A Specialisation Calculus to improve Expert
Systems Communication *

Josep Puyol-Gruart, Lluis Godo, Carles Sierra

Institut d’Investigacid en Intel-ligéncia Artificial(IIIA)
Centre d’Estudis Avangats de Blanes (CSIC)
Camd de Santa Barbara, 17300 Blanes (Girona), Spain

Abstract. The motivation of this work is the im-
provement of the classical input/output expert sys-
tems behaviour. In an uncertain reasoning context
this behaviour consists of just getting certainty values
for propositions. Instead, the answer of an expert sys-
tem will be a set of formulas: a set of propositions and
a set of specialised rules containing unknown propo-
sitions in their left part. This type of behaviour is
much more informative than the classical one because
gives to users not only the answer to a query but all
the relevant information to improve the solution. A
family of propositional rule-based languages founded
on multiple-valued logics is presented and formalised.
The deductive system defined on top of it is based on a
Specialisation Inference Rule (SIR): (A1AAz2...ANA, —
P V), (A, V) F (A2 A... N A, — P, V"), where V,
V' and V" are uncertainty intervals. This inference
rule provides a way of obtaining rules containing un-
known conditions in their premise as the result of the
deductive process. The soundness and literal com-
pleteness of the deductive system are proved. The
implementation of this deductive calculus is based on
techniques of partial evaluation. Moreover, the spe-
cialisation mechanism provides an interesting way of
validating knowledge bases. Keywords: Partial Eval-
uation, Expert Systems, Multiple-valued Logic.

1 Introduction and Motivation

Looking at an Expert System (ES) as a blackboz, the
standard behaviour we can observe is as follows. The
user queries to the system whether a given proposition
can be deduced. If the system is able to deduce the
proposition, its certainty value is given back. Other-
wise the answer is unknown (open world assumption).

This behaviour is rather poor because the system
usually has much more information that could be use-
ful to the user, for instance:

*This research has been supported by the CICYT
TICO91- 0430 project TESEU and the Esprit Basic Research
Action number 3085 (DRUMS).

1. When the system is able to answer the user’s
query, the user might also be interested in know-
ing other deductive paths that would be useful
to improve the solution, or to know other con-
clusions that are deducible from the proposition
answered.

2. When the system is not able to answer a query,
it gives back the value unknown maybe because
the user did not provided enough information to
the system. Thus, the communication will be
much more informative if the system is able to
answer, not unknown, but with the information
the user should know to come up with a value for
the query.

All this hidden information can be used to bet-
ter modelise communication among human experts.
Looking carefully at how experts communicate their
knowledge and at their problem solving procedures, we
can find complex communication patterns. Sometimes
experts cannot reduce their interaction only to the
communication of certainty values for propositions.
For instance, in medical diagnosis, when experts com-
municate, they also need:

1. To condition their decisions. Suppose that
it is not known whether a patient is allergic to
penicillin. An expert considering the possibility
of giving penicillin as treatment would say: Peni-
cillin is a good treatment from a clinical point of
view provided that the patient has no allergy to
penicillin.

2. To give suggestions that must be consid-
ered with solutions. Experts usually give other
suggestions (antibiogram) that are related to the
solution (pneumococcus). For instance the expert
might say: Pneumococcus has been isolated in the
culture of sputum. In this case it is strongly sug-
gested to make an antibiogram to the patient.

3. To give conditioned suggestions to be con-
sidered together with decisions. Another ex-
ample of complex communication is the combi-
nation of the above two communication patterns:
Ciproflozacine is a good treatment, but if the pa-
tient is a woman on breast-feeding period she must
stop breast-feeding.

To model such communication protocols, we need
to extend the ES answering procedure, by allowing to
answer queries with sets of formulas (rules and propo-
sitions). We propose to do it by means of an Special-
ization Calculus of KBs.

Specialisation is based on the notion of partial eval-
uation expressed in the well known Kleene’s Theorem.
Partial evaluation algorithms have been intensively in
logic programming [9] [2] [4] [8] [5] mainly for efficiency
purposes. In this paper we propose the use of this
technique to improve the communication behavior of
ESs. With this purpose in section 2 we propose a par-
tial evaluation mechanism for rule bases. In section 3
we formalise an Specialisation Calculus. Finally a lit-
tle example and conclusions are presented in sections
4 and 5 respectively.

2 Proposal: Partial Evaluation in
Rule Bases with Uncertainty

In rule bases, deduction is mainly based on the modus
ponens inference rule:

AJA— B+B

This inference rule is only applicable when every con-
dition of the premise is satisfied, otherwise nothing
can be inferred. We will use partial evaluation to
extract the maximum information from incomplete
knowledge.

