
THEORY AND APPLICATION OF
MULTIPLE-VALUED LOGICS FOR KNOWLEDGE-BASED SYSTEMS

José Antonio Reyes Francesc Esteva Josep Puyol-Gruart
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

Campus UAB. 08193 Bellaterra, Catalonia, Spain
E-mail: {reyes, esteva, puyol}@iiia.csic.es

Abstract

Multiple-valued logics are useful for dealing
with uncertainty and imprecision in
knowledge-based systems. In this paper, we
present the foundations of QMORPH: a tool that
assists users in the declaration of such logics
and in the declaration of the communication
mechanism between two of these different
logics by preserving inference.

Keywords: uncertain reasoning, multiple-
valued logics, knowledge-based systems.

1 DEFINING MV-LOGICS

Multiple-valued logics (MV-Logics) have been proved to
be a useful way to manage uncertainty and imprecision
[3; 5; 6; 10].

We consider a restricted family of finite MV-logics
expressive enough to model the uncertain reasoning used
in many rule-based systems [1]. Each logic is determined
by a particular algebra of truth-values from this family.

An Algebra of truth values is a finite algebra AT
n =

{An , 0, 1, Nn , T, IT} such that:

1. The ordered set of truth-values An is a chain of n
linguistic terms:

0 = a0 < a1 < ... < an-1 = 1

where 0 and 1 are the Boolean False and True
respectively.

2. The negation operator Nn is the unary operation
defined as:

Nn(ai) = an-1-i

the only one that fulfills the following properties:

N1: If a < b then Nn(a) > Nn(b), ∀ a ,b ∈ An

N2: N n
2 = Id

3. The conjunction operation T is any binary operation
such that the following properties hold ∀ a, b, c ∈ An:

T1: T(a,b) = T(b,a)
T2: T(a,T(b,c)) = T(T(a,b),c)

T3: T(0,a) = 0
T4: T(1,a) = a
T5: If a ≤ b then T(a,c) ≤ T(b,c) for all c

4. The implication operation IT is defined by
residuation with respect to T, i.e.

IT (a,b) = Max {c ∈ An | T(a,c) ≤ b}

Therefore, to establish an algebra of truth-values it is
only necessary to determine the set of truth-values An

more adequate for the concerning problem, and define a
conjunction operator T.

The sentences of the language are pairs (p, V), where:
p is a wff, obtained in the usual way from a denumerable
set of propositional symbols and the connectives ‘not’
(¬), ‘and’ (∧) and ‘detachment’ (→); and V is an
interval of truth-values from An.

Likewise, semantic is evaluated in an algebra of truth-
values. The semantic interpretation is given by the
following signification:

• Models are defined by valuations; i.e. mappings ρ
from the propositional symbols to An terms provided
that:

 ρ(¬ p) = Nn(ρ(p))
 ρ(p1 ∧ p2) = T(ρ(p1), ρ(p2))
 ρ(p → q) = IT (ρ(p), ρ(q))

• The Satisfaction Relation between models and
sentences is defined by:

 Mρ (p, V) if, and only if, ρ(p) ∈ V,

 where Mρ stands for the model defined by a valuation
ρ.

 The inference rule of these logics is Modus Ponens,
which gives from (p → q, V) and (p, V’) a sentence
(q, V”). In fact, modus ponens evaluates V” from V and
V’ (See [9] for a theoretical study of modus ponens, and
[6] for its application to expert systems).

 1.1 INTERVALS OF TRUTH-VALUES

 We extend the previous algebra to an algebra of intervals,
[4]. We have three motivations to do this. The first one is
imprecision. The second reason is related with the modus
ponens operator, which requires the use of intervals to

chain rules. And finally, intervals are needed to make
possible mappings between different logics.
 Given an algebra of truth-values A = < An , Nn , T >,
we will consider the set of intervals of An as:

 Int(An) = {[a,b] | a,b ∈ An}

 being [a,b] = {x ∈ An | a ≤ x ≤ b}.

 The extensions to intervals of the above operators are:
Nn

([a,b]) = [Nn(b), Nn(a)], T([a,b], [c,d]) = [T(a,c),
T(b,d)].

