
Terap-IA, a Knowledge-Based System for Pneumonia Treatment∗

Pilar Barrufet

Consorci Sanitari de Mataró Hospitals
Lepant, 13. 08301 Mataró, Spain

e-mail: pbarrufet@csm.scs.es

Josep Puyol-Gruart, Carles Sierra

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus UAB. 08193 Bellaterra, Spain
e-mail: {puyol,sierra}@iiia.csic.es

Abstract

Terap–IA is a knowledge-based system for the treat-
ment of community-acquired pneumonia in adults.
In this paper we concentrate on its description and
implementation. The implementation has been made
using Milord II, a modular language for knowledge-
based systems. We will stress the uncertainty mod-
elling of the domain, with special emphasis on the
Milord II capabilities for that purpose.

1 Description of the problem

A community-acquired pneumonia is a frequent in-
fection, especially for people with chronic diseases
and for old people. It is one of the most common
causes of mortality related to infectious diseases (the
first in EEUU).

There are a lot of microorganisms causing pneumo-
nia. The diagnosis depends on the identification of
the microorganism causing pneumonia. Nowadays,
with the available diagnostic methodology, it is still
very difficult to determine which of the microorgan-
isms is the infecting agent in a particular pneumo-
nia case. The research focused to determine which
are the microorganisms causing pneumonia only suc-
ceeds in the 50% of the cases [1, 5]. Errors in diagno-
sis can be fatal, for instance, to diagnose pneumococ-
cal pneumonia in a patient with legionella pneumonia
may produce the death of the patient by the delay
of an adequate treatment.

Despite the uncertainty of the diagnosis, a treatment
has to be speedily administrated to avoid a negative

∗This research has been supported by the Spanish
Comisión Interministerial de Ciencia y Tecnoloǵıa (CICYT)
through the project SMASH (TIC96–1038–C04–01).

evolution of the severity of the illness or in some cases
the death.

In our approach we make two main assumptions:

1) Existence of a previous diagnosis: Normally a
pneumonia is caused by only one microorganism, but
symptoms and signs are not specific enough to deter-
mine which one. Diagnosis usually gives evidence for
two or three microorganisms possibly causing pneu-
monia. We will assume in this work that such diag-
nosis already exists. It can be obtained from another
knowledge-based system such as Pneumon–IA [6].

2) Independence of treatments: We can indepen-
dently find the best treatment for every microorgan-
ism appearing in a diagnosis. Moreover, these treat-
ments can be combined to give a treatment covering
all the possible causes. By “covering” we mean that a
treatment is specific for a particular microorganism,
in other words, it “attacks” the microorganism.

Besides the uncertainty of the diagnosis, data about
the patient is in many cases also uncertain and in-
complete.

In the subsequent sections we will describe in de-
tail how a solution to this problem has been imple-
mented. We begin with a conceptual structure of the
problem. After that we deal with the main ideas used
in the real implementation of Terap–IA, a knowledge-
based system for the automatic generation of treat-
ments. Finally the conclusions and results obtained
up to date are presented.

2 Structure of the problem

In Figure 1 we can see the general conceptual struc-
ture of Terap–IA. Briefly, a treatment for pneumonia
is a set of upmost three antibiotics. The antibiotics



of the treatment must be possible to administrate to
the patient and, cover all the diagnosed microorgan-
isms —because one of them is possibly the cause of
pneumonia. The conceptual structure has four parts:
first, independently of the diagnosis the system de-
termines all the antibiotics that is possible to admin-
istrate to the patient; second, from these antibiotics,
the system finds which are the most useful for each
of the microorganisms of the diagnosis; third, these
treatments are combined producing a treatment cov-
ering all the microorganisms of the diagnosis for that
concrete patient; finally, the antibiotic combinations
are refined with other criteria.

The following sections describe how have we mapped
this structure into an operational knowledge-based
system developed on top of Milord II.

2.1 Ontology

The concepts managed in Terap–IA are those related
to the pharmacological knowledge about pneumonia
treatments and those representing the clinical condi-
tion of the patient. The goal of the system is to find
the best combination of antibiotics to treat a patient
with pneumonia. During the treatment generation
process we “weigh” concepts, for instance, the an-
tibiotic adequacy, to give a ranking of final results
hence, the clinician can decide to choose an option
in the ranking taking into account his preferences.

