Defining and combining Multiple-valued L ogics
for Knowledge-based Systems

José Antonio Reyes Francesc Esteva

Josep Puyol-Gruart

Artificia Intelligence Research Institute, [11A
Spanish Council for Scientific Research, CSIC
Campus UAB. 08193 Bellaterra, Catalonia, Spain
E-mail : {reyes, esteva, puyol} @iiia.csic.es

Abstract

Multiple-valued logics are useful for dealing with
uncertainty and imprecision in knowledge-based
systems. In this paper, we present a tool that assist
users in the declaration of such logics and in the
declaration of the communication mechanism between
two of these different logics by preserving inference.

Keywords: uncertain reasoning,
logics, knowledge-based systems.

multiple-valued

1 Introduction

The management of uncertainty and imprecision in
knowledge-based systems becomes essential to model
many real problems. Multiple-valued logics (MV-
Logics) have been proved to be a possible way to
manage them in knowledge-based systems [3; 5; 6;
10].

The aim of this work is concerned with presenting a
tool which makes automatic the process of defining
and communicating finite MV-Logics. This tool has
been designed to be incorporated to the shell Milord
Il [7], an environment for developing knowledge-
based systems, although it can be used in a more
extensive framework. In section 2, we will introduce
the concept of algebra of truth-values which defines a
parametric family of MV-logics, as well as the syntax
and the semantic permitted. Next, the extension of that
algebra to an algebra of intervals of truth-values is
described as a method for dealing with imprecision.
Section 3 is devoted to establish the essentia
requirements needed to preserve inference in different
ways when we communicate different logics. We give
existence conditions for every requirement and
identify different sorts of renaming functions between
logics. In section 4, we describe the tool and its main
features by means of an example. Finally, in section 5
we outline the conclusions of this work.

2 Defining MV-Logics

In this section we will see which features are necessary
to define a suitable MV-Logic. Next, we will show
how this process has been automated and which are
the achieved results.

We consider a restricted family of finite MV-logics
expressive enough to model the uncertain reasoning
used in many rule-based systems [1]. Each logic is
determined by a particular algebra of truth-values from
this family.

An Algebra o truth values is a finite algebra Ay =
{An.,0, 1, N,, T, I7} such that :

1. The ordered set of truth-values A, is a chain of n
elements:
O=g<ayy<..<a,1=1

where 0 and 1 are the Boolean False and True
respectively, and each element g is a linguistic
term. For example As = {false, unlikely, may_be,
likely, true}.

2. The negation operator N, is the unary operation
defined as
Nn(@) = ansi (1)

the only one that fulfills the following properties :

N1: If a <bthenN,(a) >N,(b), [Ja,b [JA,.
N2: N?=Id.

3. The conjunction operation T is any binary
operation such that the following properties hold [7
ab,c OA,:

T1: T(a,b) = T(b,a)

T2: T(a,T(b,c)) = T(T(a,b),c)

T3:T(0@)=0

T4:T(la)=a

T5: If a<bthen T(a,c) < T(b,c) for al c

See an example of conjunction operator in Table 1.

Ts(x,y) || false [unlikely | may be | likely true
false false false false false false
unlikely || false | unlikely | unlikely [unlikely | unlikely
may be| false | unlikey | may be [may be | may be
likely false | unlikely | may_be | may be | likely
true false | unlikely | may be | likely true

Table 1: Ts conjunction operation.

4. The implication operation Iy is defined by
residuation withresped to T, i.e.

I+(a,b) = Max {c A, | T(a,c) =b} (2

Therefore, to establish an algebra of truth-valuesiit is
only necessary to determine the set of truth-values A,
more adequate for the mncerning problem, and define
a onjunction operator T necessry to combine and
propagate uncertainty when making inference

Forthwith, we introduce the syntax of our MV-
Logic. The sentences of the language ae pairs (p, V),
where: p is a well formed-formula , obtained in the
usua way from a denumerable set of propasitional
symbals and the cmnnedives ‘nat’ (=),'and’ () and
‘detachment’ (-); and Visaninterval of truth-values.

