate different logics. We give conditions for every requirement
and we identify different sorts of renaming functions between logics. In section 5,
we describe the main features of QMORPH. Finally, in section 6 we outline the
conclusions of this work.

2 Defining MV-Logics

In this section we will give the definitions required to declare the family of finite
MV-logics we deal within this paper and which are expressive enough to model the
uncertain reasoning used in many rule-based systems (see [1, 2, 4]), including Mi-
lord II. See [7] for a mathematical characterization of t-norms (continuous-like or
smooth) in a finite linearly ordered scale. . Each logic of this family is determined
by a particular algebra of truth-values defined as a finite algebra

An
T = 〈An,0,1,Nn, T, IT 〉

where:

1. The ordered set of truth-values An is a chain of n elements:

0 = a0 ≺ a1 ≺ . . . ≺ an−1 = 1

where 0 and 1 are the Boolean False and True respectively.

2. The negation operation Nn is the unary operation univocally determined
by the order reversing and involutive properties. defined as:

Nn(ai) = an−1−i

3. The conjunction operation T is a binary operation such that satisfy the
following properties ∀a, b, c ∈ An:

• T1: T (a, b) = T (b, a)

• T2: T (a, T (b, c)) = T (T (a, b), c)

• T3: T (0, a) = 0

• T4: T (1, a) = a

• T5: If a ≤ b then T (a, c) ≤ T (b, c) for all c

4. The implication operation IT is defined by residuation with respect to T ,
i.e.

IT (a, b) = Max{c ∈ An|T (a, c) ≤ b}

2 J.A. Reyes, J. Puyol & F. Esteva

T (x, y) false unlikely maybe likely true

false false false false false false
unlikely false unlikely unlikely unlikely unlikely
maybe false unlikely maybe maybe maybe
likely false unlikely maybe maybe likely
true false unlikely maybe likely true

Table 1: T conjunction operation on A5.

In Table 1 we can see a possible table for T on the set of five truth-values
A5 = {false,unlikely ,maybe, likely , true}. Notice that an algebra of truth-values is
univocally defined by the set of truth-values An and the operation T , since IT and
Nn are univocally determined by T and n respectively.

The language is composed of:

• Well-formed Formulas (wff): obtained in the usual way from a denumer-
able set of propositional symbols and the connectives ¬, ∧ and →.

• Sentences: pairs (p, V) of a wff p and an interval of truth-values V .

The semantic interpretation is given by:

• Models: defined by valuations ρ from the first component of sentences to
An provided that:

– ρ(¬p) = N(ρ(p))

– ρ(p1 ∧ p2) = T (ρ(p1), ρ(p2))

– ρ(p→ q) = IT (ρ(p), ρ(q))

• Satisfaction Relation: between models and sentences defined by:

Mρ |= (p, V) if, and only if ρ(p) ∈ V

where Mρ stands for the model defined by a valuation ρ.

A MV-Logic Calculus is defined by a set of axioms and rules of inference that
have to be sound with respect to the satisfaction relation given above (see the
particular calculus of Milord II in [8]). The most common rule of inference on
rule-based systems is modus ponens. The corresponding Modus Ponens operator
MPT between values of the algebra of truth-values is defined by:

MPT (a, b) =







∅ if a and b are inconsistent
[a,1] if b = 1
T (a, b) otherwise

which gives the set of solutions of the equation IT (a, c) = b, and where a, b ∈ An

are said to be inconsistent if there is no solution c to this equation.

Defining and combining Multiple-valued Logics for KBS 3

Given an algebra of truth-values we are interested in the extension to the algebra
of intervals of truth-values (see [3]). We have some motivations: the modus ponens
operator above requires the use of intervals to chain rules, we want to deal with
imprecision, and—as we will see in the next section—intervals are needed to make
possible mappings between different logics.