Pharmacological knowledge Antibiotics are phar-
macological products for infections’ treatment. An-
tibiotics belong to different pharmacological groups,
sharing different properties. For instance, all antibi-
otics of the same group have a similar spectrum of
activity, that is, the set of microorganisms covered
by the antibiotics is similar. On the other hand, an-
tibiotics belonging to the same group have different
particular characteristics such as cost, administra-
tion route, interaction with other drugs, and so on.
For instance, amoxicillin and procaine-penicillin G
belong to the group penicillins and they cover gram-
positive bacteries, but amoxicillin is orally adminis-
trated and procaine-penicillin G is intramuscularly
administrated.

We consider an antibiotic treatment for a microor-
ganism as a set of antibiotics, normally one and, oc-
casionally two. An antibiotic combination is the re-
sult of covering more than one microorganism. It is
a set of one1, two, or exceptionally three antibiotics.

1Some antibiotics cover more than one microorganism.

The system represents knowledge about all these as-
pects of antibiotics.

Patient data From the pharmacological knowledge
explained above and the particular data of a patient,
the system is able to deduce the best treatment for
that patient. The most important patient data is the
diagnosis2 consisting of a list of the microorganisms
possibly causing the pneumonia (normally upmost
three microorganisms).

Other relevant data of the patient is relative to clin-
ical history, physical examination, laboratory test
and chest radiograph data, renal function, severity
of illness, allergic reactions, genetics alterations and
so on.

For instance, we have to take into account the in-
take of other drugs by the patient to avoid undesired
interactions among them. Another example is that
the administration of antibiotics before the onset of
pneumonia can produce that the microorganism pro-
ducing pneumonia develops resistance to some an-
tibiotics.

2.2 Tasks

We have modelled the solution to the problem as a
series of tasks that are performed in sequence (see
the boxes with text in bold in Figure 1).

A) The starting point of the system is to consider all
the antibiotic groups. These groups are sieved con-
sidering relevant data of the patient, that is, the task
consists in finding the degree of adequacy of every
group of antibiotics to that patient. It is performed
taking into account data about pregnancy, allergic
reactions to antibiotics, renal diseases or genetic al-
terations. The result of this task is the adequacy of
every group to a concrete patient. It is independent
of the disease we want to treat.

B) Then, taking into account the diagnosis of the
patient, we dynamically generate (by selection) a set
of treatment tasks, one for each microorganism that
possibly caused the pneumonia.

C) Taking into account the adequacy of every group
of antibiotics (task A) for the patient, every treat-
ment task obtains the best set of antibiotics, for the
treatment of the microorganism it is specialised on,

2In [6] the interested reader can find an expert system for
the diagnosis of pneumonia written in a previous version of
Milord II.



Antibiotic
Groups

-

A

Sieve - Antibiotic
Groups

-

B

Selection

-

-

-

C

Treatment1

Treatment2

...

Treatmentn

-

-

-

Antibiotics1

Antibiotics2

...

Antibioticsn

???
D

Combining
�

Antibiotics Combinations
�

E

Sieve
�

Antibiotics Combinations

Patient data:
- Pregnancy
- Allergy
- Renal failure
- Genetic alterations Pharmacological

knowledge:
- Specificity
- Cost
- Other conditions

Pharmacological
knowledge:
- Adverse reactions
- Interactions

Patient data:
- Severity

Previous Diagnosis:
-microorganism1
-microorganism2
...
-microorganismn

�
�� 6

?

66

Figure 1: Architecture of Terap–IA application.

that belongs to those sieved groups. A treatment
task uses data about the patient, the more important
is the patient’s severity of illness, and pharmacologi-
cal knowledge about the interactions between drugs,
and their contrary effects (previously known adverse
reactions to some antibiotics in a concrete patient).

D) The sets of antibiotics adequate for each mi-
croorganism are then combined. Combinations are
produced by means of several criteria. For in-
stance: do not combine antibiotics of the same group,
nor those of the same spectrum (equivalent anti-
microorganisms activity) nor with different admin-
istration route; we prefer monotherapy (one antibi-
otic) to combinations.

