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Abstract

In this paper we describe the language Milord II. The description is
made in terms of computer language concepts and not in terms of the logical
semantics underlying it. In this sense the paper complements others in which
the focus of the description has been either the object level multi-valued lan-
guage description, or the reflective component of the architecture, or even
the several applications built using it. All the necessary elements to under-
stand how a system programmed in Milord II executes have room in this
full description: types, facts, rules, modules, local logics, control strategies, ...
Although the description is guided by the Milord II language syntax, this is
by no means a user’s manual, which would deserve a much longer document,
but a language summary description that places all the components of the
language in their correct place.
Keywords: Expert Systems, Knowledge-Based Systems, languages, uncer-
tainty.

1 Introduction

This paper summarises the outcome of the research developed in our laboratory
during several years, in the form of a computational language. In this sense the
merit is, if any, not only on the authors but on all the members of the laboratory.
The focus of the paper content is the description of the language structure and its
constructs, but not its logical semantics. In [22] you can find a complete description
of the logical semantics underlying Milord II. The interested reader will find in the
bibliography several references to Milord II papers that will help in the deepening
of the theoretical grounding that is only mentioned here. This paper must not be
understood as a user’s manual but as a concise description of the language. The
complete description of all the possibilities of usage, the environment facilities, and
complex examples would deserve a much longer document.

When one focus on the job of writing down the definition of a language it is
always difficult to decide the starting point. Which construct is the most primitive?
Which explanation should go first to make the understanding of the rest easier?
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Any construct of the Milord II language, as of any other modular language, is
difficult to grasp without, at least, a superficial view of what the modular system
is. Most constructs obtain a full meaning when placed in the context of a mod-
ule. Nonetheless, a module is just a collection of those constructs. To avoid this
circularity we begin with the introduction of the basic modular system. Then we
go through all the constructs in the language, from the elementary facts to the
meta-rules and the generic modules. In this walk through the language we will be
guided by the syntax. To do so we rely on a syntactic definition a-la-BNF in which
the symbols ::=, [, ], |, + are part of the BNF formalism, as follows:

L ::= R The syntax of L is defined by R
[ X ] An optional item
X | Y An item from one of the syntactic categories X or Y
X+ One or more occurrences of the syntactic category X

• We write the predefined terminal symbols that are part of the language Mi-
lord II in underlined boldface.

• We write user-defined terminal symbols in italic. They are always atomic
symbols or strings.

• We write non-terminal symbols in normal type face.

Comparison of symbols is case-insensitive. Lines of comments can be written
after two semicolons (;;). If the comment is larger that one line, two semicolons
must be written at the beginning of each line. Several spaces and carry returns are
ignored and considered only a space.

2 Modules

The most primitive structural construct of Milord II is the module. A program
(see Figure 1) is composed by a set of module declarations that can recursively con-
tain other module declarations, then forming a hierarchy. Module declarations are
surrounded by the keywords begin end. Between these two keywords all the com-
ponents of the module, including submodules, must be declared; nothing belonging
to a module can be declared outside these two keywords. Module declarations
can be given a name, that becomes its identifier, see amodid in moddecl. The
scope of these identifiers is the module declaration text –including the submodule
declarations textually declared inside the module. Then, to refer to a submodule
component (fact, rules, ...) we must prefix the identifier of the component by a
path of the module identifiers of modules placed syntactically between the point of
reference and the point of definition (pathid). Components in a path are separated
by “/”. Top level modules are then not prefixed.

Local names can be given to previously defined modules by allowing a reference
to their name in the right part of a module name binding, see pathid in bodyexpr.

The contents of a module declaration can be clustered in the next sets of decla-
rations: hierarchy, interface, deductive knowledge and control knowledge. The use
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PROGRAM ::= moddecl+

moddecl ::= Module amodid [= bodyexpr]
bodyexpr ::= begin decl end | pathid

pathid ::= amodid | amodid/pathid

decl ::= [hierarchy] [interface] [deductive] [control]
hierarchy ::= moddecl | hierarchy hierarchy
interface ::= [Import predicateidlist] [Export predicateidlist]

predicateidlist ::= predid , predicateidlist | predid

Figure 1: Syntax of module definition.

of empty module declarations (notice that bodyexpr is optional) will be explained
in Section 7.

Hierarchy: Is a set of module declarations. We say that these modules are sub-
modules of the module that contains them.

Interface: It has two components, the import and the export interface. They
declare which facts could be asked to the user1 (import) and those that can
be results of the module (export). All the facts inside a module not declared
in the export interface are hidden to the outside of the module.

Deductive and Control: These declarations allow modules to compute the com-
ponents of its export interface (output) from the components of its import
interface and those of the export interfaces of its submodules (input). Deduc-
tive knowledge includes the declarations of the object language which in our
current implementation is mainly a rule-based language. Control knowledge
is declared by means of a meta-language which acts by reflection over the
deductive knowledge and the hierarchy of submodules. A module with an
empty deductive and control components is considered to be a pure interface
(a signature).

In the subsequent sections we will describe in detail the different components
that can be included inside a module definition. We will end up with a detailed
description of the modular system of Milord II.

3 Deductive Knowledge

The deductive knowledge component of a module is composed by a dictionary
declaration, that is, the set of facts (those belonging to the interface of the module
and other intermediate facts) and their attributes (see Figure 2); a set of rules
declaration, that is, a set of propositional weighted rules; and an inference system
declaration, that is, the local logic of the module.

1In some cases the control of the module can give a value to an imported fact before asking it
to the user (see Section 6.4).
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deductive ::= Deductive knowledge

[Dictionary: [Types: typebinding+] [Predicates: predicate+]

[Rules: rule+]
[Inference system: logcomp]

end deductive
typebinding ::= typeid [= typespec]

Figure 2: Syntax of deductive knowledge definition.

The dictionary is composed of an optional type definition (see Section 3.1.1)
and the declarations of the facts and their attributes.

3.1 Facts

Facts are the simplest knowledge representation unit in Milord II. They are named
structures that represent the concepts used in a module. The declaration of a fact
is made by binding an atomic name, that is, the identifier of the fact (predid),
with a set of attributes (see Figure 3).

predicate ::= predid = attributes
attributes ::= [name] [question] type [function] [relation+] [explanation] [image]
name ::= Name: string
question ::= Question: string

type ::= Type: typespec

function ::= Function: ( S-expression )

relation ::= Relation: relationid pathpredid
pathpredid ::= pathid/predid | predid

relationid ::= Needs | Needs true | Needs false | Needs value |
Belongs to | Needs quantitative | Needs qualitative | symbol

explanation ::= Explanation: string

image ::= Image: fileid

Figure 3: Syntax of fact definition.

3.1.1 Types of facts

The type is the only attribute that is mandatory in a fact declaration. It determines
the set of values a fact can take. For instance the fact dead would be a boolean
predicate (it is false or true); and the facts temperature and voltage should be of
numeric type.

A fact is valuated over the set of values determined by its type plus the special
value unknown, meaning ignorance of the value. There are four basic predefined
types, namely boolean, many-valued, numeric and class; and a parametric user-
defined type named fuzzy. Moreover, programmers can declare two anonymous
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typespec ::= boolean | many-valued | numeric | class |
fuzzy char-funct | ( symbollist ) | ( valuesspec ) | typeid

symbollist ::= symbol [string] | symbollist , symbollist

valuesspec ::= symbol [string] char-funct | valuesspec , valuesspec

char-funct ::= ( number , number , number , number )

Figure 4: Syntax of type definition.

types by enumerating the values that the fact can receive, namely set and linguistic.
Next there is a summary of the meaning of Milord II fact types:

Boolean Facts These are facts whose value can be either Yes (true) or No (false).

Numeric Facts The value of a fact of this type is a real number. They are used
to represent quantitative data, for instance concepts like temperature, number
of leucocytes, etc.

Many-valued Facts The concepts represented as facts with many-valued type
are those whose truthness is graded. For instance if we use a subjective
criteria to appreciate if a patient has fever by touching him with the hand,
we can consider that the fact fever is a many-valued fact (we can say that
fever is possible). In this case that fact is declared as

fever = Type: many-valued

The type many-valued is parametric with respect to a set of linguistic terms,
representing truth values, defined by the programmer. This set of terms must
be defined in the inference system declaration (see Section 4). The value of
facts of this type will be an interval over the so defined ordered set of linguistic
terms.

Class Facts This type is a bit special. The set of values of this type is empty.
Hence, facts of this type will be valueless facts. As a direct consequence
of this, facts of this type cannot appear in premises or conclusions of rules.
They can be used in the structuring of knowledge as relations between facts.
These relations may appear in premises of meta-rules. So, for instance, we
can declare the fact oral as a class fact. Then, we can define relations between
the antibiotics that are administrated orally and the fact oral. Finally, we
could define a meta-rule to be applied to all antibiotics administrated orally
by using the previously defined relation in the meta-rule’s premise.

Fuzzy Facts Vagueness of concepts as fever can be interpreted as the degree of
membership of a numeric measure (in this case temperature) to a fuzzy set.