Likewise, semantic is evaluated in an algebra of
truth-values The semantic interpretation is given by
the followings signification :

* Models are defined by valuations, i.e. mappings
pfrom the first components of sentences

(propositional symbals) to A, provided that :

P (= p)= Nu(p(p)
P (p1 Ip2) = T(p (P2), P (P2))
p(p-a)=Ilr(p(E,p (@)

* The Satisfaction Relation between models and
sentencesis defined by :

M, E (p, V) if, and only if, p (p) OV,
where M, stands for the model defined by a
valuation p.

Therefore, from now on, it is required that the logic
systems used by applications (axioms and inference
rules) must be sound with respect to the semantic
above defined, in order to be considered as an
appropriate MV-Logic. The inference rule of these
logics is Modus Ponens, that gives from (p-q, V) and
(p, V') a sentence (g, V"). In fact, modus ponens
evaluates V" from V and V' (See [9] for a theoretical
study of modus ponens, and [6] for its application to
expert systems).

After the definition of algebra of truth-values we
extend it to an algebra of intervals of truth-values, [4].

We have some motivations to do this extension. The
first one is given as consequence of imprecision,
because we do not know a precise value but an interval
of truth-values. A second reason is related with the
modus ponens operator which requires the use of
intervals to chain rules. And as we will see in the next
section, it is needed to make possible mappings
between different logics.

Given an algebra of truth-values A= <A, ,N,, T >,
we will consider the set of intervals of A, as.

Int(A,) = {[ab] |ab A} (3)

being [a,b] = {x J A, | a <x < b}.As an example, the
set of intervals of achan Ay, = {0 <a<b <1} is
Int(A,) = {[0.a], [0,0], [0,1], [a,b], [a,1], [b,1], [0,0],
[a,a],[bb],[1,1]}.

In the same way, we can think about extend also the
algebra operators for dealing appropriately with
intervals. The extensions to intervals of the above
operators are: N, ([a,b]) = [Na(b), Ny(@)], T (ab],
[cd]) = [T(ac), T(b,d)].

2.1 Conjunction Generation

The search for a conjunction operator is an important
task in an algebra declaration as we can deduce from
the definition of algebra of truth-values. Next we shall
discuss how this question has been treated and how
this process has been automated.

Throughout this work we represent the conjunction
operator as a matrix, where each element is a variable.
Then, for amatrix M of dimension n, we will have:

(Moo Vou Von-1 [

M = S\/:l,o V:1,1 V1;n—1 E 4
O - : - L
Wn-10 Vn-11 Vn-1n-1C

The mentioned algebra requirements (T1-T5) are
properties that a conjunction operator must fit. We will
try to assign agreeable values for the variables
according to these properties.

These requirements act as constraints over the set of
possible solutions. Satisfaction of each property or
congtraint, causes the following guidelines which
influence the conjunction search generation problem :

» Commutativity allows usto consider only the set of
variablesV = {Vij,i =j}.

» Existence of absorbent and neutral elements
implies to fix the values for variables Vo,jand
Vj,n -1.

e Monotonicity implies rows and columns non-
decreasing.

« Associativity test is expensive in time and memory,
but taking into account that T(a;,&) < min(a;,a) and
S0, each sub-matrix

%’o,o Vo,iE
Mi,i = 0 oL 5)
[Vio Vi

is closed with respect to the conjunction operator.
In this way, the full matrix will be associative if al
its sub-matrices are so. This property lets us check
associativity in an incremental way each time that a
valueisassigned to a variable of the kind of Vi,i .

However, the number of obtained operators applying
these constraints is significantly high. In particular for
n > 5 (see column A in Table 2), we obtain more than
22 matrices. This is why we can consider two new
options: introducing some new desirable constraints,
as well as knowing severa values of the matrix to
reduce the search space to be explored.

Two types of additional, and optional, constraints are
discussed. First, we can think that given two truth-
values different than O (false), it does not seem
reasonable that their conjunction may be 0. This is
achieved by the property :

T6 Strictness: T(ay,a) #0, foral i, j #0

In the infinite case some continuity is required. In the
finite case we aso want that the result of the
conjunction of near values has to be not very distant.
This property is defined as follows :

T7 a -Smoothness. given a [M, T is said to
satisfy a-smoothness property if T(a,a) = a, and
T(&-1,3) = &, thenk-p<a

Satisfaction of these new properties (T6,T7) have the
following consequences in the conjunction search
generation problem :

* Strictness. the generation of strict matrices of
dimension n is equivalent to generate non-strict
matrices of dimension n-1.

