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Abstract: Milord II is a modular language for knowledge-based systems. In this paper
we concentrate on the parts of the language and the theoretical foundations related to
approximate reasoning: the use of local many-valued logics based on linguistic terms,
which are the language constructs related to fuzzy sets, and finally the language
deductive mechanism.
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1. INTRODUCTION

Milord II is a modular language for knowledge-
based systems. In this paper we concentrate on the
parts of the language and the theoretical founda-
tions related to approximate reasoning and fuzzy
modelling. In (Puyol-Gruart, 1996; Puyol-Gruart
and Sierra, 1997; Puyol-Gruart et al., 1998) the
interested reader can find a complete description
of the language and its logical semantics.

The structural construct of Milord II is the
module. A program consists of a set of modules
that can recursively contain other modules, then
forming a hierarchy.

A module declaration contains the next sets of
components: hierarchy, interface, deductive knowl-
edge and control knowledge (In Figure 1 we can see
the code of an example of module declaration).

Hierarchy: Is a set of submodule declarations.
Interface: It has two components, the import

and the export interface. That is, which vari-
ables and propositions may be asked to the user
(import), and those whose value is computed by
the module (export).

1 This research has been partially supported by the Span-

ish Comisión Interministerial de Ciencia y Tecnoloǵıa (CI-
CYT) through the project SMASH (TIC96–1038–C04–01).

Deductive knowledge: It contains a dictionary
declaration, that is, the set of variables and
propositions (those belonging to the interface
of the module and other intermediate ones) and
their attributes; a set of rule declarations, that
is, a set of propositional weighted rules; and an
inference system declaration, that is, the local
logic of the module.

Control knowledge: It is expressed in a meta-
language which acts by reflection over the de-
ductive knowledge and the hierarchy of sub-
modules 2 .

In the subsequent sections we will describe in
detail the different elements of the deductive com-
ponent of a module.

We begin with the logical foundations of Mi-

lord II, based on a family of many-valued logics.
First, we describe the algebras of truth-values.
After that, we concentrate on variables, propo-
sitions and rules. Variables and propositions are
the simplest knowledge representation units and
propositions and predicates over expressions con-
taining variables are the basic elements to build
rules. Finally the deductive system based on spe-
cialisation is sketched.

2 A detailed explanation of this component can be found
in (Puyol-Gruart, 1996).



Module example =

Begin

Export fever, seriousness

Import temperature

Deductive knowledge

Dictionary:

Predicates:

temperature= name: "Temperature"

question: "Which is the temperature?"

type: numeric

fever4 = type: (l "low" (37,37.3,37.6,38),

m "medium" (37.6,38,38.5,39),

h "high" (38.5,39,43,43))

Relation: needs quantitative temperature

Rules:

R001 If fever4 is high then conclude seriousness is q true

Inference system:

Truth values = (false, sl true , q true, f true, true)

Conjunction = Truth table

((false false false false false)

(false sl true sl true sl true sl true)

(false sl true q true q true q true)

(false sl true q true f true f true)

(false sl true q true f true true))

End deductive

End

Fig. 1. Example of a module declaration.

2. LOCAL LOGICS

The logical foundations of Milord II have been
the main topic of several papers, for instance
(Godo et al., 1989; López de Màntaras, 1990; Es-
teva et al., 1994; Puyol-Gruart et al., 1998). The
approximate reasoning capability of Milord II is
based on a family of finitely-valued logics which
are local to each module and declared by an alge-
bra of truth-values.

An Algebra of truth-values An,T = 〈An,�,
Nn, T, IT 〉 is a finite linearly ordered residuated
lattice with a negation operation, that is:

Truth-values: 〈An, �〉 is a chain of n elements
(user-defined linguistic terms): 0 = a1 � a2 �
... � an = 1 where the bottom 0 and the top 1
are the booleans False and True respectively. For
instance:

Truth values =

(false, sl_true , q_true, f_true, true)

where sl true, q true and f true stand for
slightly true, quite true and fairly true respectively.

Conjunction: the operator T is a binary op-
eration such that the following properties hold
∀a, b, c ∈ An:

• T1: T (a, b) = T (b, a)
• T2: T (a, T (b, c)) = T (T (a, b), c)
• T3: T (0, a) = 0
• T4: T (1, a) = a
• T5: if a � b then T (a, c) � T (b, c) for all c

An example of such operator, representing the
min conjunction, T (ai, aj) = amin(i,j), is:

Conjunction = truth table

((false false false false false)

(false sl_true sl_true sl_truey sl_true)

(false sl_true q_true q_true q_true)

(false sl_true q_true f_true f_true)

(false sl_true q_true f_true true))

The negation operation Nn is a unary operation
defined as Nn(ai) = an−i+1, the only definable
order-reversing involutive mapping in 〈An,�〉, i.e.
it holds: N1) if a ≺ b then Nn(a) � Nn(b),∀a, b ∈
An and N2) Nn(Nn(a)) = a. The implication

operator IT is defined by residuation with respect
to T , i.e. IT (a, b) = Max{c ∈ An | T (a, c) � b}.