E) Finally, a new sieve is applied, now over the or-
dered set of antibiotics combinations taking into ac-
count the specificity and cost, giving as final result
an ordered set of combinations that are the most ad-
equate for the treatment of the patient.

The final result of this process is an adequacy-
ordered set of treatments (combinations of antibi-
otics) for a particular pneumonia case of a concrete
patient.

3 Terap–IA

Terap–IA has been implemented using the Mi-
lord II language. In this section we present a brief
schema of Terap–IA’s architecture and which are the
decisions in the representation that fulfils the schema

presented in Section 2.

Milord II is a modular language for knowledge-
based systems. In [2, 3, 4] the interested reader can
find a complete description of the language and its
logical semantics. We introduce it progressively by
means of examples from Terap–IA.

3.1 Uncertainty

The approximate reasoning capability of Milord II
is based on a family of finitely-valued logics which
are local to each module and defined as an algebra
of truth-values. This allows the system to use a de-
gree of truthness for the concepts involved in the
system, then giving graduated results in function of
the inherent uncertainty of the data and knowledge
involved in the treatment of pneumonia.

The user-defined logic of a module is composed by
the declarations of: 1) an ordered set of linguistics
terms representing truthness degrees between true
and false and, 2) a conjunction operator.

In Terap–IA we have used the same set of eight lin-
guistic terms and the same connective modelling in
all modules. The terms are the following: impossible,
very few possible, few possible, slightly possible, pos-
sible, quite possible, very possible and definite, where
impossible stands for the boolean false and definite
for the boolean true.

Table 1 represents the conjunction operator used in
Terap–IA, where the linguistic terms are abbrevi-



ated.

i vf fp sp p qp vp d
i i i i i i i i i
vf i vf vf vf vf vf vf vf
fp i vf vf fp fp fp fp fp
sp i vf fp sp sp sp sp sp
p i vf fp sp sp sp p p
qp i vf fp sp sp p qp qp
vp i vf fp sp p qp vp vp
d i vf fp sp p qp vp d

Table 1: Conjunction table for Terap–IA.

The many-valued logic of a module is completely
determined as soon as the set of linguistic terms
and the conjunction operator are chosen. So, vary-
ing these two features we may generate different
multiple-valued logics. In Terap–IA we use the same
logic for all modules.

3.2 Propositions and variables

Propositions and variables are the simplest knowl-
edge representation units in Milord II. They are
named structures that represent the concepts dealt
within a module. Their declaration is made by bind-
ing an atomic name (identifier) with a set of at-
tributes. The attributes may be a long name, the
type, relations with other propositions or variables,
a question and so on. Propositions and variables
declarations can contain user-defined relations with
other propositions and variables. We use this pos-
sibility in this application, to model, for instance,
relations between antibiotics.

The type is the only attribute that is mandatory
in propositions and variables declarations and de-
termines the set of allowed values a proposition or
a variable can take, apart from the special value un-
known, meaning ignorance of the value.

There are three types of propositions, boolean, many-
valued and fuzzy; and three types of variables, nu-
merical, linguistic and set. Only many-valued propo-
sitions or set variables can appear in the conclusions
of rules, as well as in premises of rules. Boolean and
fuzzy propositions, and numerical and linguistic vari-
ables, are not deduced by the system, they are asked
to the user and used only in the premises of rules.

Boolean propositions: They represent concepts
which can only be evaluated as either false or true. In

Terap–IA most concepts related to antecedents of the
patient are boolean propositions, for instance, the
knowledge of whether the patient has or not previous
adverse reactions to some antibiotics, or whether he
is affected or not by a chronic disease.

Numerical variables: The value of a numerical
variable is a real number. For instance, the pres-
ence in the blood of a patient of creatinine (blood
substance which can reach toxic levels with a kid-
ney malfunction) or the number of leukocytes can be
numerical variables.

Fuzzy propositions: In some cases we need to deal
with vague concepts. For instance, taking the exam-
ple above, we may be interested in the truthness of
the presence of creatinine useful to support a renal
failure of the patient, instead of the numerical value
of creatinine. Vagueness of concepts can be quanti-
fied by the degree of membership of a numerical value
to a fuzzy set, so, the presence of creatinine can be
modelled by giving a fuzzy set (see Figure 2) that
takes as argument the numerical value of creatinine.