» a-Smoothness: it reduces the set of possible values
for a variable taking into account column and row
adjacency.

Now we consider: general constraints (T1-T5),
which provide standard behavior of a conjunction
operator; and additional constraints (T6,T7), that add
desirable properties to a conjunction operator and
decrease the number of possible solutions.

As an additional option we can pre-settled some
variables values for the conjunction matrix, so it is

possible to settle the more adequate behavior to the
concerning problem.

Since now, we have stated the problem of define an
adequate conjunction operator. In the follow, we will
present how this problem had been solved.

2.2 Generation asa CSP Problem

There exist some options when we define a
conjunction operator : it is possible to give a full
matrix that will be checked to assure it as a
conjunction operator ; it is also possible to give a
partial matrix with some pre-settled values that will be
whole completed ; and finaly, if it is required by
generating all the matrices.

The generation of operators that satisfy a determinate
set of properties can be formulated as a classic CSP
(Constraint Satisfaction Problem) :

e LetV={Vy, .., V,1} beaset of variables.

e LetD ={Dy,..., Dp1} be aset of the corresponding
discrete and finite domains (in general Di#zD; if
i#]), where variables take val ues.

eLet C={Cij | 0<i,j <ml} be aset of binary
congtraints. These constraints express the
relationship that the different variables must hold
among them for their valuesto be compatible.

The problem consists of finding a value assignment
{Voo, ..., Vn-1|va-1} such that for every 0 <i,j <
m1, Ci,j holds. Then, one may be interested in
finding all the solutions to the problem, or just one, or
the total number of solutions or if there really exists a
solution.

From the concluded search influences analyzing the
requirements (T 1-T7) and the additional option of pre-
settled some values, the CSP problem can be
reformulated according to these new domains:

« Initially, we have a set of variables with settled
values. This set is composed by the values
concerning the variables: Vo,j= 0, Vjn-1= &
(T3,T4) and the ones pre-settled by the user.

* We only take into account the set of variables V =
{Vi,j |i=jwithij#0andi,j#n-1} (T1).

* The initial domain for the considered variables is
Di,j ={ay,...,a} (T5).

 This initial domain can be modified according to
strictness and/or a-smoothness properties (T6,T7).
If strictnessis applied, then the ay value is rejected.
If a-smoothness is applied, the domain length will
have a maximum of a + 1 elements, keeping the
last a + 1 elements of the set if this number is
greater.

We solved this sach generation problem with a
depth-first algorithm applying badtradking and look-
ahead. Badktradking reeds two stacks: one to keep the
generated matrices and the other to keep the values
that remains unassigned for ead variable. The
algorithm is briefly shown below. The generated
solution results, taking into acount T1-T7, are shown
in Table 2.

n A B

a=2| a=3]1a=1| a=2 | a=3

3 2 1 2 2 2 1 1 1

4 6 2 5 6 6 2 2 2

5 22 6 13 [21| 22 5 6 6

6 94 |1 22| 38| 78 | 93| 13 | 21 | 22

7 |451)| 94 |1 118 | 306 | 422 | 38 | 78 | 93
8 |2386] 451 | 395 (1274|2002 118 | 306 | 422
O - | 238 1404 395 | 1274 | 2002

Table 2: Matrices per number of terms.

A:T1-T5 C:T1-T5and T7
B:T1-T6 D:T1-T7

1) Initialization:
The variables with settled values are assgned and
the rest will have an urdefined value.
The processorder for the variablesis defined.
The stacks are empty.

2) Variable sdledion:
The airrent matrix is pushed upon the matrices
stack.
A variableis chosen as the aurrent one.
If it is apre-settled value, go to step 2 ; otherwise
al its posdble values are seleded.
If there ae not more variables, go to step 5.

3) Valueseledion:
The aurrent variable takes on a given value.
The rest of possble values are pushed upon the
values dack..