The values of facts with an associated fuzzy set are still intervals of linguistic
terms. The way of computing the interval will be done, in this case, by the
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Figure 5: Fuzzy set representing the concept fever.

application of the fuzzy membership function to the numerical value of the
fact that must appear in a relation named needs quantitative.

We can see an example of fact declaration of the concept fever (see Fig-
ure 5). This concept is declared by giving the four points of the trapezoidal
approximation of its membership function.

fever = Type: fuzzy (37,38,43,43)

Relation: needs_quantitative temperature

Attributes of relations will be explained in Section 3.1.4.

Set Facts Facts of this type get values from a user-defined finite set of symbolic
values. This set is defined by enumerating its elements. For instance, the
fact treatment gets values from a set of antibiotics (etambutol, aciclovir and
ganciclovir). This set is, moreover, the anonymous type of the fact treatment.

treatment = Type: (etambutol, aciclovir, ganciclovir)

The value of the fact treatment will be a mapping from the elements of its
type to intervals of linguistic terms representing the degree of membership of
every antibiotic to the fact treatment (v.g. µtreatment(etambutol) = [α, β]).

Linguistic Facts We can declare a linguistic fact by giving a user-defined set of
linguistic values and giving for every linguistic value a trapezoidal approxi-
mation of a fuzzy set with respect to a numeric fact. In Figure 6 we can see
a new representation of the fact fever by means of three fuzzy sets, that is,
low, medium and high.

The declaration of this new interpretation of the fever concept can be:

fever = Type: (l "low" (37,37.3,37.6,38),

m "medium" (37.6,38,38.5,39),

h "high" (38.5,39,43,43))

Relation: needs_quantitative temperature
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Figure 6: Fuzzy sets representing the concept fever.

Notice that, as in the case of fuzzy facts, it is necessary to declare the same
relation needs quantitative with a numeric fact, in this case again temperature.
The optional string in the elements of the type (e.g. low) is used only for
informational purposes.

3.1.2 Fact Functions

Facts may have a functional expression attached to them. This is the way we
incorporate functional programming into Milord II. A fact with such an expression
attached to it will get its value as the result of the evaluation of the expression.

Possible applications of fact functions could be: interfaces with other programs
(windows, networks, statistics, etc), or procedural computations.

S-expression ::= atom | list | predef-func | S-expression S-expression
list ::= ( S-expression ) | ( )

predef-func ::= ( Type predid ) | ( Linguistic terms )

Figure 7: Syntax of function definition.

The function attribute (see Figure 7) of a fact is programmed in Common Lisp2

with some extensions, it is a S-expression. This S-expression is considered to be
evaluated inside an environment that contains variables, with the same name of
the facts declared into a module, bound to the fact’s value. It means that any
fact name appearing in a S-expression will be considered as a local variable and its
evaluation will return the current fact value.

The meaning of the two Milord II predefined functions is:

Type: This function applied to a fact name of the current module returns the type
of that fact in the following form: for boolean, many-valued, numeric and class
types, the symbols boolean, many-valued, numeric and class respectively;
for fuzzy types, a list containing the keyword fuzzy and the membership

2As the underlying language of Milord II is Common Lisp, then it is easy to use code
programmed in this language. In this Section we will use Common Lisp terminology, as we think
it is well known. Details of this can be found in [25].
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function in list form, for instance (fuzzy (37 38 43 43)); similarly for set
and linguistic types, a list containing the parameters used to declare the
concrete type, for instance for a linguistic type ((l "low" (37 37.3 37.6
38)) (m "medium" (37.6 38 38.5 39)) (h "high" (38.5 39 43 43)))

Linguistic terms: This function returns the set of linguistic terms of the current
module in list form.

It is necessary to know the internal representation of the values of facts depend-
ing on their type. This is useful to manipulate the values of facts in a function
attribute and to know which is the value format that a function must return de-
pending on the type of the fact that contains it. We remind you that a fact with
a functional expression attached to it will have the result of the evaluation of such
expression as value.

Boolean: It is a list of two elements: (false etiq, false etiq) for No; and
(true etiq, true etiq) for Yes. false etiq and true etiq are respec-
tively the first and the last element of the list of linguistic terms declared in
the local logic of the module.

Numeric: It is a real number.

Many-valued and Fuzzy: It is a list of two elements (etiq 1, etiq 2) where
etiq 1 and etiq 2 are elements of the list of linguistic terms and etiq 1 �
etiq 2; where � is the total order defined implicitly when declaring the lin-
guistic terms.

Set and Linguistic: It is a list containing lists of two elements: the first is an
atom representing the name of an element of a set fact or the linguistic
value of a linguistic fact; and the second is a pair representing an inter-
val of linguistic terms as in many-valued and fuzzy types. For instance for
the fact fever: ((low (false false)) (medium (possible true)) (hight
(possible true))). This list contains the elements in the same order as
declared in the type attribute.

Now we can see an example of function declaration of the Terap–IA [6] appli-
cation3. The value of the clearance of creatinina can be obtained by means of the
following expression.

clearance of creatinina = 140−
age× weight×

{
1.0 if male
0.8 if female

}
72

We can see the declaration of the fact creat clear that contains a function at-
tribute to compute its value.

3An application for pneumonia treatment.
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Creat_clear= Name: "Clearance of creatinina"

Type: numeric

Function: (let* ((true (first (linguistic_terms)))

(male (equal (second (first sex))

(list true true))))

(- 140 (/ (* age weight (if male 1.0 0.8))

72)))

In this function age and weight are numeric facts, and sex is a set fact of type
(male, female).

3.1.3 Interface Attributes

There is a set of attributes that customise the interface associated to a particular
fact. The attributes are:

Name: This is an attribute that associates a long name, i.e. a string, to the
fact. Experts use atomic short mnemonic names to identify a fact mainly to
simplify rules and meta-rules writing. The long name is the representation of
the fact to be shown to users to help them understand the concept the fact
represents.

Question: The value of this attribute is a string that the system uses to query a
user about the value of the fact.

Explanation: When the system asks the user for the value of a fact, the user
can ask for help. In that case the explanation attribute value, a string, is
presented to the user.

Image: It is the name of a file containing an image to be shown together with
the question when that fact is asked to the user. For instance in Spon-
g–IA application4, when the system asks about the external aspect of the
sponge the user wants to classify, an image containing pictures representing
the possible forms is shown to him.

3.1.4 Fact Relations

Establishing relations between facts is a very useful and common mechanism of
knowledge structuring. Relations are declared as fact attributes. A fact can have
several of these relation attributes. These attributes define named relations be-
tween the fact with the attribute and other facts of the system. By means of these
declarations a labelled directed graph of facts is established. This graph can be
used to define a hierarchy of facts, to establish an order of evaluation, etc. We can
distinguish between relations defined by the programmer and predefined relations.
The programmer can define relations among facts and give them sense and prop-
erties when defining the control component of the module because these relations
can appear as conditions of meta-rules, Section 6. Here we present some examples
of relations defined by the medical expert programming the Terap–IA application:

4An application in the classification on marine sponges [10]
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• doxicicline equivalent spectrum roxitromicine : The facts doxicicline and rox-
itromicine are antibiotics. This relation means that both antibiotics can treat
the same kind of pneumonia.

• amoxiciline belongs to oral administration : The antibiotic amoxiciline be-
longs to the group of the antibiotics administrated orally.

There is a set of common problems faced by experts that can be solved using
relations. Predefined relations are relations with a system-defined meaning.

Belongs to: Experts usually build hierarchies in their applications. This prede-
fined relation, meaning inclusion, is thought for that purpose and makes an
off-line application of the transitive property of inclusion, giving a more ef-
ficient system. For instance when the expert defines the next two relations
between antibiotics, doxi belongs to tetras, and tetras belongs to tetraciclines,
the system adds the new relation doxi belongs to tetraciclines.

There are several relations which are used to induce the order of the questions
to be made to the user when getting values for facts in the import interface.

Needs: When the system is going to ask for the value of a fact, and this fact
has a needs relation with another fact, the last fact will be asked first. For
instance the relation pregnant needs sex means that before asking if a person
is pregnant the system will ask for the value of fact sex. This relation can be
used between facts of any type.

Needs true and Needs false: This cases are similar to the previous one, but
the behaviour is different depending on the answer to the first question being
asked. Consider the following example of relation, pregnant needs true female.
The first question to the user would be if the person is female. If the user
answers “yes”, the question pregnant would be asked. If the user answers
“no”, then the fact pregnant would become false and no question about it
would be made. The only difference of needs false is that the behaviour
is the inverse one with respect to the answer to the first question. These
relations can be declared between facts of any type and non-numeric facts.
For a set fact, we consider its value to be true when all the elements of the
set are true; we consider it to be false when all the elements of the set are
false. Similarly, for linguistic facts we consider its value to be true when all
the linguistic values are true; and false when all the linguistic values are false.

Needs value: Similar to needs true and needs false relations but between facts of
any type and numeric facts. If the numeric fact gets a value then the question
of the fact is made. If the numeric fact does not get a value, the value of the
fact holding the relation will be unknown.