As it is easy to notice from the above definition,
an algebra is completely determined as soon as
the set of truth-values An and the conjunction
operator T are chosen. So, varying these two
features we may generate different many-valued
logics. For instance, taking T (ai, aj) = amin(i,j) or
T (ai, aj) = amin(n,n−i+j) we get the well-known
Gödel’s or  Lukasiewicz’s semantics (truth-tables)
for finitely-valued logics respectively.

2.1 Intervals

After the definition of the algebra of truth-values
we extent it to an algebra of intervals of truth-
values, this extension is the one actually used in
Milord II. We have three reasons to do that:
we can see in the modus ponens operation above
that we need to deal with intervals if we want to



chain rules; we will see in the next section that to
model the communication between modules with
different logics we need to use intervals; and fi-
nally, imprecision of numerical values is translated
to intervals of truth-values for qualitative terms
represented as fuzzy sets.

The extension to intervals of the above operators
are: N∗

n([a, b]) = [Nn(b),Nn(a)], T ∗([a, b], [c, d]) =
[T (a, c), T (b, d)].

2.2 Intermodule Communication

Different modules can have different local logics.
We allow this because an important part of any
problem solving method is the way the program-
mer will deal with the uncertainty in each sub-
problem: a richer set of linguistic terms can help
in giving more precise answers to queries; differ-
ent connectives represent different rule interpre-
tations, and hence different deductive behaviours;
even changing just the name of the terms from
a module to another can make the knowledge
represented in them more readable.

The main problem that has to be addressed in a
system with local logics is how modules commu-
nicate and which are the properties that are to
be satisfied by that communication process. That
is, how a module has to interpret the answer to
a query made to a submodule endowed with a
different logic. In the case of Milord II we do
so by specifying, in the local logic declaration of
a module, a renaming function that maps the lin-
guistic terms of the local logics of submodules into
intervals of the linguistic terms of the module’s
local logic.

For instance, the translation of the terms of a
module B, B7 = {false, hard true, somewhat true,
half true, quite true, very true, definite} to a
module containing a local logic with terms A5

= {false, sl true, q true, f true, true} could be
expressed as:

Renaming B/false ==> false

B/sl_true ==> [false, hard_true]

B/q_true ==> [hard_true, very_true]

B/f_true ==> [very_true, definite]

B/true ==> definite

Milord II also checks whether the proposed
translation between local logics terms satisfies
some requirements related to inference preserving
criteria (Agust́ı et al., 1994).

3. PROPOSITIONS AND VARIABLES

Variables and propositions are the simplest knowl-
edge representation units in Milord II. They
are named structures that represent the concepts

dealt within a module. Their declaration is made
by binding an atomic name (identifier) with a set
of attributes. The attributes may be a long name,
the type, relations with other variables or propo-
sitions, a question and user-defined attributes.

The type is the only attribute that is mandatory
in variable and proposition declarations and de-
termines the set of allowed values they can take,
apart from the special value unknown, meaning
ignorance of the value.

There are three types of propositions, boolean,
many-valued and fuzzy; and three types of vari-
ables, numerical, linguistic and set (see Figure 2).

3.1 Propositions

Boolean propositions: They are concepts which
can only be evaluated to either false or true. For
instance fever1 would be a boolean predicate (it
is false or true):

fever1 = Type: boolean

Many-valued propositions: The concepts rep-
resented as many-valued propositions are those
whose truth may be graded. For instance, if we
use a subjective criteria to appreciate if a patient
has fever, we can declare fever as a many-valued
proposition (we can say that fever is f true):

fever2 = Type: many-valued

Those propositions whose belief can be a matter of
degree are to be declared as many-valued propos-
tions as well. We consider that the only allowed
belief propositions are of the form

Belief (p), Belief (¬p)

where p is an atom. The underlying assumption
in this type of propositions is that we somehow
identify the belief-degree on p with the truth-
degree of a new proposition q saying that “p
is believable”, written Belief (p), that is, q =
“Belief (p)” and hence q is declared as many-
valued (Hájek et al., 1995).