Given an algebra of truth-valuesAn
T = 〈An,0,1,Nn, T, IT 〉 , we will consider the

set of intervals of An as Int(An) = {[a, b]|a, b ∈ An}, being [a, b] = {x ∈ An|a � x �
b}. The extension of the algebra operators for dealing appropriately with intervals
are defined by: N∗

n([a, b]) = [Nn(b),Nn(a)], T ∗([a, b], [c, d]) = [T (a, c), T (b, d)],
MP ∗

T ([a, b], [c,1]) = [T (a, c),1]. Notice that N ∗

n([a, b]) is the minimum interval of
Int(An) such that for all x ∈ [a, b], Nn(x) belongs for sure, and the same is valid
for T ∗ and MP ∗

T . Coherently with the definitions the order between intervals is
extended to ≺∗. Then [ai, aj] ≺

∗ [ak, al] if aj ≺ ak, or aj = ak and [ai, aj] 6= [ak, al].

3 Conjunction Generation

To declare an algebra of truth-values it is only necessary to determine the linguistic
terms more adequate for the concerning problem, and define a conjunction operator
necessary to combine and propagate uncertainty when making inference. Next we
discuss how the conjunction operator has been generated and how this process has
been automated.

Throughout this work we represent the table of the conjunction operator as
a matrix M , where each element is a variable. If the algebra has n elements,
then M is a n × n matrix which elements are noted by Vi,j = T (ai, aj), where
0 ≤ i, j ≤ n− 1.

Properties T1-T5 act as constraints over the set of possible solutions. Satisfac-
tion of each property or constraint, causes the following guidelines which influence
the conjunction search generation problem:

• Commutativity allows us to consider only the set of variables V = {V i,j , i ≥
j}.

• Existence of absorbent and neutral elements implies to fix the values for
variables V0,j and Vn−1,j , where 0 ≤ j ≤ n− 1.

• Monotonicity requires max(Vi−1,j , Vi,j−1) ≤ Vi,j ≤ max(Vi+1,j , Vi,j+1).

• Associativity test is expensive in time and memory, but it can be reduced tak-
ing into account the commutative property and considering that T (ai, aj) ≤
min(ai, aj), each submatrix Mk (a matrix k × k with elements Vi,j where
0 ≤ i, j ≤ k) is closed with respect to the conjunction operator. In this way
the matrix will be associative if all its sub-matrices are so. This property let
us check associativity in an incremental way every time a value is assigned
to a variable Vi,j.

Applying these constraints, the number of operators generated is exponential
with respect to n. It is significantly high for a certain number of linguistic terms,

4 J.A. Reyes, J. Puyol & F. Esteva

n A B C D
α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

3 2 1 2 2 2 1 1 1
4 6 2 5 6 6 2 2 2
5 22 6 13 21 22 5 6 6
6 94 22 38 78 93 13 21 22
7 451 94 118 306 422 38 78 93
8 2386 451 395 1274 2002 118 306 422
9 − 2386 1404 − − 395 1274 2002

Table 2: Matrices per number of terms. A: T1-T5, B: T1-T6, C: T1-T5 and
T7, D: T1-T7

in particular, for n > 5 we obtain more than 22 matrices (as we can see in Ta-
ble 2, column A). In fact we are interested in fewer possibilities, because finally we
will only choose one operator. Then we can reduce this number by fixing several
values of the matrix or by introducing new constraints. Two types of well-known
desirable—although optional —properties are discussed in the literature (see [5]).

It seems reasonable that the conjunction of two truth-values different than 0
should not be 0. This is achieved by the property:

T6 Strictness: T (ai, aj) 6= 0, for all i, j 6= 0

In the infinite case we require some continuity. Similarly, in the finite case the
conjunction of two values should be close to the conjunction of different, but close
values. This property is defined as follows:

T7 α-Smoothness: given α ∈ N, T is said to satisfy α-smoothness
property if: T (ai, aj) = ak and T (ai−1, aj) = ap, imply k − p ≤ α

Satisfaction of these news properties causes the following influences in the con-
junction search generation problem: Strictness implies that the generation of strict
matrices of dimension n is equivalent to generate non-strict matrices of dimension
n− 1; α-Smoothness reduces the set of possible values for a variable. It takes into
account column and row adjacency.