We base the partial evaluation in a rule base context
on the well known logical equivalence (AAB) — C =
A — (B — C) which leads to the following boolean
specialisation inference rule:

A ANB—CFB—C

The rule B — C'is called the specialisation of ANB —
C' with respect to the proposition A. Notice that in
the particular case of B =), we recover the usual
modus ponens rule.

In a more formal way we give the following defini-
tions.

Definition 1 (Rule Specialisation) Let R be a set
of rules and P a set of literals. We note rules as pairs,

r = (my, cr) where m, is the premise (a set of literals)
and ¢, is the conclusion (a literal). The rule speciali-
sation is defined as a function:

SR :RXxP—RxP

(T7 (Z)) ifp Q my
Sr (Tz p) = (Q)v CT) Zf my = {p}
((mr — {p},c),0) otherwise

Definition 2 (KB Specialisation) Let KB be a
set of knowledge bases. We note KBs as pairs kb =
(Rkb, Pxy) where Ryp is a set of rules and Py is a
set of propositions. KB specialisation is defined as a
function:

Sk : KB — KB

Sie((Bey — {r} +{r'}, Pov +{p'})), (%)
kb , otherwise

Sks(kb) = {

(*) if Peo # 0 and Ip € Pyp and Ir € Ry such that
Sr(r,p) = (',p') and 1" #r

In other words, the specialisation of a kb consists on
the exhaustive specialisation of its rules. Rules whose
conditions contain propositions with known values are
replaced by their specialisations. Rules that only have
one condition will be eliminated and a new proposition
will be added. This new proposition will be used again
to specialise the kb. The process will finish when the
kb has no rule containing on its conditions a known
proposition. This approach is different for instance
from the logic programming one used in [5]. There,
partial evaluation is goal driven, whereas here partial
evaluation is data driven.

In an uncertain reasoning context we propose to ex-
tend the above boolean specialisation inference rule as
follows:

Definition 3 (SIR) Given a proposition A with cer-
tainty value o, and a rule with certainty value p, then

(A,0),(ANB = C,p)F (B — C,p)
where p' = MP(a, p) is the new value of the rule.

Therefore we need to extend the previous definition
of the function Sz to allow the handling of certainty
values.

Definition 4 (Specialisation of Uncertain Rules)
Let R* be a set of weighted rules and P* a set of
weighted literals. We note weighted rules as pairs,

ISIR is parametric on the uncertainty propagation func-
tion MP (modus ponens), particular for each uncertainty
calculus.

r* = (r,ur) where r is a classical rule and u, is the
certainty value of r. And we note weighted literals as
pairs, p* = (p, up) where p is a classical literal and up
is the certainty value of p.

Sg:R"XP" - R xP"

(r, @? if p & mr
Sr(r',p) =9 @.p") if m. = {p}
(r*,0) otherwise

where 7 = (mr — {p}, cr, MP(up,u,)) and Pt =
(cry MP(up, ur)).

It is easy to extend (not included here) the classical
KB specialisation to an uncertain KB specialisation.

Now, the answer to a query can be considered as
a specialised kb: The specialised kb obtained from
kb = (R*, P*) where R" is the set of rules in deduc-
tive paths to and from the query. And P* is the set
of propositions defining a case.

3 Formalisation of a Specialisation
Calculus for Rule Bases

In this section we present the definition of a family of

multiple-valued logics with a deductive system based

on an specialisation inference rule. Some aspects of

these logics have been already described in [1]. Each

logic is determined by a particular algebra of truth-

values from a parametric family that is described next.
An algebra of truth-values is a finite algebra
=< Apn, Ny, T, IT > such that:

e The set of truth-values A, is a chain:
D= <ax<---<a,=1

where 0 and 1 are the booleans False and True
respectively.

e The negation operator N,, is an unary operation
defined as N,(a;) = an-i+1, the only one that
fulfills the following properties:

N1: if a < b then N,(a) > N,(b), Va,b € A,
N2: N2 = Id.
e The conjunction operation T is a binary operation
satisfying Va,b, c € Ay:
T1: T(a,b) =T(b,a)
T2: T(a,T(b,c)) =T(T(a,b),c)
T3: T(0,a) =0
T4: T(1,a) =a
T5: if a < b then T'(a,c) < T'(b,c) for all c

e The implication operator It is defined by resid-
uation with respect to T, i.e. Ir(a,b) = Max
{c € An|T(a,c) < b}, and satisfies the following
properties:

11: Ir(a,b) =1 if, and only if, a < b.
12: Ir(1,a) = a
13: Ir(a, Ir(b,¢)) = Ir(b, Ir(a,c))

4: If a < b, then Ir(a,c)
IT(C7 a) < IT(Cv b)

> Ir(b,c) and

15: I (T(a,b), c) = Ir(a, I7 (b, c))

As it is easy to notice from the above definition,
any of such truth-values algebras is completely deter-
mined as soon as the set of truth-values A, and the
conjunction operator T' are determined. So, varying
this two parameters we obtain a family of multiple-
valued logics, including, among others, Kleene’s and
Lukasiewicz’s logics.

