
Defining and combining Multiple-valued Logics
for Knowledge-based Systems

José Antonio Reyes Francesc Esteva Josep Puyol-Gruar t
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

Campus UAB. 08193 Bellaterra, Catalonia, Spain
E-mail : {reyes, esteva, puyol}@iiia.csic.es

Abstract

Multiple-valued logics are useful for dealing with
uncertainty and imprecision in knowledge-based
systems. In this paper, we present a tool that assist
users in the declaration of such logics and in the
declaration of the communication mechanism between
two of these different logics by preserving inference.

Keywords : uncertain reasoning, multiple-valued
logics, knowledge-based systems.

1 Introduction

The management of uncertainty and imprecision in
knowledge-based systems becomes essential to model
many real problems. Multiple-valued logics (MV-
Logics) have been proved to be a possible way to
manage them in knowledge-based systems [3; 5; 6;
10].

The aim of this work is concerned with presenting a
tool which makes automatic the process of defining
and communicating finite MV-Logics. This tool has
been designed to be incorporated to the shell Milord
II [7], an environment for developing knowledge-
based systems, although it can be used in a more
extensive framework. In section 2, we will introduce
the concept of algebra of truth-values which defines a
parametric family of MV-logics, as well as the syntax
and the semantic permitted. Next, the extension of that
algebra to an algebra of intervals of truth-values is
described as a method for dealing with imprecision.
Section 3 is devoted to establish the essential
requirements needed to preserve inference in different
ways when we communicate different logics. We give
existence conditions for every requirement and
identify different sorts of renaming functions between
logics. In section 4, we describe the tool and its main
features by means of an example. Finally, in section 5
we outline the conclusions of this work.

2 Defining MV-Logics

In this section we will see which features are necessary
to define a suitable MV-Logic. Next, we will show
how this process has been automated and which are
the achieved results.

We consider a restricted family of finite MV-logics
expressive enough to model the uncertain reasoning
used in many rule-based systems [1]. Each logic is
determined by a particular algebra of truth-values from
this family.

An Algebra of truth values is a finite algebra AT
n

 =

{An ,0, 1, Nn , T, IT} such that :

1. The ordered set of truth-values An is a chain of n
elements :

0 = a0 < a1 < ... < an-1 = 1

where 0 and 1 are the Boolean False and True
respectively, and each element ai is a linguistic
term. For example A5 = {false, unlikely, may_be,
likely, true}.

2. The negation operator Nn is the unary operation
defined as

Nn(ai) = an-1-i (1)

the only one that fulfills the following properties :

N1 : If a < b then Nn(a) > Nn(b), ∀ a,b ∈ An .

N2 : N n
2

= Id.

3. The conjunction operation T is any binary
operation such that the following properties hold ∀
a,b,c ∈ An :

T1 : T(a,b) = T(b,a)
T2 : T(a,T(b,c)) = T(T(a,b),c)
T3 : T(0,a) = 0
T4 : T(1,a) = a
T5 : If a ≤ b then T(a,c) ≤ T(b,c) for all c

See an example of conjunction operator in Table 1.

T5 (x, y) false unlikely may_be likely true

false false false false false false
unlikely false unlikely unlikely unlikely unlikely

may_be false unlikely may_be may_be may_be

likely false unlikely may_be may_be likely

true false unlikely may_be likely true

Table 1: T5 conjunction operation.

4. The implication operation IT is defined by
residuation with respect to T, i.e.

IT (a,b) = Max {c ∈ An | T(a,c) ≤ b} (2)

Therefore, to establish an algebra of truth-values it is
only necessary to determine the set of truth-values An

more adequate for the concerning problem, and define
a conjunction operator T necessary to combine and
propagate uncertainty when making inference.

Forthwith, we introduce the syntax of our MV-
Logic. The sentences of the language are pairs (p, V),
where: p is a well formed-formula , obtained in the
usual way from a denumerable set of propositional
symbols and the connectives ‘not’ (¬),‘and’ (∧) and
‘detachment’ (→); and V is an interval of truth-values.

Likewise, semantic is evaluated in an algebra of
truth-values The semantic interpretation is given by
the followings signification :

• Models are defined by valuations, i.e. mappings
ρ from the first components of sentences

(propositional symbols) to An provided that :

 ρ (¬ p) = Nn(ρ (p))

 ρ (p1 ∧ p2) = T(ρ (p1), ρ (p2))

 ρ (p → q) = IT (ρ (p), ρ (q))

• The Satisfaction Relation between models and
sentences is defined by :

Mρ (p, V) if, and only if, ρ (p) ∈ V,

where Mρ stands for the model defined by a

valuation ρ .