 1.2 CONJUNCTION GENERATION

 Given a set of linguistic terms, we need to know all the
possible conjunction operators in order to choose one of
them.
 The mentioned algebra properties (T1-T5) are
requirements that a conjunction operator must fit. We
have modelled this task as a classic CSP problem where
these properties act as constraints over the set of possible
solutions. We represent the conjunction operator as a
matrix, where each element is a variable Vi, j , 0 ≤ i, j ≤
n-1. Satisfaction of each property or constraint, causes
the following guidelines which influence the conjunction
search generation problem:

• Commutativity allows us to consider only the set of
variables V = {Vi, j , i ≥ j}.

• The absorbent and neutral elements fix the values for
variables V0, j and V ,j n - 1 .

• Monotonicity implies non-decreasing rows and
columns.

• Associativity test is expensive in time and memory,
but considering that T(ai,aj) ≤ min(ai,aj), each sub-
matrix where i = j is closed with respect to the
conjunction operator. In this way, the matrix will be
associative if all its sub-matrices are so. This property
lets us check associativity in an incremental way
every time a value is assigned to a variableVi, i .

 Applying these constraints, the number of operators
generated is exponential with respect to n. We can
consider two options to reduce this number: introducing
some new desirable constraints, as well as fixing several
values of the matrix to reduce the search space to be
explored.
 Two types of additional, and optional, constraints are
discussed:

 T6 Strictness: T(ai ,aj) ≠ 0, for all i, j ≠ 0

 Given two truth-values different than 0 (false), it does
not seem reasonable that their conjunction may be 0.

 T7 α-Smoothness: given α ∈ , T is said to satisfy
α-smoothness property if T(ai,aj) = ak and T(ai-1,aj) =
ap , then k - p ≤ α

 We also want that the result of the conjunction of near
values has to be not very distant.
 Satisfaction of these new properties (T6, T7) has the
following consequences in the conjunction search
generation problem:

• Strictness: the generation of strict matrices of
dimension n is equivalent to generate non-strict
matrices of dimension n-1.

• α-Smoothness: it reduces the set of possible values for
a variable taking into account column and row
adjacency.

2 COMBINING LOGICS

We can declare different logics by varying the set of
truth-values (linguistic terms) and the conjunction
operator. That depends of how the expert will deal with
uncertainty in each problem.

When two different logics need to exchange
information, it is necessary some mechanisms of
translation to make the communication between these
logics compatible. We want to preserve the inference
properties of each logic but, as usual, it is not possible to
transmit information without loss of precision. Hence we
map values of an algebra into intervals of the other.

Let’s take a look to which requirements we need in
order to map the language of a logic into another one
when they require to exchange information [2].

2.1 MAPPINGS BETWEEN MV-LOGICS

Let (L ,) and (L’, ’) be two logics, L and L’ standing
for the languages, and ’ for the entailment relations
defined on L and L' respectively. To establish a
correspondence between both logics, a mapping
H: L → L’ is needed. Now, we will analyze some
natural requirements for the mapping H with respect to
the entailment systems and ’. We propose that at
least one of the following three requirements should be
fulfilled by the mapping H in order to ensure a consistent
communication. Henceforth Γ and e will denote a set of
sentences and a sentence of L respectively. A map H is
said to be a forward conservative map when,

RQ.1. If Γ e, then H(Γ) ’ H(e)

For every sentence e, deducible from a set of sentences
Γ, its corresponding sentence, H(e), will also be
deducible from the corresponding sentences of H(Γ).

A map fulfilling this second requirement is said to be a
backward conservative map:

RQ.2. If H(Γ) ’ H(e), then Γ e

This is the inverse requirement of RQ.1. Hence, if a
fact is not deducible from Γ, then its corresponding fact
from H(Γ) won't be deducible either. Nevertheless Γ e
does not imply H(Γ) ’ H(e).

Conditions RQ.1 and RQ.2, which are very strong, can
sometimes be weakened in the uncertain reasoning
framework. Formally, this can be expressed by the third
and last requirement:

RQ.3. If H(Γ) ’ e’, then there exists e such that
Γ e and H(e) ’ e’

This requirement assures that every sentence deducible
from H(Γ) must be in agreement with what can be
deduced from Γ. This requirement is slightly different
from RQ.2, in the sense that it is not necessary e' being
an exact translation of a deducible sentence e from Γ, but
only something deducible from such a translation. In the
framework of logics for uncertainty management, e’ is
interpreted as a weaker form of e, i.e. a sentence
expressing more uncertainty than e. We will call it a
weak conservative map.