The definition of a conjunction operation is given by stating its properties.
There are the mandatory properties (T1-T5), and additional ones (T6,T7) in
order to decrease the number of possible solutions (see the experimentals results
in Table 2). As an additional option, we consider that some of the variables of the
conjunction matrix can be fixed.

3.1 Generation as a Constrain Satisfaction Problem

The problem of finding the T operators satisfying a set of properties can be for-
mulated as a classic Constraint Satisfaction Problem (CSP):

Defining and combining Multiple-valued Logics for KBS 5

• Initially, we have a set of variables with fixed values. This set is composed
by the values concerning the variables: V0,j = a0 , Vn−1,j = aj, with 0 ≤ j ≤
n− 1 (T3,T4), and the ones fixed by the user.

• We only take into account the set of variables V = {Vi,j |i ≥ j with i, j 6=
0 and i, j 6= n− 1} (T1).

• The initial domain for these considered variables is Di,j = {a0, . . . , ai} (T5).

• This initial domain can be modified according to strictness and α-smoothness
properties (T6,T7). If strictness is applied, then the a0 value is rejected. If
α-smoothness is applied, the domain length will be up to α + 1 elements,
keeping the last α+ 1 elements of the set if this number is greater.

We solved this search generation problem with a depth-first algorithm applying
backtracking and look-ahead. Backtracking needs the existence of stacks. In this
case, we use one to keep matrices generated and other one to keep which values
remains unassigned to each variable. The generated solution results are shown in
Table 2.

Now we know how to define a logic and how to solve and automate the con-
juntion generation. In the next section we will see how to communicate different
logics and how to preserve certain deductive properties in this process.

4 Combining Logics

As we have seen in the previous sections, we can declare different logics varying
the set of truth-values (linguistic terms) and the conjunction operator.

When two different logics need to exchange information, it is necessary some
mechanism of translation of the linguistic terms to make the communication be-
tween those logics compatible, preserving the deductive properties of each one. As
usual, when information is transmitted, we loose some precision. This loss of in-
formation can be represented by mapping truth-values of one logic to intervals of
truth-values of the other one. In the following we analyze different requirements
for this mapping [1].

Let (L,`) and (L′,`′) be two logics, L and L′ standing for the languages, and
` and `′ for the entailment relations defined on L and L′ respectively. To establish
a correspondence between both logics, a mapping H : L → L′ is needed relating
their languages. Next, we will analyze some natural requirements for the mapping
H with respect to the entailment systems ` and `′ proposing that at least one
of the following three requirements should be fulfilled by the mapping H in order
to ensure a consistent communication. Henceforth Γ and e will denote a set of
sentences and a sentence of L respectively.

A map H is said to be forward conservative when,

RQ.1. If Γ ` e, then H(Γ) `′ H(e)

6 J.A. Reyes, J. Puyol & F. Esteva

With this requirement we ensure that for every sentence e, deducible from a set
of sentences Γ, its corresponding sentence, H(e), will also be deducible from the
corresponding sentences of H(Γ).

A map H is said to be backward conservative when,

RQ.2. If H(Γ) `′ H(e), then Γ ` e

This is the inverse requirement of RQ.1. So, in this case if a fact is not de-
ducible from Γ, then its corresponding fact from H(Γ) will not be deducible either.
Nevertheless Γ ` e does not imply H(Γ) `′ H(e).

A map between entailment systems allows us to preserve inference in a strict
sense. In particular, when a map is conservative (forward or backward), one en-
tailment system is an extension of the other one. Conditions RQ.1 and RQ.2,
which are very strong, can be weakened in the uncertainty reasoning framework.
That means that we can consider not to deduce always the same sentences, but
sometimes only coherent sentences.