6

-








0

µpresence of creatinine(x)

1

µpresence of creatinine(creatinine)

ai

ai+1

creatinine(mmol/l)0 90 x 200 300

Figure 2: Fuzzy set representing the concept creati-
nine.

The value of a fuzzy proposition is obtained by the
application of the fuzzy membership function to the
value of a numerical variable obtained from the user
of the system. This application returns a number in
the interval [0, 1]. The final answer is the minimum
interval of linguistic terms3 containing that number.

Linguistic variables: Their values belong to a
user-defined finite set of linguistic values. Similarly
to the case of fuzzy propositions we can declare a lin-
guistic variable by giving, for every linguistic value,
a fuzzy set with respect to a numerical variable.

In Figure 3 we can see a representation of the concept
state of white blood cells (swbc for short) by means of
three fuzzy sets (linguistic values), leukopenia, nor-
mal and leukocytosis. Given a numerical value for
leukocytes the system can calculate the value for each
linguistic value —the value for swbc is leukopenia,

3For this purpose we consider the set of linguistic terms to
be uniformly distributed in the interval [0, 1].



swbc is normal and swbc is leukocytosis— by apply-
ing the corresponding fuzzy sets.

6

-

C
C
C
C�
�
�
� B
B
B
B�
�
�
�

0

1

leukocytes(×103cel/mm3)
0 0.2 3 5

µswbcleucopenia

10 12

µswbcleucositosiµswbcnormal

Figure 3: Linguistic variable representing the con-
cept leukocytes.

Many-valued propositions: The concepts repre-
sented as many-valued propositions are those whose
truth may be graded. That is the case of most de-
duced concepts, for instance, the degree of severity
of illness of the patient or the degree of resistance of
pneumococci to penicillin.

Set variables: They are conjunctive fuzzy sets. An
example is the concept allergic reactions. It is a set
which domain is the set of possible allergic reactions
of the patient. If a patient has only an allergy to
penicillin, the set variable allergic reactions is a set
with value true for penicillin and false for the other
allergic reactions of the domain.

Given different set variables we could be interested
in applying fuzzy set relations and operations. For
instance, we can compare different sets by comput-
ing, its intersection degree or inclusion degree. For
example, we can say in which degree the set variable
allergic reactions intersects with the crisp set with el-
ements penicillin and macrolides, that is, which is the
degree of the presence of penicillin and macrolides in
the set allergies.

3.3 Rules

In Milord II, a rule is composed of an identifier, a
premise (a conjunction of conditions), a conclusion,
and a truth-value. In the case of conditions contain-
ing variables, the language is provided with a set of
predefined predicates that apply on them to produce
as result intervals of truth values.

Premises of rules are conjunctions of elemental con-
ditions either in affirmative or in negative form. Con-
ditions can contain propositions directly.

For instance, for the fuzzy proposition presence of
creatinine defined above, we can say If presence
of creatinine then renal failure is definite. An-
other example using many-valued propositions is If

a penicillin can be administrated to a patient and
his situation is severe then it is very few possi-
ble to administrate ampicillin, in Milord II syn-
tax: If penicillin and severe then conclude
ampicillin is vf.

A numerical expression is composed by numbers, nu-
merical variables and arithmetic operations. For in-
stance, If respiratory frequency is greater than 30
breaths/minute then we can conclude that tachypnea
is definite.

We can build set expressions in a similar way as nu-
merical expressions. These expressions return de-
grees of inclusion, intersection and equality between
two fuzzy sets. For instance, If the patient has al-
lergic reaction to penicillin then he is also allergic to
cephalosporins and cabapenems. In this case allergic
to penicillin means that the set variable allergies has
intersection with the crisp set {penicillin}.

For an example of linguistic variable we can use the
previously defined linguistic variable state of white
blood cells to say: If state of white blood cells
is leukopenia then there are analytical evidence of
severity of pneumonia.

Conclusions of rules are simpler than conditions.
Conclusions may appear on affirmative or on neg-
ative form. Only many-valued propositions and set
variables can be used as conclusions in rules. In fact
we have seen examples of conclusions if the exam-
ples above. For instance the conclusion tachypnea
is definite is about a many-valued proposition and,
the patient has allergic reaction to cephalosporins and
cabapenems about a set variable.