In the following description of the language, the se-
mantics and the deduction system (specialisation cal-
culus) of a particular logic, we suposse fixed an alge-
bra A%. This calculus is proved to be sound and also
complete if constrained to the case of literals [3].

3.1 Syntax

A propositional language £, = (4,,%,C,S,) is de-
fined by:

e A signature X consisting on a set of atomic sym-
bols plus true and false.

e A set of Connectives: C = {—,A, —}

o A set of Sentences: S,, = W-Literals U W-Rules

Sentences are pairs of classical-like proposi-
tional sentences and intervals of truth-values.
The classical-like propositional sentences are re-
stricted to be literals or rules. Thus, the sentences
of the language are of the following types:

W-Literals: {(p,V) | p is a literal and V is an
interval of truth-values of A,}

W-Rules: {(p1 Ap2 A+ Apn — ¢, V) | pi and ¢
are literals, V' is an interval of truth-values of
An, and Vi, j(p; # pj, pi # —pj, q # p;) and

V = [a, 1] where a > 0}

3.2 Semantics

e Models M, are defined by valuations p, i.e. map-
pings from the firsts components of sentences to
A, such that:

p(=p) = Nu(p(p))

p(p1 A p2) = T(p(p1), p(p2))
p(p — q) = Ir(p(p), p(q))
p(true) =1

p(false) =0

e The Satisfaction Relation between models and
sentences is defined by:

M, = (p, V) iff p(p) €V

It is easy to check that the following properties
hold for the corresponding semantical entailment.

SR1:(p,V) | (=p,W) & N;(V) C W

SR2: (p,V1),(p,V2) E (0, W) & VinVa C W
SR3: (pi,Vi),(pi A Apn — ¢, V) E (1 A+ A
Dic1ADit1 A+ App — q, W) & MP(V;, V) C W
where N and M Pj are the point-wise extensions

2of N,, and M Pr respectively. M Pr is a function
from A, to the set of intervals of A,, defined as:

0 if @ and b

are inconsistent >
[a,1] ifb=1
T(a,b) otherwise

MPT(CL, b) =

This is a functional expression of the multiple-
valued version of the classical modus ponens rule,
i.e. MPr(a,b) is the set of solutions for p(g) in
the equation system: {p(p) = a;p(p — q) = b}.

3.3 Specialisation Calculus

The specialisation calculus is based on:

1. The following axioms:
AS1: (=—p —p,[1,1])
AS2: (p,[0,1])

Al: (true,[1,1])
A2: (false,[0,0])

2Actually, M Py has to be defined to give the minimal
interval containing the point-wise extension.
3a and b are inconsistent if there exists no ¢ such that

I(a,c) =b.

2. The following inference rules:
Weakening: (p, V1) F (p, V2) where V4 C V;
Not-introduction: (p, V) F (-p, N;(V))
Composition: (p, V1), (p, Vg) F(p, Vi NVa)

SIR: (pi,vi),(}h/\"'/\pz /\Pn—WIaV)F
(p1 A ADic1 ADig1 A+ App _)Q7MPT (Vi, Vi)

From properties SR1, SR2 and SR3 of the semanti-
cal entailment, it is easy to check that this deductive
system is sound.

Theorem 1 (Soundness) Let A be a sentence and
I a set of sentences. ThenT'+ A implies T = A

On the other hand, it is straightforward to see that
our deductive system is not complete. For instance,
we have {(p — ¢,1),(¢ — r,1)} E (p — r,1) but
{lp — q,1),(¢g — r, 1)} ¥ (p — r,1). However, it
can be proved that the system is complete for literal
deduction, i.e., any literal that is satisfactible from a
set of formulas is deducible in our deductive system.

Theorem 2 (Literal Completeness) Let I' be a
set of sentences and (p,V) a literal. Then T = (p, V)
implies T+ (p, V).

4 Example

Milord II is a modular language for knowledge engi-
neering that manages uncertainty and reflection. It
includes an inference engine that implements the spe-
cialisation calculus described in this paper [7] [6]. In
this section an example will be presented. This exam-
ple is part of a real application for pneumonia treat-
ment written in Milord II, named Terap-IA. When
writting the example we will use some extensions of
the language described in section 3.

The set of truth-values used is A, =(impossi-
ble, slightly-possible, possible, very-possible, definite)
where impossible = 0 and definite = 1.