Formally, this can be expressed by the third and last requirement:

RQ.3. If H(Γ) `′ e′, then there exists e such that Γ ` e and H(e) `′ e′

This requirement assures that every sentence deducible from H(Γ) must be
in agreement with those deduced from Γ. This requirement is slightly different
from RQ.2, in the sense that it is not necessary to be e′ an exact translation of a
deducible sentence e from Γ, but only something deducible from such a translation.
In the framework of logics for uncertainty management, e′ can be interpreted as a
weaker form of e, i.e. a sentence expressing more uncertainty than e. We call it a
weak conservative map.

4.1 Algebra Morphisms

Now we consider the problem of finding inference preserving correspondences be-
tween two algebras An

T = 〈An,0,1,Nn, T, IT 〉 and Bm
T ′ = 〈Bm,0,1,N ′

m, T
′, IT ′〉.

We are interested in mapping the entailment system (LA,`A) into the entailment
system (LB ,`B), by means of renaming functions between the corresponding sets
of linguistic terms. We consider those mappings from LA to LB that just in-
volve translations of truth-values, i.e. any mapping H : LA → LB is defined as
H(e, V) = (e, h(V)), where the renaming function h translates subsets of values of
An into subsets of values of Bm, and e (a well-formed formula) remains invariant.

We are interested in renaming functions h such that H satisfy inference pre-
serving properties RQ.1, RQ.2 and RQ.3.

In [1] it is proved first that such function h exists if h maps truth-values of An

into intervals of truth-values of Bm, that is h : An → Int(Bm) (it is not always
possible to find mapping if we restrict h to be h : An → Bm) and second it is proved
which are the necessary and sufficient conditions for h (summarized in Table 3) in
order H satisfy the above inference preserving properties.

Sometimes there exists renaming functions h satisfying the required conditions
such that h(ai) = [bj , bj], i.e., mapping elements of An into elements (intervals of

Defining and combining Multiple-valued Logics for KBS 7

RQ.1 ⇔
h(T (V1, V2)) ⊇ T ′∗(h(V1), h(V2))

h(Nn(V)) = N ∗

m(h(V))
h(V1 ∩ V2) = h(V1) ∩ h(V2)

RQ.2 ⇐
h(T (V1, V2)) ⊆ T ′∗(h(V1), h(V2))

h(Nn(V)) = N ∗

m(h(V))
h(V1) ⊇ h(V2) ⇒ V1 ⊇ V2

⇓

RQ.3 ⇔
h(T (V1, V2)) ⊆ T ′∗(h(V1), h(V2))

h(Nn(V)) = Nm(h(V))

Table 3: Requirements conditions.

type [bj, bj]) of Bm. In such a case if h satisfy one of the requirements, h is always
a morphism of the algebras of truth-values. As a particular case if h satisfy the
requirements RQ.1 or RQ.2, then h is a mono-morphism, an embeding of An into
Bm. Finally if h maps elements of An into proper intervals of Bm, then if it satisfies
RQ.3, h is said to be a quasi-morphism.

We are mainly interested in mono-morphisms because they embed An into Bm

and because they are order preserving mappings (it is equivalent to a communica-
tion without any loose of information). After mono-morphisms, we are interested in
morphisms, which accomplish the algebra operations (it is a transmission of infor-
mation fulfilling the required properties). Finally, because of the strong conditions
for morphisms and mono-morphisms, it is not always possible to find these kind of
renaming functions, quasi-morphisms can be useful thanks to the additional free-
dom of map truth-values of an algebra into intervals of the other (we allow certain
loose of information).