Therefore, from now on, it is required that the logic
systems used by applications (axioms and inference
rules) must be sound with respect to the semantic
above defined, in order to be considered as an
appropriate MV-Logic. The inference rule of these
logics is Modus Ponens, that gives from (p→q, V) and
(p, V’) a sentence (q, V”). In fact, modus ponens
evaluates V” from V and V’ (See [9] for a theoretical
study of modus ponens, and [6] for its application to
expert systems).

After the definition of algebra of truth-values we
extend it to an algebra of intervals of truth-values, [4].

We have some motivations to do this extension. The
first one is given as consequence of imprecision,
because we do not know a precise value but an interval
of truth-values. A second reason is related with the
modus ponens operator which requires the use of
intervals to chain rules. And as we will see in the next
section, it is needed to make possible mappings
between different logics.

Given an algebra of truth-values A = < An , Nn , T > ,
we will consider the set of intervals of An as:

Int(An) = {[a,b] | a,b ∈ An} (3)

being [a,b] = {x ∈ An | a ≤ x ≤ b}.As an example, the
set of intervals of a chain A4 = {0 < a < b < 1} is
Int(A4) = {[0,a] , [0,b] , [0,1] , [a,b] , [a,1] , [b,1] , [0,0] ,
[a,a] , [b,b] , [1,1] }.

In the same way, we can think about extend also the
algebra operators for dealing appropriately with
intervals. The extensions to intervals of the above
operators are : Nn

* ([a,b]) = [Nn(b), Nn(a)] , T*([a,b] ,
[c,d]) = [T(a,c), T(b,d)] .

2.1 Conjunction Generation

The search for a conjunction operator is an important
task in an algebra declaration as we can deduce from
the definition of algebra of truth-values. Next we shall
discuss how this question has been treated and how
this process has been automated.

Throughout this work we represent the conjunction
operator as a matrix, where each element is a variable.
Then, for a matrix M of dimension n, we will have :

M

V V V

V V V

V V V

=

−

−

− − − −



















0,0 0,1 0,n 1

1,0 1,1 1,n 1

n 1,0 n 1,1 n 1,n 1

�

�

� � � �

�

 (4)

The mentioned algebra requirements (T1-T5) are
properties that a conjunction operator must fit. We will
try to assign agreeable values for the variables
according to these properties.

These requirements act as constraints over the set of
possible solutions. Satisfaction of each property or
constraint, causes the following guidelines which
influence the conjunction search generation problem :

• Commutativity allows us to consider only the set of
variables V = {Vi, j , i ≥ j}.

• Existence of absorbent and neutral elements
implies to fix the values for variables V0, j and
V ,j n - 1 .

• Monotonicity implies rows and columns non-
decreasing.

• Associativity test is expensive in time and memory,
but taking into account that T(ai,aj) ≤ min(ai,aj) and
so, each sub-matrix

M

V

V V

i i

i i

, =














0,0 0, i

,0 , i

V�
� � �

�
 (5)

 is closed with respect to the conjunction operator.
In this way, the full matrix will be associative if all
its sub-matrices are so. This property lets us check
associativity in an incremental way each time that a
value is assigned to a variable of the kind of Vi, i .

However, the number of obtained operators applying
these constraints is significantly high. In particular for
n > 5 (see column A in Table 2), we obtain more than
22 matrices. This is why we can consider two new
options: introducing some new desirable constraints,
as well as knowing several values of the matrix to
reduce the search space to be explored.

Two types of additional, and optional, constraints are
discussed. First, we can think that given two truth-
values different than 0 (false), it does not seem
reasonable that their conjunction may be 0. This is
achieved by the property :

T6 Strictness: T(ai ,aj) ≠ 0, for all i, j ≠ 0

In the infinite case some continuity is required. In the
finite case we also want that the result of the
conjunction of near values has to be not very distant.
This property is defined as follows :

T7 α� -Smoothness: given α ∈ , T is said to
satisfy α-smoothness property if T(ai,aj) = ak and
T(ai-1,aj) = ap , then k - p ≤ α

Satisfaction of these new properties (T6,T7) have the
following consequences in the conjunction search
generation problem :

• Strictness: the generation of strict matrices of
dimension n is equivalent to generate non-strict
matrices of dimension n-1.