Now we will consider the problem of finding inference
preserving correspondences between two logics
A = <An , Nn , T > and B = <Bm , Nm , T’>. We are
interested in mapping the entailment system (LA, A) into
the entailment system (LB, B), by means of renaming
functions between the corresponding linguistic term sets.
This means that we will only consider those mappings
translating sentences from LA to LB that just involve
translations of truth-values; i.e. any mapping
H: LA → LB will be defined as H(e,V) = (e,h(V)), where
h translates subsets of values of An into subsets of values
of Bm, and e (a wff) remains invariant.

2.2 ALGEBRA MORPHISMS

To establish conservative communications, it is necessary
to consider what kind of relation between the uncertainty
logics is required. In [2], we can find the necessary
and/or sufficient conditions for a mapping
h: An → Int(Bm) to satisfy these requirements. From
this analysis, we deduce the following relationships
between the conditions needed to satisfy every
requirement (see Figure 1):

RQ.1 ⇔

∩=∩
=

⊇

h(V2)h(V1)V2)h(V1

(h(V))Nh(N(V))

h(V2))(h(V1),T'V2))h(T(V1,

m

RQ.2 ⇐

⊇⇒⊇
=

⊆

V2V1h(V2)h(V1)

(h(V))Nh(N(V))

h(V2))(h(V1),TV2))h(T(V1,

m

'

⇓

RQ.3 ⇔

 ⊆

(h(V))N=h(N(V))

h(V2))(h(V1),TV2))h(T(V1,

m

'

Figure 1: Requirements conditions.

We define mappings from elements of An into intervals
of Bm, but sometimes it is possible to find mappings that

translate an element of An into an element of Bm. In this
case, requirement RQ.3 is satisfied and the mapping is a
morphism between the corresponding algebras. As a
particular case, if a map fulfill RQ.1 and RQ.2, we have
not only the morphism conditions, but also a one-to-one
application, that is, an injective function called
monomorphism. But we can not always find these kinds
of mappings, so in the case of a map involving intervals
of truth-values, we call it a quasi-morphism.

We are mainly interested in monomorphisms because
they embed An into Bm and because they are order
preserving mappings (it is equivalent to a communication
without any loose of information). The second preference
is morphisms, which accomplish the algebra operations
(it is a transmission of information fulfilling the required
properties). Finally, because of the strong conditions
morphisms and monomorphisms must satisfy, it is not
always possible to find these kind of renaming them, so
quasi-morphisms can be useful thanks to the additional
freedom of map truth-values of an algebra into intervals
of the other (we allow certain loose of information).

2.3 RENAMING GENERATION

For a given set of truth-values An, there exists only one
negation operator Nn. Then, we can make the following
partition:

• the set of negative elements Nn = {x | x < Nn(x)}
• the set of fixed elements Fn = {x | x = Nn(x)}
• the set of positive elements Pn = {x | x > Nn(x)}

Besides, we can do the same with a set Bm, obtaining

N m
* ,Fm

* and Pm
* for the case of working with intervals.

Then, the renaming algorithm consists in generating all

the maps h1: Nn ∪ Fn → N m
* ∪ Fm

* such that:

a) h1 (0) = 0, (i.e. h1 (a0) = b0).

b) h1 (Fn) ∈ Fm
* .

c) x ≤ y implies h1 (x) /> h1(y), where x, y ∈ An and
h1(x), h1(y)∈ Int(Bm).

and extending each of these mapping h1 with respect to
the negation operation defining the morphism h as:

h(x)
h x

N h xm

=
∈ ∪

∈

1

1 n

(x)

((N (x)))

,

,*

if .

if .

N F

P

n n

n

Next, we check which ones are compatible with the
conjunction operators T and T’, and finally, we check
which ones are monomorphisms, morphisms or quasi-
morphism. The resulting maps are presented to the user
in this order.

Due to the strong condition monomorphisms and
morphisms must fit, it is not always possible to find
them. However, it is very possible that the renaming
generation produces a large list of quasi-morphisms, so
the possibility of giving an ordered list of quasi-

morphisms to aid users in their selection may be
considered. Note that in the case of morphisms, all the
renaming mappings have the same evaluation, hence the
selection is left to the user's criteria.

For the purpose of producing an ordered list of quasi-
morphisms, we consider a weigh among the cardinal c of
the set of terms which have an atomic image (that is, an
interval with the form [ai , ai]) and the length L of the
remainder of intervals (number of truth-values included
in this interval).