4.2 Renaming Algorithm

For a given set of truth-values An, there exists only one negation operator Nn, and
it is defined by Nn(ai) = an−i−1. Then, we can make a partition of the set An into
three subsets:

• the set of negative elements Nn = {x|x ≺ N(x)}

• the set of fixed elements Fn = {x|x = N(x)}

• the set of positive elements Pn = {x|x � N(x)}

being the subsets: Fn = {ak}, Nn = {ai|i < k}, Pn = {ai|i > k}, if n = 2k + 1,
and Fn = ∅, Nn = {ai|i < k} and Pn = {ai|i ≥ k}, if n = 2k.

In the same way, we can do the same with a set Bm, obtaining N∗

m
, F∗

m
, and P∗

m

for the case of working with intervals. Then, the renaming algorithm is as follows:

1. Initialization: Obtain the subsets Nn, Fn, N∗

m
, and F∗

m
.

2. Maps Generation: Generate all the maps h1 : Nn ∪Fn → N∗

m
∪F∗

m
such that:

8 J.A. Reyes, J. Puyol & F. Esteva

T ′(x, y) impos fewp slightp possib quitep veryp sure

impos impos impos impos impos impos impos impos
fewp impos fewp fewp fewp fewp fewp fewp

slightp impos fewp slightp slightp slightp slghtip slightp
possib impos fewp slightp possib possib possib possib
quitep impos fewp slightp possib quitep quitep quitep
veryp impos fewp slightp possib quitep veryp veryp
sure impos fewp slightp possib quitep veryp sure

Table 4: T ′ conjunction operation on B7.

(a) h1(0) = 0.

(b) h1(Fn) ∈ F∗

m
.

(c) x � y implies h1(x) 6� h1(y), where x, y ∈ An and h1(x), h1(y) ∈
Int(Bm).

3. Map extension: Extend each mapping h1 with respect to the negation oper-
ation defining the morphism h as:

h(x) =

{

h1(x) x ∈ Nn ∪ Fn

N∗

m(h1(Nn(x))) x ∈ Pn

4. Conjunction checking: Check which ones are compatible with the conjunction
operators T and T ′.

5. Renaming checking: Finally check which mappings h are mono-morphisms,
morphisms or quasi-morphisms.

As an example, consider two logics declared with the sets of truth-values A5

and B7, and with the conjunction operations T and T ′ (defined in Table 1 and
Table 4 respectively).

A5 = {false,unlikely ,maybe, likely , true}
B7 = {impos , fewp, slightp, possib, quitep, veryp, sure}

First, we obtain the initial subsets N5, F5, N∗

7
and F∗

7
:

N5 = {false,unlikely}
F5 = {maybe}
N∗

7
= {impos , fewp, slightp, possib, [impos , fewp], [impos , slightp],

[impos , possib], [fewp, slightp], [fewp, possib], [slightp,possib]}
F∗

7
= {possib, [fewp, veryp], [slightp, quitep], [impos , sure]}

And following the above algorithm schema, we can find several mappings be-
tween both logics. There are here two mappings that are examples of those that

Defining and combining Multiple-valued Logics for KBS 9

hold the last requirement RQ.3:























false → impos
unlikely → [impos, fewp]
maybe → [fewp, veryp]
likely → [veryp, sure]
true → sure























false → impos
unlikely → [fewp, slip]
maybe → possible
likely → [quitep, veryp]
true → sure

When ending the generation process, the list of inference preserving mappings
is presented to the user in this way:

1. First, we offer the existent mono-morphisms (one-to-one morphisms).

2. Next, we show which morphisms are between both algebras, if any.

3. Finally, we display the list of generated quasi-morphisms.

Due to the strong conditions they must fit, it is not always possible to find
morphisms and mono-morphisms. In addition, it is very possible that the renaming
generation produces a large list of quasi-morphisms, so the possibility of giving
an ordered list of quasi-morphisms to aid users in their final selection may be
considered.

For the purpose of producing an ordered list of quasi-morphisms, we consider a
weight as a relation among the number of terms which have an atomic image (that
is, an interval with the form [ai, ai]) and the length of those producing intervals
(number of truth-values included in this interval).