Needs quantitative: As saw in Section 3.1.1 the value of fuzzy and linguistic
facts depends on a numeric fact. This relation with a quantitative fact (nu-
meric) is then mandatory to inform the system to first ask for the value of
that fact and then fuzzify it with the characteristic functions.
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Needs qualitative: Similar to the previous relation, it asks for the value of a
qualitative fact (fuzzy or linguistic) and then defuzzifies that fact value to
produce a number.

As a common rule for all relations r of one of the previous types, given r(a, b),
if b’s value is unknown then a will be unknown as well.

3.2 Rules

The syntax of Milord II rules is given in Figure 8. The rules are composed of
an identifier, the premise (that is, a conjunction of conditions), the conclusion, the
certainty value of the rule, and, optionally, a documentation string. The certainty
value of a rule is a linguistic term belonging to the local logic of the module.

rule ::= ruleid If premisse-rule Then conclusion-rule [documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule
condition-rule ::= conditio | no ( conditio )

conditio ::= operator ( expression, ..., expression ) |
expression operator expression |
pathpredid | ltermid | true | false

expression ::= operator-arit ( expression, ..., expression ) |
( expression operator-arit expression ) |
number | pathpredid

operator ::= < | > | <= | >= | = | /= | int |
operator-arit ::= + | - | * | :
conclusion-rule ::= conclude rconclusion is cert-value
rconclusion ::= predid | predid = symbol | no ( predid ) | no ( predid = symbol )

Figure 8: Syntax of rule definition.

Facts are the basic elements used to build rules. They appear in the conditions
and in the conclusion of rules. Class facts have no value and do not appear in the
rules. The evaluation of a condition or a conclusion must always be an interval of
truth-values. Then, in the case of facts whose type is neither boolean nor many-
valued nor fuzzy, the language is provided with a set of predefined predicates that
apply on them to produce as result intervals of truth values, and hence can be used
as conditions of rules.

3.2.1 Conditions

First of all we explain the conditions of the rules. In order to give an understandable
explanation to the way conditions of rules are written, we do not consider conditions
containing paths. The conditions of a rule can be written in affirmative form
(condition) or in negative form (no(condition)).

The elemental conditions can be:
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1. A truth-value belonging to the set of linguistic truth values of the local logic
of the module, including true or false. This is the most simple possible
condition. Truth values evaluate to degenerated intervals, that is α ∈ An
evaluates to [α, α]. A possible use of this conditions is to give initial values to
facts or to limit the conjunctive value of the premise of a rule. For instance,
the next rule unconditionally gives the value [definite, definite] to the fact
ciprofloxacine.

R001 If true then conclude ciprofloxacine is definite

2. The name of a fact of type boolean, many-valued or fuzzy. For instance,

R002 If pregnant then conclude vancomicine is possible

where pregnant is a boolean concept.

3. Predicates over expressions containing facts of type numeric, set or linguistic.

(a) Numeric predicates
A numeric expression is composed by numbers, numeric facts and arith-
metic operations (+,-,*,:) shown in Table 1 with the meaning expressed
in the first column. The evaluation of an expression of this type returns
a number over which we can predicate with the predicates shown in
Table 2, where the meaning is expressed in the first column.

numeric set
a + b a+ b A ∪B
a - b a− b no sense
a * b a× b A ∩B
a : b a÷ b no sense

Table 1: Arithmetic operations between expressions.

The valid predicates are < (less), > (greater), <= (less or equal), >=
(greater or equal), = (equal), and / = (different). We decided to over-
load these predicates to reduce the number of total predefined predicates
of the language. An example of use of these numerical predicates is:

R003 If temperature > 39 then conclude fever is definite

(b) Set predicates
We can build set expressions in a similar way as numerical expressions
taking into account that the operations “+” and “*” are interpreted as
the fuzzy set union and the fuzzy set intersection respectively. “-” and
“:” are not applicable over set facts (see the second column of Table 1).
The valid fuzzy predicates are < (subset), > (superset), <= (subset or
equal), >= (superset or equal), = (equal), /= (different) and int (inter-
section degree). The binary predicates apply over the evaluations of two
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numeric set
a < b a < b A⊂̃B
a > b a > b A⊃̃B
a <= b a ≤ b A⊆̃B
a >= b a ≥ b A⊇̃B
a = b a = b A=̃B
a /= b a 6= b A˜6=B
a int b no sense A∩̃B 6= ∅

Table 2: Operations between expressions.

expressions of the same type. The evaluation of these predicates is, as
before, an interval of truth-values. We give the sense of the predicates
for fuzzy sets in the second column of Table 2. To get the mathemati-
cal details of the predicates refer to [21]. For instance, considering the
following rule,

R004 If treatment int (etambutol,ganciclovir) then conclude ...

the operation int (fuzzy intersection degree) is applied between two
fuzzy sets, the first one corresponding to the value of the fact treatment
(that is, a membership value for each element of (etambutol, aciclo-
vir, ganciclovir)), and the second one a fuzzy set with the elements
etambutol and ganciclovir with value true and the others (in this case
only aciclovir) with value false.

(c) Linguistic predicates: Linguistic variables, together with linguistic val-
ues, are used to build predicates of the form “linguistic variable is lin-
guistic value”. For instance:

R004 If fever is high then conclude ...

Given a numerical value s for the variable fever, the predicate fever
is high returns the value of µfeverhigh (s).
It is also possible to define more complex linguistic predicates of the
form “linguistic variable is ( value 1 or value 2 or ...)”. For instance:

R004 If fever is (medium or high) then conclude ...

Now, given a value s, the predicate fever is (medium or high) re-
turns the value of: max(µfevermedium(t), µfeverhigh (t)).

3.2.2 Conclusions

The syntax of the conclusion of rules is simpler than conditions. Notice that in
the conclusion of rules no paths can appear because the module can only conclude
local facts.

Conclusions may appear on affirmative or on negative form. Concluded facts
must be of many-valued or set types. e.g.:
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R005 If ... then conclude t=y is definite

For set facts the value of every element is concluded independently. For in-
stance, for the fact t of type (x,y,z) the rule R005 give the value definite as the
membership degree of y to the fact t.

4 Local Logics

The logical foundations of Milord II have been the main topic of several papers,
for instance [14, 18, 3, 2, 12]. It is based on a family of many-valued logics. Each
logic is determined by a particular algebra of truth-values. Any of such truth-
values algebra is completely determined as soon as the set of truth-values and the
conjunction operator are fixed. In Milord II these logics can be local to each
module. To declare a local logic (see Figure 9) the user has to write down5 the set
of linguistic terms and the conjunction operation best adapted to the solution of
the problem the module represents.

logcomp ::= [lingtermdef] [conjunction] [renaming]
lingtermdef ::= Truth values = ( ltermidlist )

ltermidlist ::= ltermid , ltermidlist | ltermid

conjunction ::= Conjunction = truth-table

truth-table ::= Truth table ( arrows )

arrows ::= ( termlist ) | arrows arrows

renaming ::= Renaming lrenames+

lrenames ::= pathid/ltermid ==> cert-value

cert-value ::= ltermid | [ ltermid , ltermid ]

Figure 9: Syntax of local logic definition.

lingtermdef is the declaration of an ordered set of n linguistic terms An =
a0 � a1 � · · · � an−1, where a0 stands for false and an−1 for true. For instance,

Truth values = (false, unlikely, may_be, likely, true)

conjunction is the declaration of the truth table of a conjunctive connective
over the previously defined term set. A possible such operator6, representing the
min conjunction, could be,

Conjunction = truth table

((false false false false false)

(false unlikely unlikely unlikely unlikely)

(false unlikely may_be may_be may_be)

(false unlikely may_be likely likely)

(false unlikely may_be likely true))

5In fact, there is a default logic for the modules that do not contain a local logic declaration
(see Appendix B).

6This operation must hold the properties of a T-norm.
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Different modules can have different local logics. We allow this because a very
important part of any problem solving method is the way the programmer will
deal with the uncertainty of the problem. And this may be particular to each
subproblem: a richer set of linguistic terms can help in giving more precise answers
to queries; different connectives represent different rule interpretations, and hence
different deductive behaviours; even changing just the name of the terms from a
module to another can make the knowledge represented in them more readable.

The main problem that has to be addressed in a system with local logics is
how modules communicate and with are the properties that are to be held in that
communication. That is, how a module has to interpret the answer to a query
made to a submodule with a different logic. The topic is of great importance for
the uncertainty research community [1]. The practical aspect of it is that any
language providing such local logic facilities has to permit a way of defining the
relation between the values of different logics. In the case of Milord II we do so
by the declaration, in the local logic of a module, of a renaming function that maps
the linguistic terms of the local logics of submodules into intervals of the linguistic
terms of the module.

For instance, the translation of the terms of a module B, B7 = {impossible,
few possible, slightly possible, possible, quite possible, very possible, definite} to
a module containing a local logic with terms A5 = {false, unlikely, may be, likely,
true} could be expressed as the following sentence,

Renaming B/false ==> impossible

B/unlikely ==> [impossible, few_possible]

B/may_be ==> [few_possible, very_possible]

B/likey ==> [very_possible, definite]

B/true ==> definite

Milord II checks whether the proposed translation between modules satisfies
the requirements expressed in [2, 1]. If the local logics are the same the identity
renaming function is assumed by default and no renaming declaration is necessary.