• α-Smoothness: it reduces the set of possible values
for a variable taking into account column and row
adjacency.

Now we consider: general constraints (T1-T5),
which provide standard behavior of a conjunction
operator; and additional constraints (T6,T7), that add
desirable properties to a conjunction operator and
decrease the number of possible solutions.

As an additional option we can pre-settled some
variables values for the conjunction matrix, so it is

possible to settle the more adequate behavior to the
concerning problem.

Since now, we have stated the problem of define an
adequate conjunction operator. In the follow, we will
present how this problem had been solved.

2.2 Generation as a CSP Problem

There exist some options when we define a
conjunction operator : it is possible to give a full
matrix that will be checked to assure it as a
conjunction operator ; it is also possible to give a
partial matrix with some pre-settled values that will be
whole completed ; and finally, if it is required by
generating all the matrices.

The generation of operators that satisfy a determinate
set of properties can be formulated as a classic CSP
(Constraint Satisfaction Problem) :

• Let V = {V0 , ... , Vn-1} be a set of variables.
• Let D = {D0 ,..., Dn-1} be a set of the corresponding

discrete and finite domains (in general Di≠Dj if
i≠j), where variables take values.

• Let C = { Ci, j | 0 ≤ i,j ≤ m-1} be a set of binary
constraints. These constraints express the
relationship that the different variables must hold
among them for their values to be compatible.

The problem consists of finding a value assignment
{V V0 0| , ... , V Vn 1 n 1− −| } such that for every 0 ≤ i,j ≤
m-1, Ci, j holds. Then, one may be interested in
finding all the solutions to the problem, or just one, or
the total number of solutions or if there really exists a
solution.

From the concluded search influences analyzing the
requirements (T1-T7) and the additional option of pre-
settled some values, the CSP problem can be
reformulated according to these new domains :

• Initially, we have a set of variables with settled
values. This set is composed by the values
concerning the variables : V0, j = 0, V ,j n - 1 = aj

(T3,T4) and the ones pre-settled by the user.
• We only take into account the set of variables V =

{Vi, j | i ≥ j with i,j ≠ 0 and i,j ≠ n-1} (T1).
• The initial domain for the considered variables is

Di, j = {a0 , ... , ai } (T5).
• This initial domain can be modified according to

strictness and/or α-smoothness properties (T6,T7).
If strictness is applied, then the a0 value is rejected.
If α-smoothness is applied, the domain length will
have a maximum of α + 1 elements, keeping the
last α + 1 elements of the set if this number is
greater.

We solved this search generation problem with a
depth-first algorithm applying backtracking and look-
ahead. Backtracking needs two stacks: one to keep the
generated matrices and the other to keep the values
that remains unassigned for each variable. The
algorithm is briefly shown below. The generated
solution results, taking into account T1-T7, are shown
in Table 2.

n A B α� =1
C

α� =2 α� =3 α� =1
D

α� =2 α� =3

3 2 1 2 2 2 1 1 1

4 6 2 5 6 6 2 2 2

5 22 6 13 21 22 5 6 6

6 94 22 38 78 93 13 21 22

7 451 94 118 306 422 38 78 93

8 2386 451 395 1274 2002 118 306 422

9 - 2386 1404 - - 395 1274 2002

Table 2: Matrices per number of terms.

A : T1-T5 C : T1-T5 and T7
B : T1-T6 D : T1-T7

1) Initialization :
The variables with settled values are assigned and
the rest will have an undefined value.
The process order for the variables is defined.
The stacks are empty.

2) Variable selection :
The current matrix is pushed upon the matrices
stack.
A variable is chosen as the current one.
If it is a pre-settled value, go to step 2 ; otherwise
all it s possible values are selected.
If there are not more variables, go to step 5.

3) Value selection :
The current variable takes on a given value.
The rest of possible values are pushed upon the
values stack..

4) Test :
Check the satisfaction of all the constraints on the
selected variable.
If all these constraints are satisfied, go to step 2 ;
otherwise go to step 3.

5) Solution :
Each assignment passing the test is regarded as a
solution.

6) Backtracking :
The current matrix is popped out of the matrix
stack.
The current variable is popped out of the other
stack with all unassigned values.
If there are unassigned values left, go back to
step 2 with each one.
If the stacks are empty, then stop.

Now we know how to define a logic and how we
suggest to solve and automate this process. In the next
section we will see how to communicate different
logics and how to preserve certain inference in this
process.