4) Test:
Check the satisfadion of all the mnstraints on the
seleded variable.
If all these cnstraints are satisfied, go to step 2 ;
otherwise go to step 3.

5) Sdution:
Each assgnment passing the test is regarded as a
solution.

6) Backtracking:
The aurrent matrix is popped out of the matrix
stack.
The aurrent variable is popped aut of the other
stadk with all unassigned values.
If there ae unassigned values left, go badk to
step 2with ead one.
If the stadks are empty, then stop.

Now we know how to define a logic and how we
suggest to solve and automate this process In the next
sedion we will see how to communicate different
logics and how to preserve cetain inference in this
process

3 Combining L ogics

We can dedare different logics by varying the set of
truth-values (linguistic terms) and the @njunction
operator. That depends of how the expert will ded
with urcertainty in ead problem.

When two dfferent logics need to exchange
information, it is necessary some mechanism of
trandation of the linguistic terms to make the
communicdion between those logics compatible. At
such communication, we want to preserve the
inference of each logic, but as occursin red life, it is
not always posdble to transmit information with
absolutely predsion. This loss of information can be
represented with an interval, and as a cnsequence, we
need to extend the dgebra of truth-valuesto an algebra
of intervals of truth-values. Hence we map values of
an algebrainto intervals of the other.

Let's take alook to which requirements we need in
order to map the language of a logic into another one
when they require to exchange information [2].

3.1 Mappingsbetween MV-Logics

Let (L ,F) and (L’,F’) be two logics, L and L’

standing for the languages, + and ' for the
entailment relations defined on L and L' respedively.
To establish a crrespondence between baoth logics, a
mappng H: L [J - L' is neaded. Next, we will

analyze some natural requirements for the mapping H
with resped to the entailment systems - and F’. We
propose that at least one of the following three
requirements should be fulfilled by the mapping H in
order to ensure a consistent communication.
Henceforth I” and e will denote aset of sentencesand a
sentence of L respectively. A map H is sid to be a
forward conservative map when,

RQ.L If I e then H(NF H(e)

For every sentence e, deducible from a set of
sentences I, its corresponding sentence, H(e), will also
be deducible from the rresponding sentences of
H(I).

A map fulfilling this saond requirement is said to be
abackward conservativemap :

RQ.2. If H(NF H(e),then e

This is the inverse requirement of RQ.1. Hence if a
fad is not deducible from I, then its corresponding
faa from H(I") won't be deducible dther. Nevertheless
I edoesnot imply H(N F’ H(e).

Conditions RQ.1 and RQ.2, which are very strong,
can sometimes be weakened in the uncertainty
reasoning framework. Formally, this can be expressd
by the third and last requirement :

RQ.3. If H(NF' €, then there exists e such that
r~eandHEEF €

This requirement assures that every sentence
deducible from H(/") must be in agreement with what
can be deduced from . This requirement is dightly
different from RQ.2, in the sense that it is not
necessary that € is an exad trandation of a deducible
sentence e from I, but only something deducible from
such a trangdlation. In the framework of logics for
uncertainty management, € is interpreted as a weaker
form of e, i.e. a sentence expresing more uncertainty
than e. We will cdl it aweak conservative map.

Now we will consider the problem of finding
inference preserving correspondences between two
logicsA=<A,,N,, T>andB=<B,,N,/, T>. We
are interested in mapping the entailment system
(La, F4) into the entailment system (Lg, F3g), by means
of renaming functions between the rresponding
linguistic term sets. This means that we will only
consider those mappings tranglating sentences from L,
to L that just involve trandations of truth-values, i.e.
any mapping H: La [J — Lg will be defined as H(e,V)
= (e,h(V)), where h trandates subsets of values of A,
into subsets of values of B, and e (a well-formed
formula) remains invariant.