5 Reification and reflection

Before explaining how the control component is defined in Milord II we think that
it is necessary to explain which is the relation between the deductive component and
the control component in a Milord II module. At any moment of the execution of
a module, either the deductive component or the control component is active and
executing. It is the evaluation strategy of the module which determines when the
execution focus has to change from one component to the other. Prior to a change
in the execution focus some activity is undertaken to prepare the correct execution
context for that new focus. When we stop executing the deductive component and
before we start the control component execution a reification procedure is activated.
In the reverse case, after stopping the execution of the control and before starting
the execution of the deductive component a reflective procedure is executed.

These procedures modify the working memory (theory) of the component that
is going to start by adding formulas to it. In this section we explain which for-
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mulas are added and under which conditions. Programmers cannot modify the
way the reification and reflection procedures work, as it is fixed in the Milord II
architecture.

5.1 Reification

When the deductive component stops we have to update the control component
working memory so it has an up-to-date representation of the state of the deduc-
tive component. The reification procedure adds meta-predicate instances. These
instances will cause that the adequate meta-rules activate. In Figure 10 you can
see which is the syntax of general meta-predicates in Milord II.

gexpr ::= predid ( term , ... , term )

term ::= $varid | symbol | termid(term, ..., term)

Figure 10: Syntax of general meta-predicates definition.

The part of the module state that does not change during execution is reified
only the first time the reification procedure is called. We call this reification part
static. The dynamic reification corresponds to that part of the state that changes
during execution. Static and dynamic reification generate instances of predefined
meta-predicates (see Figure 11).

5.1.1 Static

The components of the module state that are persistent during the execution are:
the programmer defined relations between facts, the threshold and the rules. All
these components are initially reified. Although the submodules of a module are
not persistent, the initial submodules are also reified.

Relations: The name of the relation used in the definition of facts, user-defined
or system-defined, becomes a binary meta-predicate identifier. The two ar-
guments correspond to the name, with the appropriate path prefix, of the
facts being related. For instance the relation relationid between fact1 and
fact2 becomes the next meta-predicate instance:

relationid(fact1, fact2)

Threshold: It asserts a meta-predicate instance to represent the threshold of the
current module and those of its submodules.

threshold(lingterm)

threshold(submodule,lingterm)

Rules: There is a kind of evaluation strategy named reified (see Section 6.1) that
needs to know the rules of the deductive component at the meta-level. In
modules with that strategy the rules are then also reified. For instance con-
sider the following rules concluding a many-valued fact c and a set fact d:
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mexpr ::= known | mrel | msubmod | mthres | card | atom | member |
eqdif | moper | int | setof | pos | gexpr

symorvar ::= symbol | $symbol
vpath ::= symorvar | symorvar/vpath

known ::= K ( fact, interval )

fact ::= factex | not( factex ) | implies( list,list )

factex ::= vpath | =( vpath, symorvar )

interval ::= $symbol | int( symorvar, symorvar )

mrel ::= relationid( symorvar, vpath )

msubmod ::= submodule( symorvar, symorvar ) | submodule( symorvar )

mthres ::= threshold( symorvar, symorvar ) | threshold( symorvar )

card ::= cardinal( list, symorvar )

list ::= $listid | ( listelem )

listelem ::= elemid | elemid , listelem

atom ::= atom( list )

member ::= member ( symorvar, list )

eqdif ::= equal( listorsym,listorsym ) | diff( listorsym,listorsym )

listorsym ::= symbol | list
moper ::= loper( symorvar,symorvar )

loper ::= lt | le | eq | neq | ge | gt

int ::= intersection( list,list )

setof ::= set of instances ( $var,term,$var )

pos ::= position( symorvar,list,symorvar )

Figure 11: Syntax of meta-expression definition.

If a and b then conclude c is s

If a and b then conclude d=x is qp

These rules are reified in the following form:

K(implies(prem(A,B), C), int(S,S))

K(implies(prem(A,B), =(D,X)), int(QP,S))

Notice that the last list represents and upper interval of truth-values (con-
sidering the truth-value true is the linguistic term S).

Submodules: Informs the meta-level of all the submodules of the current module
by means of instances of a meta-predicate called submodule (meta-predicate
with only one argument), and the submodules of every submodule of the
current module (the same meta-predicate name but with two arguments).

submodule(submodule)

submodule(submodule,subsubmodule)
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5.1.2 Dynamic

Every time a reification is performed the current values of facts are asserted as
instances of the meta-predicate K as follows:

Many-valued, Fuzzy and Boolean: The value of a fact, fact, of any of these
types is an interval of truth-values, the instance of K being reified is the
following (the second interval is the negation of the first one):

K(fact, int(lingterm1, lingterm2))

K(not(fact), int(lingterm3, lingterm4))

Set and Linguistic: Given a fact, fact, we reify two instances (again an affir-
mative and a negative one) for every element or linguistic value.

K(=(fact, value_i), int(lingterm_1, lingterm_2))

K(not(=(fact, value_i)), int(lingterm_1’, lingterm_2’)) ...

Numeric: For numeric facts we reify the next instance of K meta-predicate:

K(=(fact, number), int(true, true))

In some cases the control can inhibit (filter) submodules or declare new sub-
modules of a module (see Section 6.5), hence the next two meta-predicates:

Submodule: With the same syntax of static reification, it informs the meta-level
of the new submodules of the current module.

Filtered: It informs the meta-level of the the submodules that are filtered by
meta-rules.

filtered(submodule)

5.1.3 Reflection

When we change the execution focus from the control component of a module
to its deductive component the reflection procedure is in charge of informing the
deductive component about the modifications in the theory and modular structure
generated during the execution of the control component. Hence, for each meta-
predicate instance of particular meta-predicates and for each action scheduled a
procedure is undertaken to change adequately the deductive component theory.

K(f ,int) Fact f ’s value is updated to become int. It is a destructive operation
and no truth maintenance mechanism is put into action. It is, in general, a
dangerous operation. Programmers should avoid it.

Inhibit rules [relationid] pathid The rules containing the fact pathid in their
premises, or optionally any fact related by relationid to pathid are eliminated
from the theory.
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Prune pathpredid All rules having a fact in their premise directly or indirectly
related with the fact pathpredid are eliminated from the theory.

Filter amodid+ All submodules contained in the expression amodid+ are elimi-
nated from the structure of the module. Again, this is a destructive operation,
no truth maintenance mechanism is engaged to retract those deductions based
on facts exported by the eliminated submodules, which from this moment on
will be hidden to the module.

Order amodid+ with certainty cert value This action is only effective in eager
modules. The order in the execution of submodules will be the result of
weighting the certainty value of different order actions, the relative position
of modules in those actions, and the writing order.

Open(amodid), {Module, Inherit}(term) The necessary linking procedure is
engaged to generate the submodule (that can be in general a complex activity)
and to update the module structures representing the hierarchy, so that from
then on the so generated new submodule will have the same status as if it
had been defined statically.

6 Control knowledge

The control knowledge is the declarative component of a module responsible for
several activities: meta-reasoning, order in evaluation of facts and rules, deter-
mination of which rules to use and other control tasks. The control knowledge
component is composed (see Figure 12) by the local declaration of the type of eval-
uation, the threshold and a set of meta-rules that controls the deductive (rules)
and the structural (hierarchy) components of a module.

control ::= Control knowledge

[Evaluation type: evaltype]

[Truth threshold: ltermid]
[deduccnt] [structcnt]
end control

evaltype ::= lazy | eager | reified

Figure 12: Syntax of control definition.

6.1 Evaluation Strategy

A module execution computes answers to queries being made to it. A query consists
of asking for the value of an exportable fact. The way the module executes to obtain
that answer can be different, from the point of view of the queries the module will
do in turn to the user, and the way the submodules will be queried as well.
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The three possible evaluation strategies in Milord II are called lazy, eager and
reified strategies. Before explaining in detail these strategies in Section 8 we give
here an intuitive idea of their main differences:

Lazy: A module with this evaluation strategy asks the user for values for the facts
in the import interface, and queries for values of facts in the submodules’
interface only if necessary. This strategy is used by default.

Eager: Given a query to an eager module the following actions are done: it asks
the user for the value of all the imported facts of the module, and it also asks
for the values of all the exported facts of its submodules.

Reified: This kind of evaluation strategy asks questions in the same form as the
eager evaluation strategy, but no actions are made at deductive level. The
rules of the deductive component of a module are reified. It is then the control
which gives sense to the reified rules by simulating inference rules by means
of meta-rules.

6.2 Threshold

Milord II allows the programmer to give a value to a parameter that controls the
minimum truth-value that a premise has to evaluate to in order to fire a rule in
that particular module.

This parameter is named the threshold of a module. Its value is a linguistic
term and the default value is the second term a2 of the chain An of truth-values
(see Section 4). MYCIN [23] had certainty factors lying in the interval [−1, 1], and
used a similar approach by having a threshold to fire rules of 0.2. An example of
threshold declaration is:

Truth Threshold: may_be

As another consequence of the threshold parameter all facts with a lower truth-
value less or equal than the threshold become unknown.