3.4 Modular structure

The structural construct of Milord II is the mod-
ule. A program consists of a set of modules that
can recursively contain other modules, then forming
a hierarchy.

A module declaration can be clustered in the next
sets of components: hierarchy, interface, deductive
knowledge and control knowledge.

- Hierarchy: Is a set of submodule declarations.
- Interface: It has two components, the import and
the export interface. That is, which propositions
and variables may be asked to the user (import) and
those whose value is computed by the module (ex-
port).



- Deductive knowledge: It contains a dictionary dec-
laration, that is, the set of propositions and variables
(those belonging to the interface of the module and
other intermediate ones) and their attributes; a set
of rule declarations, that is, a set of propositional
weighted rules; and an inference system declaration,
that is, the local logic of the module.
- Control knowledge: It is expressed in a meta-
language which acts by reflection over the deductive
knowledge and the hierarchy of submodules.

The implementation of the conceptual scheme of Fig-
ure 1 is made by programming several Milord II
modules (about one hundred). It is not possible
here to explain in detail every module of the system,
thought, we will give some idea of their commonali-
ties by explaining groups of modules.

Pharmacological model modules These modules
contain the knowledge about antibiotics for the Te-
rap–IA domain. We represent each antibiotic as a
concept for which we declare to which pharmaco-
logical group it belongs; which is the administration
route of that antibiotic (oral or parenteral); the pos-
sible interactions with other drugs administrated to
the patient and which are the antibiotics with the
same activity.

For instance, erythromycin is an antibiotic that be-
longs to the group of macrolides, it interacts with
another drug, teophylline, and it has the same sensi-
bility than the antibiotic doxycycline. The adminis-
tration source of this antibiotic can be both: oral or
parenteral.

This information will be used by modules that rea-
son about antibiotics. Following the example above
it is not adequate to administrate erythromycin to
a patient already taking teophylline, it is better to
administrate an antibiotic without interaction with
teophylline, for instance, roxithromycin.

All the concepts above (antibiotics, pharmacologi-
cal groups of antibiotics, other drugs, administration
source) are declared into the pharmacological model
modules. Every propositions or variable declaration
contains relations with other propositions and vari-
ables, for instance, we declare that the antibiotic ery-
thromycin belongs to the group of macrolides.

Data acquisition modules These modules are the
responsible of gathering the patient data that the
expert has considered to be relevant for a correct
treatment determination. For instance the number of
leukocytes in the blood of the patient is an important
laboratory test data. It is useful to determine if there

is penicillin-resistant to pneumococci microorganism,
that is, whether penicillin is adequate to treat pneu-
mococci or not.

A data acquisition module usually deduces values for
concepts different from those acquired from the pa-
tient. For instance, one of them deduces penicillin-
resistant from the number of leukocytes (we consider
that there is penicillin-resistant when the number of
leukocytes is less that 5000 cells per a mm3.

Many concepts in the domain are vague. In some
cases quantitative data is translated into a qualita-
tive one by means of fuzzy sets. For instance, it is
easier for the expert to reason about the concept the
state of white blood cells is normal than the number
of leukocytes is 7000 cel/mm3. This qualitative ab-
straction allows the expert to say, for example, that
there is penicillin-resistance of pneumococci when the
state of white blood cells is leukopenia. You can find
examples of qualitative abstractions in Section 3.2.

Examples of this type of modules are: the related to
the clinical history of the patient; his physical exami-
nation; his laboratory test and chest radiograph data;
the possible complications (for instance, associated
infectious diseases as meningitis or arthritis) and the
severity of illness.

Sieve modules group These modules, indepen-
dently of the microorganism we want to treat, modify
the current antibiotic treatment by eliminating the
antibiotics belonging to concrete groups of antibi-
otics of the list of possible treatments for a patient.
For instance, it is not possible to administrate an-
tibiotics of the group fluoroquinolones to a pregnant
patient, because it would affect the fetus.

These modules use the pharmacological model mod-
ules and acquisition data modules to determine
which are the groups of antibiotics that is possible
to administrate to a given patient.