Fuzzy Propositions: Vagueness of concepts as
fever can be quantified by the degree of member-
ship of a numerical measured value (in this case
temperature) once fever is represented by a fuzzy
set over temperatures (see Figure 3).
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Fig. 3. Fuzzy set representing the concept fever.
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Fig. 2. Types of variables and propositions.

A fuzzy proposition is declared by giving the
four points trapezoidal membership function. An
example of declaration of fever as a fuzzy set is:

fever3 = Type: fuzzy (37,38,43,43)

Relation: needs_quantitative temperature

The values of fuzzy propositions are still intervals
of linguistic terms. The way of computing the
interval is done, in this case, by the application of
the fuzzy membership function to the numerical
value of the numerical variable appearing in a
system-defined relation named needs quantitative.
This function returns a number in the interval
[0, 1]. The final answer is the minimum interval
of linguistic terms 3 containing that number.

3.2 Variables

Numerical variables: The value of a numerical
variable is a real number. For instance, tempera-
ture could be a numerical variable declared as:

temperature = Type: numeric

Set variables: Set variables are conjunctive fuzzy
sets. For instance, we can consider that the vari-
able treatment is a (fuzzy) set of antibiotics. It is
declared given its domain as:

treatment=Type:(etambutol, aciclovir, ganciclovir)

The value of the set variable treatment is the
degree of membership of every antibiotic to the
variable treatment (i.e. µ treatment(etambutol) =
[α, β]), that is, its characteristic function. Given
different set variables we could be interested in
applying fuzzy set relations and operations. For
instance, we can compare different treatments
by computing its intersection degree or inclusion
degree (see Section 4.1).

Linguistic Variables: They get values from a
user-defined finite set of linguistic values (fuzzy
sets).

Similarly to the case of fuzzy propositions, we
can declare a linguistic variable by giving, for
every linguistic value, a trapezoidal fuzzy set with
respect to a numerical variable.

3 By default we consider the set of linguistic terms to be
uniformly distributed in the interval [0, 1].

In Figure 4 we can see a new representation of
the concept fever by means of three fuzzy sets,
low, medium and high.
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Fig. 4. Fuzzy sets representing the concept fever.

The corresponding declaration of this new inter-
pretation of the fever concept would be:

fever4 = Type: (l "low" (37,37.3,37.6,38),

m "medium" (37.6,38,38.5,39),

h "high" (38.5,39,43,43))

Relation: needs_quantitative temperature

Notice that as in the case of fuzzy proposi-
tions it is necessary to declare the same relation
needs quantitative, with a numerical variable; in
this case, again temperature.

4. RULES

A rule is composed of an identifier, a premise (a
conjunction of conditions), a conclusion, and a
truth-value (see Figure 5). The truth-value of a
rule is a linguistic term belonging to the local logic
of the module.

The evaluation of a condition or a conclusion is
always an interval of truth-values. In the case of
conditions containing variables, the language is
provided with a set of predefined predicates that
apply on them to produce as result intervals of
truth values.

4.1 Conditions of rules

Premises of rules are conjunctions of elemental
conditions either in affirmative or in negative
form (by means of the connective no). Elemental
conditions can be: propositions or predicates over
expressions containing variables.

Examples of premises containing only proposi-
tions are:
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Fig. 5. Rule structure.

R003 If allergy then conclude ...

or in negative form:

R003 If no(allergy) then conclude ...

Numerical predicates: A numerical expression
is composed by numbers, numerical variables and
arithmetic operations (+,-,*,:). The evaluation
of an expression of this type returns a number
over which we can apply predicates like < (less),
> (greater), <= (less or equal), >= (greater
or equal), = (equal), and / = (different). For
instance:

R003 If temperature > 39 then conclude ...

Set predicates: We can build set expressions
in a similar way as numerical expressions 4 (see
Table 1).

Relations Operations

syntax meaning syntax meaning

a < b A ⊂ B a + b A ∪ B

a > b A ⊃ B a ∗ b A ∩ B

a = b A = B

a /= b A 6= B

a int b A ∩ B 6= ∅

Table 1. Fuzzy relations and operations.

The operations “+” and “∗” are interpreted as the
fuzzy set union ∪ and the fuzzy set intersection ∩
respectively, defined as usual by:

Union: ∀ω, µF∪G(ω) = max(µF (ω), µG(ω))
Intersection: ∀ω, µF∩G(ω) = min(µF (ω), µG(ω))

The allowed fuzzy relations are < (subset), > (su-
perset), = (equal), /= (different) and int (intersec-
tion degree). The binary predicates apply over the
evaluations of two expressions of the same type.
The evaluation of these predicates is, as before, an
interval of truth-values.

Now we define the inclusion, intersection degree
and equality between two fuzzy sets and their
meaning.