6.3 Meta-rules

The last component of the control knowledge consists of two sets of meta-rules,
that are responsible for tuning the inference at the object-level, or of implementing
it, in the case of a reified evaluation strategy, and of managing the hierarchical
structure of submodules by adding or cancelling dependencies. Meta-rules in both
sets have a similar syntactical structure, that is, a conjunction of meta-predicates
as premise and a set of meta-predicates as conclusion. The only difference is on
the meta-predicates allowed as conclusion in each set. In this section we describe
the behaviour of the predefined meta-predicates used in the premises and in the
conclusions. Apart from them, any user-defined meta-predicate can be used in the
premises or in the conclusions. Negation in the conditions is defined as negation
by failure.
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6.3.1 Meta-predicates in premises

The remaining pre-defined meta-predicates, not yet presented in Section 5, of Mi-
lord II with their meaning is presented next.

cardinal(list,n): It evaluates to true if the length of list is equal to n. The
first argument must be grounded before the evaluation is performed. If
the second is a free variable, this predicate instantiates it. For instance
cardinal((a,b,c),3)evaluates to true.

atom(expression): It is a predicate that returns the value true if the expression
evaluates to an atom. expression must be grounded.

member(el, list): Evaluates to true if the element el belongs to list. For instance,
member(d,(a,b,c)) returns false. Both arguments must be grounded.

equal(exp1,exp2), diff(exp1,exp2): These operations compare two expressions
returning true if they are equal or different respectively. Both expressions
must be grounded.

{lt, le, eq, neq, ge, gt}(exp1,exp2): These operations (less than, less or equal,
equal, not equal, greater or equal and greater than, respectively) allow us to
compare numbers or linguistic terms. For instance le(possible,definite)
returns true if possible is less or equal than definite in the ordering established
in the local logic of the module. Likewise ge(4,5) will evaluate to false. Again
the expressions must be grounded.

intersection(list1,list2): Returns true if the intersection of the two argument
lists is not empty.

set of instances(var1, expression, var2): Given an expression containing the
variable var1, the variable var2 will be bound to a list containing all the
instances of var1 that make the expression true. The expression can contain
any meta-predicate expression combined by the next reification names for
the connectives: conj for ∧ and neg for ¬. var1 and var2 must be free. For
instance, given the following predicate

set_of_instances($x,Conj(K(=(f,$x),int(s,s)),

member($x,list(a, b, c))),

$values)

the variable values will contain all the elements of the set fact f that are
true and are either a, or b or c..

position(list, int, exp): This meta-predicate is true if the value in list list at
position int is the same as the value of exp. If exp is a free variable , the
result will be true and exp will be bound to the value of list at position int.
If the value of int is out of the limits of list the predicate will return the
value false.
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deduccnt ::= Deductive control: mrr+

mrr ::= metaid If premisse-meta Then filter-mrr+

premisse-meta ::= mexpr and premisse-meta | mexpr
filter-mrr ::= inhibit rules [relation-id] pathpredid |

prune pathpredid | conclude gexpr | conclude known

Figure 13: Syntax of deductive control definition.

6.4 Meta-rules: Deductive Control

The deductive control (see Figure 13) may affect the deductive knowledge of a
module by inhibiting rules or deducing instances of the meta-predicate K. More-
over, instances of any user-defined meta-predicate can be generated. These meta-
rules are responsible for the implementation of a type of meta-reasoning based on
changing the object level theory in two ways: by reducing it (eliminating some
rules), or by changing it (deducing instances of the meta-predicate K). Next you
have a description of the meta-predicates allowed in the conclusions of this type of
meta-rules. The action to be taken after a meta-rule deduces an instance of these
meta-predicates is explained in Section 5.1.3.

Inhibit Rules: This action inhibits all the rules containing the fact pathpredid in
their premises. Optionally we can introduce a name of relation relation-id.
Then the rules inhibited will then be those containing in its premises a fact
related with pathpredid.

Prune: It inhibits all the rules belonging to the deductive tree of the fact path-
predid.

Conclude: Here users are allowed to conclude any meta-predicate. Only when
the meta-predicate is the predefined K an action consisting on overwriting
a fact value at the object level will be undertaken in the reflection phase.
The remaining instances of user-defined predicates will remain as part of the
meta-level state, and will eventually be used as conditions of other meta-rules
to be fired in this and in posterior activations of the meta-level component.

6.5 Meta-rules: Structural Control

The meta-rules of the structural control (see the Figure 14) are designed to modify
the hierarchy of a module by inhibiting modules or by declaring new ones (dynamic
modules); they can also stop completely the execution of the program.

Filter: A meta-rule can inhibit (filter) submodules of a module. That means
that all the facts exported by the filtered submodule will be from then on
considered to have the value unknown.

Order: When we use eager evaluation in a module, the order of evaluating the
submodules is by following their writing order. This predicate permits to



22 J. Puyol-Gruart & C. Sierra

structcnt ::= Structural control: mre+

mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodid+ |

order amodid+ with certainty cert-value |
Open ( term ) | Module ( term ) | Inherit ( amodid )

mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

Figure 14: Syntax of structural control definition.

change this order when a set of conditions hold. The truth degree is used in
the combination of different instances of the meta-predicate. The real order
will be a combination of partial orders weighted by the truth degree.

Open, Module and Inherit These declarations are equivalent to the correspond-
ing normal submodule declarations, but they are performed dynamically. The
following example (from Spong–IA) shows the dynamic creation of a submod-
ule by means of the dynamic instantiation of a generic module. Given a value
$z for the set fact DM/taxon with certainty value interval [$min, $max], and
with $min greater than the threshold value of the module DM ,that is, greater
than $cut, and if $z is a submodule of DM , then a new submodule is created,
with local name $z and with body the instantiation of the generic module
Refinement method with the modules DM/$z and T as arguments.

M0001 if K(=(DM/taxon ,$z), int($min,$max)) and

threshold(DM, $cut) and gt($min,$cut) and

submodule(DM, $z) then

Module(=($z,Refinement_method(DM/$z, T)))

Definitive Solution and Stop: These are exceptional actions. In some cases
the programmer wants to stop the execution by assigning a value to a fact
(definitive solution) or aborting (stop) when an unrecoverable situation is
reached, e.g. the problem being solved is out of the scope of the system.

7 Modular Language

As already mentioned in Section 2 modules are the structural unit of Milord II. A
Knowledge Base consists of a set of modules, with each module containing submod-
ules, and submodules containing subsubmodules, ... defining a hierarchy. There
are two types of modules: plain modules, as explained in Section 2, and generic
modules, that are to be considered as functions between plain modules. That is,
given one, or more, modules as argument a generic module gives a plain module
as result. To complete the picture of the modular language component a set of
operations between modules is provided.
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7.1 Generic Modules

When a plain module contains a set of submodules, one way of looking at what
the module performs is by seeing it as a combination of the results of the different
submodules. The definition of generic modules opens to the user the possibility of
defining specific, and reusable, operations of composition of modules. A generic
module is indeed an abstraction of a combination by means of giving names to
the submodules that will be obtained only at application time. Generic modules
are then operations (or functions) on modules. The technique to define generic
modules is the same as to define functions, that is, it consists of the isolation of a
piece of program, or module, from its context and its abstraction by specifying:

1. Those modules upon which the abstracted module may depend (requirements
or parameters of the generic module).

2. The contribution of the abstracted module to the rest of the program (results
or export interface of the generic module).

The obvious referent of this technique is functional programming [16, 4], where
such abstractions (functions) form the basic program units. The functional body
defines how to compute the output (results) in terms of the input (requirements).
In Figure 15 we extend the syntax of module declarations of Figure 1 adding the
generic modules declarations (the syntax is still not complete).

PROGRAM ::= moddecl+

moddecl ::= Module amodid [( [paramlist] )] [= bodyexpr]

bodyexpr ::= begin decl end | pathid [( [iparamlist] )]

paramlist ::= amodid ; paramlist | amodid

iparamlist ::= bodyexpr ; iparamlist | bodyexpr

Figure 15: Syntax of generic module definition.

A method for building large KB systems consists of applying generic modules
to previously built plain modules. Keeping the common parts in a generic module
we can save code and time, and make the code much more understandable. The
instantiation of a generic module over a set of arguments generates a plain module,
and hence it can appear in the code in the same places as a module declaration
does.

Consider the following example of microbiological analysis of samples for pneu-
monia diagnosis (Bacter–IA application). Some data can be obtained from a gram
analysis of a sample (for instance, DCGP). These data can be obtained from different
gram analysis over different samples (of sputum, of lung, or bronchoaspirated) to
deduce the germ causing the illness (for instance pneumococcus). In this case it
is not necessary to define a different problem solution for each type of analysis; it
would be enough to define a generic problem solution depending on the kind of
analysis.
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Module Find_Germ (X) =

Begin

Export pneumococcus

Deductive knowledge

Dictionary: ...

Rules: R001 If X/DCGP then conclude pneumococcus is possible

...