3.2 Algebra Morphisms

Asit has arealy been noted, to establish conservative
communicaions, it is necessary to consider what kind
of relation between the uncertainty logics is required.
In [2], we @an find the necessary and/or sufficient
conditions for amapping h: A, [J - Int(By,) to satisfy
these requirements. From this analysis, we deduce the
foll owing relationships between the conditi ons needed
to satisfy every requirement (seeFigure 2) :

%W(T(Vl,VZ)) 0T (h(V1),h(V2))
RQL < [0 h(N(V)) =N (h(V)
H h(v1nV2) = h(V1) n h(v2)

%W(T(Vl,VZ)) O T (h(V1),h(V2))
RQ2 U [0 h(NV) = N (h(V)) []
H hvy o h(V2) oviove H

O

(T(VLV2)) O T (h(V1),h(v2))
h(N(V)) = N’ (h(V))

Figure 2 : Requirements conditions.

We define mappings from elements of A, into
intervals of B, but sometimes it is possble to find
mappings that trandate an element of A, into an
interval [b;, b] of By, (it can be dealy consider as the
element by). In this case, requirement RQ.3 is stisfied
and the mapping is a morphism between the
corresponding algebras. As a particular case, if a map
fulfill RQ.1 and RQ.2, we have not only the morphism
conditions, but a one-to-one gplication, that is, an
injedive function cadled monamorphism. But we can
not always find these kind of mappings, so in the cae
of amap involving intervals of truth-values, we named
it aquasi-morphism.

We ae mainly interested in monamorphisms becaise
they embed A, into By, and because they are order
preserving mappings (it is eguivalent to a
communicaion without any loase of information).
Then, we ae interested in morphisms, which
acomplish the dgebra operations (it is a transmisson
of information fulfilling the required properties).
Finaly, becaise of the strong conditions morphisms
and monamorphisms must satisfy, it is not aways
posdsble to find these kind of renaming functions,
guasi-morphisms can be useful thanks to the alditional
freedlom of map truth-values of an algebra into
intervals of the other (we dlow certain loose of
information).

3.3 Renaming Algorithm

Before sedng the process to find these dgebra
morphisms, let us part from the previously well-known
negation operation. For a given set of truth-values A,
there exists only one negation N,,, and it is defined by
Nh(&) = ani1. Then, we can partitioned this st into
threesubsets:

« the set of negative dements N, = {x | x <N,(X)}
« the set of fixed elements F,, = {x | x = N,(X)}
« the set of positive dements P, = {x | x > Nx(X)}

beingthe subsets: F, = {ax}, N, ={a; | | <k}, P, = {&
|i>k}ifn=2k+1;and F,= O,N,={a | i <k} and
Po={a|i=k} if n=2k

In the same way, we car do the same with a set By,

obtaining N*m , F;and P:n for the cae of working with
intervals. Then, the renaming algorithmis asfollows:
1) Initialization :
Obtain the subsets N, F,,, N*m and F:n.
2) Maps Generation :
Generate dl the maps h,: N, O F, O > N*m O
F;such that :
a hi(0)=0.
b) hy(Fn) O F,.
c) x<yimpliesh;(x) # hy (y), where x, y [J A,
and hy (X), hy (y) O Int(By,).

3) Map extension :
Extend each mapping h; with resped to the
negation operation defining the morphismh as:

D]]_(X)y

NG (R (N, (), if X DOP, .

if xON, OF,,.
(6)

4) Conjunction checking :
Check which ones are cmpatible with the
conjunction operators T and T'.

5) Renaming checking :
Finaly, we dheck which maps h are morphisms,
monomorphisms or quasi-morphism.

As an example, consider two logics dedared with the
sets of truth-values A; and Bs, and with the conjunction
operations TA7 and TB5 (defined in Tables 1 and 3

respedively).

A; = {impos, few_p, dli_p, possib, quite_p, very_p, sure}
Bs = {false, unlikely, may_be, likely, true}

First, we obtain the initial subsets Ns, Fs, N, and F, :

N5 = {false, unlikely}

Fs = {may_be}

N; = {impos, few_p, di_p, possib, [impos, few_p], [impos,
di_p], [impos, possib], [few_p, di_p], [few_p, possib],
[sli_p, possib] }

F; = {possib, [few_p, very_p], [di_p, quite_p], [impos,
surel}

impos | few p | di_p | possib |quite p|very p| sure

impos |{ impos | impos | impos [impos | impos | impos [impos

few p || impos | few_p | few p | few p | few p | few p | few p

di_p |[impos|fewp| di_p | di_p | di_p | di_p | di_p

possib || impos | few_p | dli_p | possib | possb | possib | possib

quite_p|| impos | few_p | dli_p | possib |quite_p|quite p|quite p

very plf impos | few p [dli_p | possib [quite p|very p|very p

sure || impos | few p | dli_p | possib |quite p|very p| sure

Table 3: Tg, conjunction operation.