The modules of this group are: pregnancy; allergies;
renal failure; and genetic conditions. Each module
uses data about the patient (from the data acquisi-
tion modules) and exports groups of antibiotics. The
truth-value of every group of antibiotics is weighted
taking into account the adequacy of that group of
antibiotics for the given patient. For instance, if the
patient has allergic reaction to penicillin, the module
of allergies gives to the penicillin group the truth-
value false.

Operationally we start from a truth-value of definite
for each group of antibiotics, and then every sieve



module sequentially “sieves” them, keeping the same
truth-value if there is no reason against the group, or
decrementing it if there is. When the truth-value is
false we consider that the group has been eliminated
from the list of potential groups.

Microorganisms modules groups There are
twenty-two groups of microorganism modules, one
group for each microorganism treated by Terap–IA.
Each group of microorganism modules uses the out-
put obtained by the pharmacological model mod-
ules, data acquisition modules (specially those about
severity of the illness, adverse reactions and interac-
tions) and by the sieve modules group. They deduce
which antibiotics to use to treat a microorganism,
giving a truth-value for each antibiotic. The truth-
value of an antibiotic is obtained taking into account
the truth-value of its group (obtained by the sieve
modules) and data about the patient.

Given a diagnosis (one, two or three possible mi-
croorganisms) the system only executes the microor-
ganisms’ module groups corresponding to the mi-
croorganisms in the diagnosis.

Combination modules group These modules
combine the results of the microorganisms modules.
The modules providing input to this task export
truth-values for antibiotics. Truth-values represent
the adequacy of antibiotics for treating the microor-
ganisms. The results of these modules are weitghed
antibiotic combinations.

There are several criteria to combine the antibiotics,
implemented in these modules. The combinations
are of one (monotherapy), two or upmost three an-
tibiotics. Some of the criteria are:

- Combinations are never made with antibiotics be-
longing to the same group.
- Combinations are never made with antibiotics that
have the same sensibility, that is, antibiotics that
cover the same microorganisms.
- Combinations are never made with antibiotics that
have different administration route (oral or par-
enteral).
- Given the same adequacy (truth-value) we prefer a
monotherapy than a combination with two or three
antibiotics.

Sieve combinations modules group The com-
binations of antibiotics are “sieved” taking into ac-
count other criteria, as specificity or cost.

Finally, the system gives to the user the ordered set
of antibiotic combinations possible to administrate

to the concrete patient.

4 Conclusions and Results

We have presented the Terap–IA knowledge-based
system. The application takes into account the find-
ings of the patient, knowledge about antibiotics and
the diagnosis to find the best treatment. We also
have introduced Milord II as an appropriate tool
and language to develop knowledge-based systems4.

The expert has developed a partial validation of
the system contrasting real world cases of antibiotic
treatment of pneumonia with the answers of Terap–
IA. The treatment for each previous diagnosis has
been verified separately, producing hopeful results.

The final validation will be made by giving fifty real
world cases of pneumonia to four human experts and
Terap–IA, and comparing the results.

References

[1] J. Almirall et al. Incidence of community-
adquired pneumonia and chamydia pneumoniae
infection: a prospective multicentre study. Eur
Respir, 6:14–18, 1993.

[2] J. Puyol-Gruart, L. Godo, and C. Sierra. Spe-
cialisation calculus and communication. In-
ternational Journal of Approximate Reasoning
(IJAR), 18(1/2):107–130, 1998.

[3] J. Puyol-Gruart and C. Sierra. Milord II: a lan-
guage description. Mathware and Soft Comput-
ing, 4(3):299–338, 1997.

[4] Josep Puyol-Gruart. MILORD II: A Lan-
guage for Knowledge-Based Systems, volume 1 of
Monografies del IIIA. IIIA–CSIC, 1996. ISBN:
84–00–07499–8.

[5] A. Torres, J. Serra-Batlles, A. Ferrer, and
P. Jimenez. Severe community-adquired pneumo-
nia. etiology prognosis and treatment. Am Rev
Respir Dis, (144):312–318, 1991.

[6] A. Verdaguer. Pneumon–IA: Desenvolupa-
ment i validació d’un sistema expert d’ajuda

4This software is available for research and educational pur-
poses. You can find the last version and more information on
Milord II at http://www.iiia.csic.es/˜milord.



al diagnòstic mèdic. PhD thesis, Universitat
Autònoma de Barcelona, 1989.