Given two chains An and Bm, we will generate mappings h : An → Int(Bm).
In order to obtain an evaluation for every map, we use the following empirical
function:

ψ =

∑n
i=1

Li

k

for 1 ≤ Li ≤ m, 1 ≤ k ≤ n, where Li is the length of the interval h(ai) and k is
the number of points ai which have an atomic image1. Then, for every mapping
we obtain a value ψ, such that:

1 ≤ ψ ≤
(n− 2)m+ 2

2

This method produces an ordered list of quasi-morphisms that simplify the
selection of a specific one by the user.

User is also able to establish the behavior that can take the generated maps
defining a partial map between both algebras. This definition must satisfy the set
of requirements suggested previously in order to be a negation morphism. That is,
our partial map must accomplish the next points:

1. It must be a non-decreasing function.

1Note that in the case of morphisms, all the mappings produce the same evaluation.

10 J.A. Reyes, J. Puyol & F. Esteva

2. If our map involves the truth-value a0, its image must be the truth-value
b0. For instance, in the above example any map must fit h(false) = impos.
Therefore, to be a negation morphism, it is the same for the case of truth-
value an−1, so it is required that h(true) = sure.

3. If our map implies the fixed element of the first chain An, we must give as
its image an element belonging to the set of fixed elements F∗

m
. When we

have defined our partial map (or total, or none), a list of renaming functions
fulfilling these defined characteristics will be generated.

Now we know how to declare a MV-logic and how to establish inference pre-
serving communication between two of these logics. In the following section we will
present the interactive implemented tool to define and combine MV-logics.

5 The QMORPH Tool

QMORPH [11] is a tool that allows users to define and combine MV-logics. Two
different interfaces have been developed: a graphical interface for the UNIX oper-
ative system, running under the X-Windows environment and developed on Sun
machines using Tcl/Tk packages and a generic text mode interface performed in
Common Lisp for the Macintosh system. In the present, this tool is attached to
Milord II, as an tool to assist experts when developing modular applications.

In this section, we illustrate the use of QMORPH throughout an example in
which we try to find existing morphisms between two MV-logics.

We consider the same above example. Let us suppose we need to establish a
communication from A5

T = 〈A5,0,1,N5, T, IT 〉 (Origin Module or O-Module) to
B7

T ′ = 〈B7,0,1,N7, T
′, IT ′〉 (Image Module or I-Module).

First, the user has to define the main characteristics of both logics. It is manda-
tory to declare the set of truth-values of both logics and the T operation of the
Origin Module for avoiding a computational explosion.

This is made by entering first how many linguistic terms compose the logics (5
and 7) and optionally the concrete names for the terms—otherwise they will be
generated automatically. In this example we consider the terms A5 and B7 of the
previous examples.

Secondly, the user has to declare the conjunction operator that the O-Module
uses to combine and propagate the linguistic terms when making inference, in
this case T . The user can choose this function depending on the meaning he
wants to give to the conjunction operation. There are some matrix values that
remain fixed (by properties: T (0, ai) = 0 and T (1, ai) = ai), so these values will be
presented automatically avoiding any changes. There are additional possibilities: if
the user specify the conjunction completely, then the system will check whether that
conjunction operator holds the mandatory properties or not; it is also possible to
give a partial matrix with some pre-fixed values; and finally, there is the possibility
of not giving any value, so all the conjunction operators would be generated. To
restrict the number of possible solutions, user can apply strictness and smoothness

Defining and combining Multiple-valued Logics for KBS 11

Figure 1: Conjunction generation interfaces.

constraints over the process generation. In our example (see Figure 1), the user
fixs T5(unlikely, unlikely) = unlikely.

If many matrices have been generated, user must choose one of them. If user
consider that there are too many matrices, it is possible to come back to redefine
the matrix and the restrictions over it. To choose among the set of generated
matrices, results are presented in the Matrices Reproducer (Figure 1) where we
can display all the generated matrices and select the one that fits better.