Consider the following rules for pneumonia treat-
ment +:

RO (H-Influenzae — Quinolones, possible)

R1 (female A young A pregnant A Legionella-sp —
Co-trimoxazole, slightly-possible)

R2 (female A young A breast-feeding A
>(Quinolones, possible)®
— stop-breast-feeding, definite)

R3 (breast-feeding A Co-trimoxazole —
stop-breast-feeding, definite)

4In this rules H-Influenzae and Legionella-sp are possi-
ble diagnosis, and Quinolones and Co-trimozazole are an-
tibiotics. Also, we have simplified the intervals syntax, as
it is done in Milord II. Intervals of the type [a, 1] appearing
as values of rules and propositions are written just as a.

Consider the case of a young female patient with
a diagnosis of H-Influenzae. The propositions repre-
senting this case are:

(H-Influenzae, very-possible)
(female, definite)
(young, definite)

If we specialise the kb composed by the rules and the
propositions above presented, it is easy to see that the
final set of rules obtained is:

R1’ (pregnant A Legionella-sp —
Co-trimoxazole, slightly-possible)
R2’ (breast-feeding — stop-breast-feeding, definite)
R3 (breast-feeding A Co-trimoxazole —
stop-breast-feeding, definite)

and the the final set of propositions is.

(H-Influenzae, definite)
(female, definite)
(young, definite)
(Quinolones, possible)

Then, we can interpret this result as a new kb spe-
cialised for a particular patient. On the other hand,
for the same example of specialisation we can see an
example of communication. Suppose that the user
queries the system for a certainty value for Quinolones.

Then, the system shows the propositions and rules
related to the query Quinolones. That is,

(Quinolones, possible)
R1” (breast-feeding — stop-breast-feeding, definite)

In natural language the answer would be: For the
case of a H. Influenzae diagnosis for a young female,
quinolones is possible, and if she is on breast-feeding
period, she has to stop breast-feeding.

5 Discussion

In this paper a new communication protocol for ES’s is
presented. It is based on an inference calculus contain-
ing an Specialisation Inference Rule in the paradigm
of multiple-valued logics. This specialisation calculus
is implemented using techniques of partial evaluation,
and it is shown to be sound and complete for literals.

57> is a boolean metapredicate of Milord II such that
”> (p,a)” is true if and only if (p, [b, ¢]) has been deduced
with b > a.

The communication so obtained is much more coop-
erative with users than the classical one: The answer
to a query is a set of specialised rules and propositions.

This specialisation calculus can also be used to make
validation of kbs. Consider that the expert has a gen-
eral kb for pneumonia treatment, and that he wants
to check the kb in a restricted context such as: women
with gramnegative rods. The specialisation mecha-
nism allows to obtain a new kb that is a kb for pneu-
monia treatment in the case of a woman with gram-
negative rods. The expert should agree with the be-
haviour of the new kb so obtained because it is a spe-
cialisation of its original kb, otherwise he must revise
it. To check the behaviour of this reduced kb he can
apply any classical method, but to a much more re-
duced kb. This method can also be understood as a
way of modularisation, by contexts, of flat and non-
structured kbs. This methodology gives then a more
comprehensive and systematic way of validating kbs
than the standard methods.

References

[1] J. Agusti, J. Esteva, P. Garcia, L. Godo, and
C. Sierra. Combining multiple-valued logics in mod-
ular expert systems. In Proceedings 7th Conference
on Uncertainty in Al 1991.

[2] J. Gallagher. Transforming logic programming by
specialising interpreters. In Proceedings ECAI’86,
pages 109-122, 1986.

[3] L. Godo, J. Puyol, and C. Sierra. A specialisa-
tion calculus to improve expert system communica-
tion(long paper). Technical Report 92/8, Institut
d’'Investigacié en Intel.ligéncia Artificial(IITA), 1992.

[4] H. J. Komorowski. A specification of an abstract
Prolog machine and its application to partial evalua-
tion. PhD thesis, Linkoping University, 1981.

[5] J. W. Lloyd and J. C. Shepherson. Partial eval-
uation in logic programming. Logic Programming,
11(3/4):217-242, October/November 1991.

[6] J. Puyol, C. Sierra, and J. Agusti. Partial evalua-
tion in MILORD II: A language for knowledge engi-
neering. In Proceedings Europ-IA’91, pages 193-207,
1991.

[7] C. Sierra and J. Agusti. Colapses: Towards a
methodology and a language for knowledge engineer-
ing. In Proceedings AVIGNON’91, pages 407-423,
1991.

[8] A. Takeuchi and K. Furukawa. Partial evaluation
of prolog programs and its application to meta pro-
gramming. In Information Processing 86, 1986.

[9] R. Venken. A prolog meta-interpreter for par-
tial evaluation and its application to source trans-

formation and query-optimisation. In Proceedings
ECAI’84, pages 91-100, 1984.