Given two chains An and Bm, we will generate
mappings between An and the set of intervals Int(Bm). In
order to obtain an evaluation for every map, we can use
the following empirical function:

∑

∑
=

=

=
n

i
i

n

i
i

c

L

1

1η , 1 ≤ Li ≤ m , 0 ≤ ci ≤ 1 (1)

where Li is the length of the interval i and ci is the
number of points which have an atomic image.

User is also able to establish the behavior that can take
the generated maps defining a partial map between both
algebras. This definition must satisfy the set of
requirements suggested previously in order to be a
negation morphism. When we have defined our partial
map (or total, or none), a list of renaming functions
fulfilling these defined characteristics will be generated.

3 THE QMORPH TOOL

QMORPH [8] is a tool that allows users to define the more
adequated logic for a concrete problem, as well as to
decide a consistent communication between two different
MV-logics. This tool makes automatic these problems
and assists users along the process. Two different
interfaces have been developed: a graphical interface for
the UNIX operative system using Tcl/Tk packages,
running under the X-Windows environment and
developed on Sun machines; and a generic text mode
interface performed in Common Lisp.

In the present, this tool is attached to Milord II [7] - a
specific expert system building environment - as an aid
tool to support experts when developing modular
applications, although it can be used in a more extensive
framework.

4 CONCLUSIONS

In this paper we have defined which are the theoretical
bases that allow dealing with uncertainty by means of
multiple-valued logics. We have settled how to declare a
suitable MV-logic from a parametric family of algebra of
truth-values, and also, which are the necessary and/or
sufficient requirements when we need to establish a
communication between two of these logics. This

problem arises in large knowledge-based systems in
which different tasks need to cooperate using uncertain
reasoning, as well as in distributed systems.
QMORPH has been designed with the aim of automating

these problems, as well as assisting users and offering
different alternative possibilities. Beyond its particular
use within Milord II, it can be deployed by any other
system using MV-logics.

This work focuses on the unidirectional interaction
between two logics, but the more general problem of
communicating various uncertain reasoning systems is
far more complex. This work along with further research
will make possible this goal.

Acknowledgments

Partially supported by project MODELOGOS funded by
CICYT (TIC 97-0579-C02-01) and through SMASH by
CICYT (TIC 96-1038-C04-01).

References

[1] Agustí, J.; Esteva, F.; Garcia, P.; Godo, L.; Sierra, C.;
Combining multiple-valued logics in modular expert
systems, Proceedings of 7th Conference on Uncertainty in
AI, Bruce d-Ambrosio et al. (eds), (1991), pp. 17-25.

[2] Agustí, J.; Esteva, F.; Garcia, P.; Godo, L.; López de
Mántaras, R.; Local multi-valued logics in modular expert
systems, Journal of Experimental & Theoretical AI
(JETAI), vol. 6 n. 3 (1993), pp. 303-321.

[3] Bonissone, P.; Gans, S.; Decker, K.; Rum: A layered
architecture for reasoning with uncertainty, in IJCAI’87
(1987), pp. 891-898.

[4] Esteva, F.; Garcia-Calves, P.; Godo, L.; Enriched interval
bilattices: An approach to deal with uncertainty and
imprecision, International Journal on Uncertainty,
Fuzzyness and Knowledge-Based Systems, 1-2 (1994).

[5] Godo, L.; López de Mántaras, R; Sierra, C.; Verdaguer, A.;
Milord : The architecture and management of linguistically
expressed uncertainty, International Journal of Intelligent
Systems, Vol. 4 n. 4 (1989), pp. 471-501.

[6] López de Mántaras, R.; Approximate Reasoning Models,
Ellis Horwood Series in Artificial Intelligence, 1990.

[7] Puyol, J.; MILORD II: A language for knowledge-Based
Systems, Vol. 1 of Monografies del IIIA, IIIA-CSIC, 1996.

[8] Reyes, J. A.; QMORPH: A tool to define and combine local
logics in Milord II, Mst. Thesis, Universitat Autònoma de
Barcelona, (1997).

[9] Trillas, E.; Valverde, L.; On mode and implication in
approximate reasoning, in Gupa et al. (eds.): Approximate
Reasoning in expert systems, (1985), pp. 157-166.

[10] Turner, R.; Logics for Artificial Intelligence, Ellis
Horwood Series in Artificial Intelligence, 1984.