And following the &ove dgorithm schema, we @n
find several mappings between both logics. There ae
here two mappings that are examples of those that hold
the last requirement RQ.3 :

[False — impos [false — impos

Emlikely - [impos, few_ p] Emlikely = [few_p,di_p]

[fnay_be - [few_p,very_p] [may_be - possib

[likely - [very_ p,sure] [likely — [quite_ p,very_ p]
rue - sure rue - sure

When ending the generation process the list of
inference preserving mappings is presented to the user
inthisway :

1) First, we offer the existent monomorphisms

considered as one-to-one morphisms.

2) Next, we show which morphisms are between

both algebras, if any.

3) Findly, we display the list of generated quasi-

morphisms.

Due to the strong conditions monomorphisms and
morphisms must fit, it is not always possble to find
them. However, it is very possble that the renaming
generation produces alarge list of quasi-morphisms, so
the posshility of giving an ordered list of quasi-
morphisms to aid users in their selection may be
considered. Note that in the cae of morphisms, al the
renaming mappings have the same evaluation, hence
the seledion isleft to the user' scriteria

For the purpose of producing an ordered list of
guasi-morphisms, we nsider a weigh among the
cadina c of the set of terms which have an atomic
image (that is, an interval with the form [& , a]) and
the length L of the remainder of intervals (number of
truth-values included in thisinterval).

Given two chains A, and B,, we will generate
mappings between A, and the set of intervals Int(B,).
In order to oktain an evaluation for every map, we an
use the foll owing empiricd function :

n

L.

[y

n= , 1sLism,1=<c=<n (7)

M S
Ne)

where L; is the length of the interval i and ¢ is the
number of points which have an atomic image. Then,
for every mapping we obtain avalue n, such that :

(n-2)m+2

2

This method poduces an ordered list of quasi-
morphisms that let user to simplify the selection.

User is dso able to establish the behavior that can
take the generated maps defining a partid map
between bath algebras. This definition must satisfy the
set of requirements suggested previoudly in order to be
a negation morphism. That is, our partial map must
acomplish the next points:

l<ns<

1) It must be anon-deaeasing function.

2) If our map involves the truth-value ag , its image
must be the truth-value by . For instance, in the
above example any map must fit h(false) =
impossible. Therefore, to be a negation
morphism, it is the same for the cae of truth-
value a, 1, o it isrequired that h(true) = sure.

3) If our map implies the fixed element of the first
chain A, , we must give & its image an element

belonging to the set of fixed elements F:n. In the
above example, a map of this type must fit
h(may be) [{impos, few p, di_p, possb,
[impos, few_p], [impos, di_p], [impos, possib],
[few_p, di_p], [few_p, possib], [dli_p, possib] }.

When we have defined our partial map (or total, or
none), a list of renaming functions fulfilling these
defined charaderistics will be generated.

Now we know how to dedare aMV-logic and how
to establish a nservative cmmunication between
two of these logics. In the following sedion we will
present the interadive implemented tool to define and
combine MV-logics.

4 The QMORPH Tool

QVORPH [8] is a tod that allows users to define and
combine MV-logics. Two dfferent interfaces have
been developed : a graphicd interface for the UNIX
operative system using Tcl/Tk padkages, running under
the X-Windows environment and developed on Sun
maahines; and a generic text mode interfaceperformed
in Common Lisp.
In the present, this tod is attached to Milord 11, a
spedfic expert system buil ding environment, as an aid
too to asdst experts when developing moduar
applications.

In this ®dion, we illustrate the use of QVIORPH
throughout the use of a pradicd example in which we

try to find existing morphisms between two MV-logics
(as it include the particular case of alogic definition).
For this purpose, we will make use of the most
friendly graphicd interface

We @nsider the same example of sedion 3.3. Let us
suppose we neal to establish a communicaion
between the logic A = <As, N5, Ts> (belonging to the
Origin Module or O-Module) and B = <B;, N, T>
(belonging to the Image Module or I-Modul€). This
schemais gown if Figure 3.