End deductive

End

The parameters of a generic module are, as we said before, abstracted submod-
ules. These parameter names are unbound until the instantiation of the generic
module. If we want to refer to the exported facts of the submodules that will be
bound at application time we must build a path using the names of the parameters
(for instance, in the rule of module Find Germ a reference to the fact DCGP of a
module eventually bounded is written X/DCGP). An example of the instantiation of
the generic module seen above with data from a sputum sample is the following:

Module Find_Germ_Sputum = Find_Germ (Sputum_Gram)

The parameters of a generic module are submodules hidden outside the generic
module, where hidden has the standard meaning and no access is allowed to the
export interface or submodules of a hidden submodule. For instance, the submodule
Sputum Gram is hidden outside the new module Find Germ Sputum. So a reference
like Find Germ Sputum/Sputum Gram/DCGP will be detected by the compiler and
an error will be raised.

A generic module makes use of the exported facts of the module bound to its
module parameters, so a parameter cannot be bound to any module, but only
to modules exporting the facts required in the body of the generic module. For
instance, the module Sputum Gram must export the facts needed in the rules of the
generic module Find Germ.

Milord II supports the process of incremental KB building by means of generic
modules. Hence, whenever the definition of a generic module changes, the changes
are reflected in the rest of the program. The way to do it is just to repeat the
module applications that refer to the modified module. This re-linking process is
automatised by the compiler[5], so that the user gets rid of this task.

7.2 Operations between Modules

Top-down programming methodology is sometimes related to an incremental spec-
ification of problems. We are interested in including in the language a set of
operations to assist programmers in the process of development, beginning with
the first prototype and ending with the final version of the program.

Incremental programming consists in writing a first (rough) prototype, test it,
then write a second as a modification (refinement) of the first, and go on until
a final version is achieved. In classical programming languages the way of doing
it is by changing the code of the program whenever a non-desired behaviour is
observed ora more specialised performance is required. But, the complete code has
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to be ready and at hand before performing any testing. A step forward in helping
programmers in Milord II is by requiring: 1) that the partial specifications of
modules, incompletely defined modules, must be executable to test them, and 2)
a set of operations between modules for overseeing this process of incremental
building of programs.

If you observe the syntax of modules you can notice that many components of
modules are optional. Any module declaration is executable. For instance, we can
declare modules without control component, or without import interface, etc. In
some cases we do not declare some components of modules because we want to
define them incrementally. For instance, if we execute a module which contains
only an export interface, it will answer to all the questions about the value of
exported facts with the constant unknown. Later on we can fill in the module with
code details by refining it.

When we program a new version of a previous program we are interested in
checking and declaring what is the relation with the old version. In Milord II this
relation is defined between modules and can be either a refinement, a contraction or
an expansion. Roughly speaking, we say that a module is a refinement of another
one when the set of accessible7 facts is the same that the previous one but the code
is a particularisation. When we expand a module the accessible facts in the next
version will be extended, and reduced when we constrain it.

In Figure 16 we extend the previous syntactical declarations of modules in
Figure 15 with these new module operations. The symbols “:”, “>” and “<”
stand respectively for the module refinement, expansion and contraction operations.
They can be used in all module declarations including the parameter declaration
of generic modules.

PROGRAM ::= moddecl+

moddecl ::= Module amodid [( [paramlist] )] [modoper modexpr] [= modexpr]

modexpr ::= bodyexpr modoper modexpr | bodyexpr
paramlist ::= paramlist ; paramlist | amodid modoper modexpr

iparamlist ::= modexpr ; iparamlist | modexpr

modoper ::= : | > | <

Figure 16: Syntax of operations among modules definition.

All these modular operations are based in three basic functions: enrichment
verification, inheritance and information hiding. Next, we explain the refinement
of modules that is the most important operation and makes use of these three basic
functions in its definition. The other two operations are slight modifications of this
refinement operation.

7Remember that the accessible facts of a module are the facts belonging to its export interface
and those of the export interfaces of its submodules.



26 J. Puyol-Gruart & C. Sierra

7.2.1 Refinement

Modules are the computational counterpart of the abstract units, usually called
tasks, in which a programmer decompose a complex problem solving task [9]. This
abstract units are characterised basically by the goal (query) they have to achieve.
Hence, when designing a module the first decision is the goal, or the set of goals,
that module will solve. In Milord II these goals are represented by the set of
accessible facts of that module. Then, when designing a particularization of the
module, that is, when filling it with more contents, we must keep the same set
of goals, as far as the new module is still an implementation of the task that is
being solved. The refinement operation guarantees that the new generated module
fullfills this [15]. Consider the following example that completes the example in
the previous Section:

Module Sample = Begin Export DCGP, CGPC, CGPR, GNG, CBNG End

Module Sputum_Gram : Sample =

Begin

Import Sputum_class, Sputum_Gram

Export DCGP, CGPC, CGPR, GNG, CBNG

Deductive knowledge

Dictionary: ...

Rules: R001 If Sputum_Gram = (DCGP_MC)

then conclude DCGP is definite

...

End deductive

End

The module Sample only contains an export interface. The second expression
declares that the module Sputum Gram is a refinement of the module Sample.

This is the idea of incremental programming, all the modules that are refine-
ments of the module Sample have the same export interface with, eventually, dif-
ferences in other components that allows the module to obtain better, or different,
results for the exported facts than the module Sample.

The refinement operation is specially useful when we declare generic modules.
Remember that the instantiation of a generic module implies binding parameter
names to submodules. The resultant module should use the exported facts of
the submodules bound. It is obvious that not all the modules can be used to
instantiate a generic module, because the code of the generic module will depend
upon particular exported facts of those submodules. For instance, we could modify
the previous declaration of the generic module Find Germ as follows:

Module Find_Germ (X : Sample) = Begin

;;the same declarations that in the definition above

End

This kind of declaration assure us that the modules used to instantiate the
generic module Find Germ are only those which are refinements of the module
Sample, that is, that have exactly its same export interface (in particular, we
can assure that any argument module will export the fact DCGP). So, usually, any
generic module will have its parameters being a refinement of a very simple module
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containing just an interface. More complex requirements on the arguments can
be imposed by filling with contents the module from which they have to be a
refinement.

A refinement operation is the result of the composition of three operations:
enrichment verification, inheritance and information hiding. We will explain these
components keeping in mind the following equivalent syntactic declarations:
Module M = M 1 : M 2 ≡ Module M : M 2 = M 1

Enrichment Verification We say that the module M 1 is an enrichment of the
module M 2, if and only if:

1. The export interface of M 2 is a subset of the export interface of M 1.
2. The submodule names of M 2 are a subset of the submodule names in

M 1. If a submodule name is bound both in M 2 and M 1, the modules
to which it is bound, let’s say M 21 M 11, must satisfy that either M 11
is an empty body, or otherwise M 11 must be an enrichment of M 21.

3. The local logic declaration must be the same; or empty in M 2.

That means that the module M 1 can extend the export interface and the
submodules of M 2. When a submodule is declared in both modules M 1 and
M 2, they must preserve the enrichment relation.

Inheritance When we declare a module as a refinement of another we usually want
to maintain several components of the module being refined. To avoid the
programmer to write the components to be preserved twice, an inheritance
mechanism is provided in Milord II. The components of a module that can
be inherited are: submodules, fact definitions and local logics.

When we define a refined version of a module, if we omit the body of a
submodule, it will be inherited. Hence, the module M will inherit the bodies
of the submodules of M 2 that not are present in the declaration of M 1.
The inheritance operation makes a copy of the non redefined elements of the
dictionaries. In the case of the local logic, the module inherits the logic of
module M 2.

Information Hiding One of the conditions that the modules have to fulfill to
satisfy a refinement relation is that the accessible facts of both modules must
be the same. So, after checking the enrichment of information, Milord II
hides all new accessible facts and new submodules of the refined module (if
any).

In a refinement operation, information hiding affects the export interface
and the modular structure of the module created by the refinement. All the
exported facts of M 1 not present in the export interface of M 2 are hidden in
the resulting module M. Similarly all the submodules of M 1 not visible in the
hierarchy of M 2 are hidden in the resulting module M.

Refinement is then defined as the combined action of these three operations.
The other two relations between modules are slight variations of refinement.
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7.2.2 Expansion and Contraction

Expansion allows to build modules as an extension of a previous version. We
can extend the set of accessible facts or add submodules to the previous version.
As in the refinement case to expand modules we test that the new module is an
enrichment of the previous one. Inheritance of components is performed as in the
refinement operation, but information hiding is not applied.

In the next example, we are forcing the argument of a generic module Generic
to have at least the export predicates of Type in their export interface.

Module Generic (X > Type) = Begin ... End

So, the generic module will be applicable over a wider range of modules than if
its argument was defined as a refinement of Type.

Contraction only test an inverse enrichment verification. Given the declaration
Module M = M 1 < M 2 we only test that M 2:M 1 holds. It is not necessary to apply
information hiding because the module M 1 exports less facts than M 2. Inheritance
of components is performed as in the refinement operation.