Once the logic of the A5
T (O-Module) has been determined, we must define the

logic concerning to B7
T ′ (I-Module). The procedure for defining an I-Module con-

junction operator is exactly the same that in the case of the O-Module, but it is not
necessary to choose one of them. Then for every matrix solution, all the renaming
mappings between both defined algebras will be generated. It is the possible to
give a partial map between both algebras. If user desire a particular truth-value
from one logic to be translated to another truth-value (or to an interval), the values
of the partial map will be checked to be correct (see Figure 2). It is permitted to
choose a determinate criteria to be satisfied during renaming generation. There
are three criteria: A, B and C, corresponding to the requirements RQ.1, RQ.2
and RQ.3, respectively.

6 Conclusions

In this paper we have defined which are the theoretical foundations that allow to
deal with uncertainty by means of multiple-valued logics. We have settled how to
declare a suitable MV-logic from a parametric family of algebra of truth-values, as
well as which requirements are necessary when we need to establish a communica-
tion between two of these logics.

12 J.A. Reyes, J. Puyol & F. Esteva

Figure 2: Renaming functions generation interfaces.

We have presented the developed algorithms to aid users in the generation of a
specific conjunction operation (implemented as a classic CSP) and in the search of
an inference preserving mapping.

The performed tool has been designed with the aim of automating these prob-
lems, as well as assisting users and offering different alternative possibilities. Be-
yond its particular use within Milord II, this tool can be deployed by any other
system using MV-logics.

References

[1] J. Agust́ı, F. Esteva, P. Garcia, L. Godo, R. López de Mántaras, and C. Sierra.
Local multi-valued logics in modular expert systems. Journal of Experimental
and Theoretical Artificial Intelligence, 6(3):303–321, 1994.

[2] P.P. Bonissone, S.S. Gans, and K.S. Decker. Rum: A layered architecture for
reasoning with uncertaintyg. In IJCAI’87, pages 891–898, 1987.

[3] F. Esteva, P. Garcia-Calves, and L. Godo. Enriched interval bilattices: An
approach to deal with uncertainty and imprecision. Uncertainty, Fuzzyness
and Knowledge–Based Systems, 1994.

[4] L. Godo, R. López de Mántaras, C. Sierra, and A. Verdaguer. Milord: The
architecture and management of linguistically expressed uncertainty. Interna-
tional Journal of Intelligent Systems, 4:471–501, 1989.

[5] Llúıs Godo and Carles Sierra. A new approach to connective generation in
the framework of expert systems using fuzzy logic. In Proceedings of the 18th
International Symposium on Multiple-Valued Logics, pages 157–162, 1988.

[6] Ramon López de Mántaras. Approximate Reasoning Models. Ellis Horwood
Series in Artificial Intelligence, 1990.

Defining and combining Multiple-valued Logics for KBS 13

[7] G. Mayor and J. Torrens. On a class of operators for expert systems. Inter-
national Journal of Intelligent Systems, 8:771–778, 1993.

[8] J. Puyol-Gruart, L. Godo, and C. Sierra. Specialisation calculus and communi-
cation. International Journal of Approximate Reasoning (IJAR), 18(1/2):107–
130, 1998.

[9] J. Puyol-Gruart and C. Sierra. Milord II: a language description. Mathware
and Soft Computing, 4(3):299–338, 1997.

[10] Josep Puyol-Gruart. MILORD II: A Language for Knowledge-Based Systems,
volume 1 of Monografies del IIIA. IIIA–CSIC, 1996. ISBN: 84–00–07499–8.

[11] J.A. Reyes. QMORF: a tool to define and combine local logics in Milord II.
Master’s thesis, Universitat Autònoma de Barcelona, 1997.

[12] R. Turner. Logics for Artificial Intelligence. Ellis Horwood Series in Artificial
Intelligence, 1984.