Origin Module Image Modue

A=<As, N5, T5> B=<B7, N, T>

A\ 4

Figure 3 : Communicdion example.

Initialy, it is mandatory to dedare the truth-value
sets of Origin and Image modues. Besides, user has to
dedare the T operation of the Origin Module for
avoiding a cmputational explosion.

First of all, user must fix the sets of linguistic terms
that settled bah logics. For this purpose, it is
necessary to dedde how many linguistic terms have
the logics (see Figure 4). Following aur example , we
must enter 5 and 7 terms for the Origin and Image
logic respedively.

(-] Dimension Entry

Enter Algehra’s Truth-Yalue
Dimensions:

0-Module Truth-Values Dimension: |
I-Module Truth-Values Dimension: |

OK Help

Figure 4: Entrying Algebra's Dimensions.

Next step consists in introducing the name of the
terms for ead logic see (Figure 5). If user does not
consider necessary to name the terms, they will be
generated automaticaly. To dedare the logics A and
B, we may enter here {false, unlikely, may be, likely,
true} and {impos, few_p, di_p, possib, quite p, very p,
sure} respedively.

v § Labels Entry

Entry Algebra’s Truth- Value Sets:

0-Module Truth-Values: | | | |

I-Morule Truth-vawes: | | | |

oK | Help

Figure 5: Entrying Truth-Values Sets.

Following, it is needed to declare the conjunction
operator that A uses to combine and propagate the
linguistic terms when making inference. User can
choose a T function depending on the meaning he
wants give to the conjunction operation. There are
some matrix values that remain fixed (by properties:
T(0,)=0 and T(1,a)=g), so these values will be
presented automatically avoiding any changes. There
are some possibilities here: user can give a full
operator, that will be checked to assure it as a
conjunction operator; it is also possible to settle the
behavior of the operator and give a partial matrix with
some pre-settled values; and finaly, there is the
possibility of not giving any value, so al the
conjunction operators would be generated. To restrict
the number of possible solutions, user can apply
strictness and a-smoothness constraints over the
process generation. In our example (see Figure 6), we
require that Ts(unlikely, unlikely) = unlikely.

|

Matrix Elements Entry

Enter malrix elements. Press
tabhs to shift entries.

False Unlikely May Be Lkely True
False | False | False | False | False | Fase
Unlikely | False |uniikely | | | Unlikety
May Be | False | : | | May_Bie
w ST e
My o g oo g
Select malrix oplional
wvanahles:
7 Striclness o
- 1
e
N Smoolhiness
w3
0K | Help |

Figure 6: Entrying O-Module AND Truth-Table.

If many matrices have been generated, user must
choose one of them. If user consider that there are too
many matrices, it is possible to come back to redefine
the matrix and/or the restrictions over it. In our
example, 5 matrices has been generated (Figure 7).

To choose among the set of generated matrices,
results are presented in the Matrices Reproducer
(Figure 8) where we can display al the generated
matrices and select the one that fits better.

Once the logic of the A (O-Module) has been
determined, we must define the logic concerning to B
(I-Module).

i Go Back?

MNumber of generated matrices: 5.
Do you want make any changes?

Yeos | Mo |

Figure 7: Number of generated matrices.

=] Matrix Reproducer |
AND Truth- Tabbes : 3
False Unlikely May_ Be Likehy Trug
False faise | false | false | false false
Unikoly | Taise | uniicety | unikety | unikely | wikely
May Be false | unlikely | may _be | may _be | may be
Likety faise | uniikety | may be | lkely | lkely
True false | unlikely | may_be | likely rue
0K | Help |
M | “ | [| » |
i

Figure 8: Browsing a conjunction operator.

i Ji Mapping Entry
Enter a Mapping between Algebra Truth- Values:
False —_— Impos
Unbikely ———= Criteria:
May Be ——* wr B
Likehy e w B
True T Sure el

1- Module Truth-Values:

{(IMPOS FEW_P SLI_P IMPOSS QUITE_P VERY_P SURE)

OFK

| . Help

LS,

Figure 9: Defining a Renaming Mapping.