7.3 Special declarations

We shall complete this Section by brieftly commenting on the different types of
module declarations allowed in Milord II. Open and Inherit submodule declara-
tions are only programming facilities and they do not belong to the primitives of
the modular language. Open bodyexpr means that we will not give a name to the
submodule, the practical consequence is that exported facts of open modules can
be directly referenced, without any path prefixing them, as if they were textually
defined in the module containing the open declaration, the same happens to sub-
modules of an open submodule that are considered as if they were direct submod-
ules of the module containing the open declararation. Inherit A is an equivalent
expression for Module A = A. The complete syntax of the hierarchy component of
modules is given in Figure 17.

hierarchy ::= moddecl | Inherit modid | Open bodyexpr | hierarchy hierarchy

Figure 17: Syntax of submodule definition.

It is easy to see that name clashes can occur when we use declarations by
means of open. If a module has more than one opened submodule, the names of
the exported facts must be different8.

8 Operational Semantics

In this Section we describe the behaviour of modules when computing the answer
to a query. As we have already noticed, the behaviour depends on the value of the

8Milord II Compiler [5] detects all these conflicts.
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evaluation type parameter of each module. During the process of evaluating the
answer to be given to a query, a module execution is engaged in several activities:
make questions to users; make queries to submodules, initiating, then, similar
evaluation processes; specialise rules to deduce new facts [20]; deduce new facts
which are reified to the control component, ... (see Figure 18). Determining which
activity is to take place next is the main task of the control associated to a module,
and it is what we mean by Operational Semantics here.

Communication

�

-

MODULE

Reflection Reification

?

6

Deduction

Meta-deduction

Figure 18: Some activities in the computation of a query answer.

In Milord II there are three types of evaluation strategies: Lazy, Eager and
Reified. We explain the behaviour of the module execution for each one of these
strategies.

8.1 Lazy

A module with lazy search strategy uses the fastest way to obtain the solution for
a query. By fastest we understand the minimum number of new queries generated,
for both the user and the submodules, to solve the current query. The strategy is
based on the combined action of 1) a search procedure that, looking at the current
state of the module (values of the facts and current rules, relations and functions),
finds the next query that is relevant to the current query, and 2) the updating of
the module state by means of the specialisation of the knowledge base. This cycle
is repeated until the answer for the query is generated.

We should remember which are the components of a module that participate in
giving a value to a fact. A fact receives a value from the user (if the fact appears
in the list of imported facts), from a submodule (if the fact is a prefixed one), by
means of needs relations (in the sense explained in Section 3.1.4), from a function
associated to a fact (the value of the fact will be the result of the evaluation of
the function), from the rules (the value will be obtained as a combination of the
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conclusions of rules), or from the meta-rules (the value is the result of the reflection
of a K meta-predicate instance.

8.1.1 Query

We start the evaluation process by putting a query to a concrete module of an
application. This process will end up by answering with the value obtained for that
query. An example of query to the module sponges can be Query(sponges, taxon).

Query : Module×Query → Query × V alue

Assume that the query is q. There are two possible cases to consider:

1. q = sm/qsm is a path: If the fact is a path to a submodule sm of the current
module, and if that submodule is visible (see Section 7), it makes a query to
that submodule9 Query(sm, qsm), otherwise it raises an error.

2. q is a fact: If q belongs to the export interface of m it starts Eval(q) in that
module returning the value of fact q; otherwise it raises an error.

8.1.2 Evaluation

Eval is a procedure that finds the value of a fact f by using all the resources of a
module: the user, its submodules, rules, meta-rules and so on.

Eval : Fact→ Fact× V alue

It consists in searching (Search) which is the information from outside the module
needed to solve f , obtaining that information and finally updating (Update) the
state of the module. This process stops when a value for f is found.

Eval(f) = loop {Update(Search(f)); if value(f) return (f, value(f))}

8.1.3 Search

Hence, given a query to a module, the algorithm sketched below shows how the
module searches for the next question to be made to the user (Ask procedure) or
to a submodule (Query procedure) that is needed to answer the current query.
This algorithm returns only a fact belonging to the import interface of the current
module, or a fact belonging to a submodule with its value.

This is a recursive algorithm because the initial goal produces new internal
subgoals that in their turn use the same algorithm. Consider that f is the fact
constituting the current query.

Search : Fact→ Fact× V alue
9Obviously this process can go recursively putting queries into the hierarchy of a module.
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1. f = sm/fsm is a path: If the fact is a path to a submodule sm of the
current module, and if that submodule is visible (see Section 7), it puts a
query Query(sm, fsm) to the submodule and returns the value so obtained;
otherwise it returns an error.

2. f has unsolved needs relations: The facts used in the body of the functional
expression attached to f are considered as if f had a needs relation with them.
Therefore, the needs relations of a fact are those explicitly declared by the
expert plus those implicitly added by the function attribute. A needs relation
is considered to be solved when the fact with which f has the relation got a
value. It recursively applies Search to the first fact with which f has a no
solved needs relation.

3. f belongs to the import interface and has no value: In this case it makes a
question to the user Ask(f).

4. f can be deduced by means of rules:

(a) Rule ordering: Before starting the rule search we order the set of rules
that are able to deduce fact f with the following criteria:

i. Rules more specific first.
ii. In case of rules equally specific, first those whose certainty value is

higher.
iii. In case of equal certainty degree, we use the writing order.

(b) Rule search: We start a depth first search on the rules10 by:

i. Selecting the first rule of the ordered set obtained above.
ii. Selecting the first fact in the writing order of the conditions of that

rule (left to right). Then recursively apply Search to that fact.

5. otherwise: f is unknown.

Notice that the algorithm Search finally puts a question to the user Ask(f),
makes a query to a submodule Query(sm, fsm) and returns the value obtained or,
if everything fails it returns the value unknown.

8.1.4 Update

When the Search algorithm finally returns the result of the evaluation of a fact f
the system updates the state of the module with respect to that fact by means of
the deduction of facts, the specialisation of rules, and so on.

Given a state of a module, and a set of facts and their values, Update is a
procedure that returns a new state and a set of facts and values, obtained, for
instance, as the result of solving a needs true relation or firing a rule. This function
is applied recursively on its results until there is no state change.

10Taking into account that the need relations will modify the pure depth search strategy.
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Update : State× Fact× V alue→ State× (Fact× V alue)∗

The tasks undertaken by this procedure are:

1. Solve need relations: As it has been seen in Section 3.1.4 a fact with this kind
of relations with another fact can be given a value depending on the value of
the related fact.

2. Solve functions: When all the facts involved in a function attribute have
value, the fact containing that function can get a value by the application of
that function.

3. Specialise rules: New facts evaluated that belongs to the premises of rules
allows the Specialisation of them (see next subsection), obtaining a new rule
set and eventually new fact values.

4. Reification-reflection: Each time a new fact receives a value a reification-
reflection step is undertaken. As a result of it new facts may receive values
by the reflection of meta-predicate K instances.

8.1.5 Specialisation

In rule based systems, deduction is mainly based on the modus ponens: A,A →
B ` B. Modus ponens is only applicable when every condition of the premise
of the rule to be fired is satisfied, otherwise nothing can be inferred. Milord II
uses partial evaluation to extract the maximum information even from incomplete
knowledge about the truth-value of the premises of a rule.

We base the partial evaluation of rules on the well known logical equivalence
(A ∧B)→ C ≡ A→ (B → C) which leads to the following boolean specialisation
inference rule: A,A∧B → C ` B → C. The rule B → C is called the specialisation
of the rule A ∧B → C with respect to the fact A.

It is easy to see that we can specialise rules deleting the known facts from the
premise. Unknown facts remain as part of the premise of the rules. For instance,
suppose that we have the following rule: A ∧ B ∧ C → D. Imagine that we only
know A and C are true. Then the specialised rule is: B → D.

Using modus ponens inference rule, the answer to the goal D would have been
unknown because we do not know if the fact B is true or false. If we give the
above rule as an answer, then its interpretation is the following: The truth-value
of D depends on the truth-value of B, if B is unknown so will D be (open world
assumption).

This boolean case may be considered of little interest, but we can extend this
specialisation concept to the more interesting uncertainty calculus. Let’s introduce
the definition of what we call Specialisation Inference Rule (SIR). Given a fact A
with certainty value α, and a rule with certainty value ρ, then

(A,α), (A ∧B → C, ρ) ` (B → C, ρ′)
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where ρ′ = conjunction(α, ρ) is the new truth value of the specialised rule11.
Conjunction is the connective declared in the local logics of a module as seen in
Section 4.

Now consider the following example of rule: If a and b then conclude d is
likely. Imagine we know that b has the value may be. The resultant specialised
rule will be: If a then conclude d is may be after applying the table for con-
junction of Section 4. Notice that the truth-value of the rule has changed because
of the uncertain value of the fact b. This is important when the KB contains a set
of rules also deducing d. The specialised rule will change its place in the priority
order affecting the search strategy presented above.

Specialization : Rule∗ × (Fact× V alue)∗ → Rule∗ × (Fact× V alue)∗

The specialisation of the whole deductive knowledge of a module consists on
the exhaustive specialisation of its rules. Rules whose conditions contain facts
with known values are replaced by their specialisations, in particular, rules that
only have one known condition will be eliminated and their conclusions added
as a known fact in the module. This new fact will be used again to specialise the
knowledge base. The process will finish when the deductive knowledge has obtained
an answer for the query or there are no more possibilities for deducing the fact by
means of rules.