4 We decided to overload these predicates to reduce the
number of total predefined predicates of the language.

Inclusion: R⊂(F,G) = min(µF̄∪G)
Intersection degree: R∩(F,G) = max(µF∩G)
Equality: R=(F,G) = min(R⊂(F,G), R⊃(F,G))

These relations 5 return degrees of inclusion, in-
tersection and equality respectively between two
fuzzy sets. Using them we can express, for in-
stance, the degree of inclusion of two treatments:

R004 If treatment1 < treatment2 then conclude ...

or the degree of intersection of the union of two
treatments with a crisp set:

R004 If (treatment1 + treatment2) int (aciclovir)

then conclude ...

All these operations are standard (Zadeh, 1965).

Linguistic predicates: They are of the form
“linguistic variable is linguistic value”. For in-
stance:

R004 If fever4 is high then conclude ...

given a variable t (temperature), the predicate

fever is high returns the value of µfever4
high (t).

It is also possible to define linguistic predicates
of the form “linguistic variable is ( value 1 or

value 2 or ...)”. Consider for instance:

R004 If fever4 is (medium or high) then conclude ...

given a variable t (temperature), the predicate
fever4 is (medium or high) returns the value
of:

max(µfever4
medium(t), µfever4

high (t))

4.2 Conclusions of rules

The syntax of the conclusion of rules is simpler
than conditions. Conclusions may appear on affir-
mative or on negative forms. Only many-valued
propositions and set variables can be used as
conclusions in rules. For instance, a many-valued
proposition conclusion has the form:

5 Notice that R⊂(F, G) and R∩(F, G) definitions corre-
spond respectively to the usual notions of necessity and
possibility.



R003 If ... then conclude fever2 is definite

and a set variable conclusion has the form:

If ... then conclude treatment=aciclovir is true

For a set variable the value of every element of
its domain is concluded independently. For in-
stance, for the set treatment with domain (etamb-
utol,aciclovir,ganciclovir) the rule above gives the
value [true, true] to the membership degree of
antibiotic aciclovir to treatment.

5. DEDUCTION

The object level deductive mechanism in each
module is oriented to rule specialisation. By rule
specialisation we refer to the process of simplifying
rules by means of dropping conditions from the
premise as soon as they are known to be true.
For instance, in classical logic, if we know that a
condition A is true, the rule r : A ∧ B → C can
be specialised into the rule r′ : B → C.

From a logical point of view, rules in Milord II

are many-valued propositional implications of the
form

(p1 ∧ · · · ∧ pn → q,W )

where the pi’s stand for conditions (a proposition
or a ground predicate —see Section 4.1), q is
the conclusion (a proposition or a set variable
expression —see Section 4.2), and W is an upper
interval of truth-values, that is, of the form [a, 1].
Moreover, factual data (either coming from the
user or deduced by the system) can be always be
represented by a pair (p, V ), where p again stands
for a proposition and V an interval of truth-values.

In this many-valued logical framework, deduction
by rule specialisation is basically carried out by
means of the following set of many-valued infer-
ence rules:

R1: from (p, V ) infer (¬p,N∗(V ))
R2: from (¬p, V ) infer (p,N∗(V ))
R3: from (ϕ, V1) and (ϕ, V2) infer (ϕ, V1 ∩ V2)
R4: from (pi, V ) and (p1 ∧ · · · ∧ pn → q,W )

infer (p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn

→ q,MP ∗

T (V,W ))

where MP ∗

T (V,W ) is the minimal interval of
truth-values containing all solutions for z of the
family of functional equations IT (a, z) = b varying
a ∈ V and b ∈ W .

R1 and R2 are not-introduction and not-eliminati-
on rules, R3 is for combination of two different
truth-value intervals for the same proposition, and
R4 is the expression of the specialisation rule 6 in
the many-valued setting. All these inference rules
are sound with respect to the semantics induced

6 Above we are assuming n ≥ 2. For n = 1, R4 should be
read as: from (p, V ) and (p → q, W ) infer (q, MP ∗

T
(V,W )).

by the truth-value algebras introduced in section 2
(see (Puyol-Gruart et al., 1998) for further details
on the logical component of Milord II).

6. IMPLEMENTATION

Milord II has been implemented in Common
Lisp (an interpreter) and in C (a compiler pro-
ducing code for the interpreter). This software is
available free for research and educational pur-
poses. Fresh versions for Macintosh 7 , PC and
Unix machines can be obtained by anonymous ftp
at ftp.iiia.csic.es/milord. You can also find previ-
ous versions and more information on Milord II

at http://www.iiia.csic.es/˜milord.
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