The procedure for defining an 1-Module conjunction
operator is exactly the same that in the case of the O-
Module, but it is not necessary to choose one of them.
Then, for every matrix solution, al the renaming
mappings between both defined algebras will be
generated. It is the possible to give a partia map
between both algebras. If user desire a particular truth-
value from one logic to be translated to another truth-
value (or to an interval), the values of the partial map
will be checked to be correct (see Figure 9). It is

permitted to choose a determinate criteria to be
satisfied during renaming generation. There ae three
criteria: A, B and C, corresponding to regquirements
RQ.1, RQ.2 and RQ.3, respedively.

When al mappings between the two algebras have
been generated, for every I-Module operation, the
possble monomorphisms and morphisms, if any, and
an ordered list with all the quasi-morphisms is
presented.

5 Conclusions

In this paper we have defined which are the theoreticad
bases that allow to ded with uncertainty by means of
multi ple-valued logics. We have settled how to dedare
a suitable MV-logic from a parametric family of
algebra of truth-values, and aso, which are the
necessary and/or sufficient requirements when we
neal to establish a ommunicaion between two of
these logics. This problem arises in large knowledge-
based systems in which different tasks need to
cooperate using urcertain reasoning, as well as in
distributed systems.

We have presented the developed algorithms to aid
users in the generation of conjunction operations
(implemented as a dassic CSP) and in the seach of
inference preserving mappings.

The performed tod has been designed with the am
of automating these problems, as well as assisting
users and ofering different alternative possbilities.
Beyond its particular use within Milord II, it can be
deployed by any other system using MV-logics.

This work focuses on the unidiredional interadion
between two logics, but the more general problem of
communicaing various uncertainty reasoning systems
is far more complex. This work along with further
research will make possible this goal.

Acknowledgments

Partially supparted by projed MODELOGOS funded
by CICYT (TIC 97-0579C02-01) and through
SMASH by by CICYT (TIC 96-1038-C04-01).

References

[1] Agusti, J.; Esteva, F.; Garcia, P.; Godg, L.; Sierra, C,;
Combining multiple-valued logics in moduar expert
systems, Procealings of 7" Conference on Uncertainty
in Al Bruced-Ambrosio et d. (eds), (1991), pages 17-25.

[2] Agusti, J.; Esteva, F.; Garcia, P.; Godg, L.; Lépez de
Méntaras, R.; Locd multi-valued logics in moduar
expert systems, Journal of Experimental & Theoretical
Al (JETAI), vol. 6 n. 3 (1993), pages 303-321.

[3] Bonisone, P.; Gans, S.; Dedker, K.; Rum: A layered
architedure for reasoning with uncertainty, in 1JCAI' 87
(1987), pages 891-898.

[4] Esteva, F.; Garcia-Calves, P.; Godo, L.; Enriched interval
bilattices: An approach to ded with uncertainty and
impredsion, International Journal on Uncertainty,
Fuzzmessand Knowledge-Based Systems, 1-2 (1994).

[5] Godg, L.; Lépez de Méantaras, R; Sierra, C.; Verdaguer,
A.; Milord: The achitedure axd management of
linguisticdly expressed urcetainty, International
Journal of Intelligent Systems, Vol. 4 n. 4 (1989), pages
471-501.

[6] Lopez de Méantaras, R.; Approximate Reasoning Models,
EllisHorwood Seriesin Artificial Intelligence, 1990.

[7] Puyal, J.; MILORD II: A language for knowledge-Based
Systems, Vol. 1 of Monografies del 1l A, IIIA-CSIC,
1996.

[8] Reyes, J. A.; QMORPH : A tool to define and combine
locd logics in Milord 1I, Mst. Thesis, Universitat
Autonoma de Barcdona, (1997).

[9] Trillas, E.; Vaverde, L.; On mode ad implicéion in
approximate reasoning, in Gupa e al. (eds):
Approximate Reasoning in expert systems, (1985), pages
157-166.

[10] Turner, R.; Logics for Artificial Intelligence Ellis
Horwood Seriesin Artificia Intelligence 1984.