8.2 Eager

The eager strategy is radically different. Now we do not have any economical
criteria to find the questions. Given a query to a module, that module asks all the
facts of its import interface, and all the facts belonging to the export interfaces of
its submodules.

The ordering of these goals is that of the declarations given by the expert, that
is, first the facts of the import interface of the module following their writing order,
then the facts of the export interface of its submodules. Modules are executed
following the writing order unless ordering meta-rules changing it have been fired.
In this kind of search only the needs relations are taken into account, in the same
way as before, when asking questions to the user.

The difference with lazy evaluation is the Search procedure. Only after obtain-
ing the values for all the facts (from the user or from the submodules of the current
module), the Update procedure is performed.

8.3 Reified

It is the most flexible evaluation strategy. Rules are reified into the meta-level
component as meta-predicates of type rule (see Section 5.1.1). If the query is a
path, contains a function or appears in the import interface, then the behaviour is

11This is a simplified view because, as the reader already knows, Milord II deduction is based
on intervals of truth-values.
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as in the eager case. Otherwise, all the deduction is made at the meta-level, and
the value of the query will be the result of the reflection of a K meta-predicate.

All the procedures of eager evaluation are performed except that of point 3 of
the Update procedure (deduction by means of rules).

9 Conclusions and discussion

In this paper a complete description of the language syntax of Milord II has
been undertaken. In this sense this paper complements others, already referenced
throughout the paper, that concentrate on much more formal aspects of the lan-
guage. Milord II has proved to be a very expressive language to solve problems
in very different domains. So, in the near future, we plan to extent its capabilities
to distributed environments by wrapping Milord II modules inside computational
agents.

Milord II, and its previous language version Milord [24], has been used to de-
velop a series of applications in different fields: Medicine, Pneumon–IA for the
diagnosis of common-acquired pneumonia [26, 27], Renoir for the diagnosis of
arthropaties [7, 17, 8]; Biology, Spong–IA for the classification of north-atlanto-
mediterranean sponges [10, 9]; Agriculture, Gtep–IA for the management of pig
farms [19]. Other applications are currently being developed. We think it is worth
looking at the references describing applications to get a much clearer idea of the
use of the language in different domains.

There is a major component on a language description that has been deliber-
ately omitted here, that is, the semantics of the language. An initial approach to
its semantics can be found in [22] but a definite one is still not finished and will
merit another paper with more technical contents in the near future. This paper
concentrates mainly on the syntax description and the operational view of how a
Milord II program executes.

Milord II has been developed in Common Lisp (the interpreter) and in C
(the compiler). This software is available for research and educational purposes.
A fresh version for Macintosh12 machines can be obtained by anonymous ftp at
ftp.iiia.csic.es in the directory Milord/mac. You can also find those versions and
more information on Milord II in the WWW at http://www.iiia.csic.es/˜milord.
Versions for PC and Unix environments will be produced in short time.
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A Syntax

PROGRAM ::= moddecl+

moddecl ::= Module amodid [( [paramlist] )] [modoper modexpr] [= modexpr]

paramlist ::= paramlist ; paramlist | amodid modoper modexpr

modoper ::= : | > | <
modexpr ::= bodyexpr modoper modexpr | bodyexpr
bodyexpr ::= begin decl end | pathid [( [iparamlist] )]

iparamlist ::= modexpr ; iparamlist | modexpr

pathid ::= amodid | amodid/pathid

decl ::= [hierarchy] [interface] [deductive] [control]
hierarchy ::= moddecl | Inherit modid | Open bodyexpr | hierarchy hierarchy

interface ::= [Import predicateidlist] [Export predicateidlist]

predicateidlist ::= predid , predicateidlist | predid

deductive ::= Deductive knowledge

[Dictionary: [Types: typebinding+] Predicates: predicate+]

[Rules: rule+]
[Inference system: logcomp]

end deductive
typebinding ::= typeid [= typespec]
typespec ::= boolean | many-valued | numeric | class |

fuzzy char-funct | ( symbollist ) | ( valuesspec ) | typeid

symbollist ::= symbol [string] | symbollist , symbollist

valuesspec ::= symbol [string] char-funct | valuesspec , valuesspec

char-funct ::= ( number , number , number , number )

predicate ::= predid = attributes
attributes ::= [name] [question] type [function] [relation+] [explanation] [image]
name ::= Name: string
question ::= Question: string

type ::= Type: typespec

function ::= Function: ( S-expression )

S-expression ::= atom | list | predef-func | S-expression S-expression
list ::= ( S-expression ) | ( )

predef-func ::= ( Type predid ) | ( Linguistic terms )

relation ::= Relation: relationid pathpredid
pathpredid ::= pathid/predid | predid

relationid ::= Needs | Needs true | Needs false | Needs value |
Belongs to | Needs quantitative | Needs qualitative | symbol

explanation ::= Explanation: string

image ::= Image: fileid

rule ::= ruleid If premisse-rule Then conclusion-rule [documentation]
premisse-rule ::= condition-rule and premisse-rule | condition-rule
condition-rule ::= conditio | no ( conditio )

conditio ::= operator ( expression, ..., expression ) |
expression operator expression |
pathpredid | ltermid | true | false

expression ::= operator-arit ( expression, ..., expression ) |
( expression operator-arit expression ) |
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number | pathpredid
operator ::= < | > | <= | >= | = | /= | int |
operator-arit ::= + | - | * | :
conclusion-rule ::= conclude rconclusion is cert-value
rconclusion ::= predid | predid = symbol | no ( predid ) | no ( predid = symbol )

logcomp ::= [lingtermdef] [conjunction] [renaming]
lingtermdef ::= Truth values = ( ltermidlist )

ltermidlist ::= ltermid , ltermidlist | ltermid

conjunction ::= Conjunction = truth-table

truth-table ::= Truth table ( arrows )

arrows ::= ( ltermid+ ) | arrows arrows

renaming ::= Renaming lrenames+

lrenames ::= pathid/ltermid ==> cert-value

cert-value ::= ltermid | [ ltermid , ltermid ]

control ::= Control knowledge

[Evaluation type: evaltype]

[Truth threshold: ltermid]
[deduccnt] [structcnt]
end control

evaltype ::= lazy | eager | reified

deduccnt ::= Deductive control: mrr+

mrr ::= metaid If premisse-meta Then filter-mrr+

premisse-meta ::= mexpr and premisse-meta | mexpr
filter-mrr ::= inhibit rules [relation-id] pathpredid |

prune pathpredid | conclude gexpr | conclude known

structcnt ::= Structural control: mre+

mre ::= metaid If premisse-meta Then filter-mre
filter-mre ::= filter amodid+ |

order amodid+ with certainty cert-value |
Open ( term ) | Module ( term ) | Inherit ( amodid )

mrx ::= metaid If premisse-meta Then exception
exception ::= definitive solution predid |

stop

mexpr ::= known | mrel | msubmod | mthres | card | atom | member |
eqdif | moper | int | setof | pos | gexpr

symorvar ::= symbol | $symbol
vpath ::= symorvar | symorvar/vpath

known ::= K ( fact, interval )

fact ::= factex | not( factex ) | implies( list,list )

factex ::= vpath | =( vpath, symorvar )

interval ::= $symbol | int( symorvar, symorvar )

mrel ::= relationid( symorvar, vpath )

msubmod ::= submodule( symorvar, symorvar ) | submodule( symorvar )

mthres ::= threshold( symorvar, symorvar ) | threshold( symorvar )

card ::= cardinal( list, symorvar )

list ::= $listid | ( listelem )

listelem ::= elemid | elemid , listelem

atom ::= atom( list )
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member ::= member ( symorvar, list )

eqdif ::= equal( listorsym,listorsym ) | diff( listorsym,listorsym )

listorsym ::= symbol | list
moper ::= loper( symorvar,symorvar )

loper ::= lt | le | eq | neq | ge | gt

int ::= intersection( list,list )

setof ::= set of instances ( $var,term,$var )

pos ::= position( symorvar,list,symorvar )

gexpr ::= predid ( term , ... , term )

term ::= $varid | symbol | termid(term, ..., term)

B Default Logic

This is the default logic used in Milord II when there is no local logic declaration into
a module.

Truth-values
A8 = {gp,mpop, llp,modp, p, fp,mp, s}

where the meaning of each term is the following:

1. gp: Impossible

2. mpop: Very few possible

3. llp: Few possible

4. modp: Slightly possible

5. p: Possible

6. fp: Quite possible

7. mp: Very possible

8. s: Definite

Conjunction This operation is described in the Table 3.

T8 gp mpop llp modp p fp mp s
gp gp gp gp gp gp gp gp gp

mpop gp mpop mpop mpop mpop mpop mpop mpop
llp gp mpop mpop llp llp llp llp llp

modp gp mpop llp modp modp modp modp modp
p gp mpop llp modp modp modp p p

fp gp mpop llp modp modp p fp fp
mp gp mpop llp modp p fp mp mp

s gp mpop llp modp p fp mp s

Table 3: Conjunction table for A8.