3 Combining Logics

We can declare different logics by varying the set of
truth-values (linguistic terms) and the conjunction
operator. That depends of how the expert will deal
with uncertainty in each problem.

When two different logics need to exchange
information, it is necessary some mechanism of
translation of the linguistic terms to make the
communication between those logics compatible. At
such communication, we want to preserve the
inference of each logic, but as occurs in real li fe, it is
not always possible to transmit information with
absolutely precision. This loss of information can be
represented with an interval, and as a consequence, we
need to extend the algebra of truth-values to an algebra
of intervals of truth-values. Hence we map values of
an algebra into intervals of the other.

Let’s take a look to which requirements we need in
order to map the language of a logic into another one
when they require to exchange information [2].

3.1 Mappings between MV-Logics

Let (L ,) and (L’ , ’) be two logics, L and L’
standing for the languages, and ’ for the
entailment relations defined on L and L' respectively.
To establish a correspondence between both logics, a
mapping H : L → L’ is needed. Next, we will
analyze some natural requirements for the mapping H
with respect to the entailment systems and ’ . We
propose that at least one of the following three
requirements should be fulfill ed by the mapping H in
order to ensure a consistent communication.
Henceforth Γ and e will denote a set of sentences and a
sentence of L respectively. A map H is said to be a
forward conservative map when,

RQ.1. If Γ e, then H(Γ) ’ H(e)

For every sentence e, deducible from a set of
sentences Γ, its corresponding sentence, H(e), will also
be deducible from the corresponding sentences of
H(Γ).

A map fulfill ing this second requirement is said to be
a backward conservative map :

RQ.2. If H(Γ) ’ H(e), then Γ e

This is the inverse requirement of RQ.1. Hence, if a
fact is not deducible from Γ, then its corresponding
fact from H(Γ) won't be deducible either. Nevertheless
Γ e does not imply H(Γ) ’ H(e).

Conditions RQ.1 and RQ.2, which are very strong,
can sometimes be weakened in the uncertainty
reasoning framework. Formally, this can be expressed
by the third and last requirement :

RQ.3. If H(Γ) ’ e’ , then there exists e such that
Γ e and H(e) ’ e’

This requirement assures that every sentence
deducible from H(Γ) must be in agreement with what
can be deduced from Γ. This requirement is slightly
different from RQ.2, in the sense that it is not
necessary that e' is an exact translation of a deducible
sentence e from Γ, but only something deducible from
such a translation. In the framework of logics for
uncertainty management, e’ is interpreted as a weaker
form of e, i.e. a sentence expressing more uncertainty
than e. We will call it a weak conservative map.

Now we will consider the problem of finding
inference preserving correspondences between two
logics A = < An , Nn , T > and B = < Bm , Nn’ , T’> . We
are interested in mapping the entailment system
(LA, A) into the entailment system (LB, B), by means
of renaming functions between the corresponding
linguistic term sets. This means that we will only
consider those mappings translating sentences from LA

to LB that just involve translations of truth-values, i.e.
any mapping H : LA → LB will be defined as H(e,V)
= (e,h(V)), where h translates subsets of values of An

into subsets of values of Bm, and e (a well-formed
formula) remains invariant.

3.2 Algebra Morphisms

As it has already been noted, to establish conservative
communications, it is necessary to consider what kind
of relation between the uncertainty logics is required.
In [2], we can find the necessary and/or sufficient
conditions for a mapping h : An → Int(Bm) to satisfy
these requirements. From this analysis, we deduce the
following relationships between the conditions needed
to satisfy every requirement (see Figure 2) :

RQ.1 ⇔
h(T(V1,V2)) T' (h(V1),h(V2))

h(N(V)) N (h(V))

h(V1 V2) h(V1) h(V2)

'
⊇

=
∩ = ∩













RQ.2 ⇐
h(T(V1,V2)) T (h(V1),h(V2))

h(N(V)) N (h(V))

h(V1) h(V2) V1 V2

'
'

⊆
=

⊇ ⇒ ⊇












⇓

RQ.3 ⇔
h(T(V1,V2)) T (h(V1),h(V2))

h(N(V)) = N (h(V))

'
'

⊆


Figure 2 : Requirements conditions.

We define mappings from elements of An into
intervals of Bm, but sometimes it is possible to find
mappings that translate an element of An into an
interval [bi , bi] of Bm (it can be clearly consider as the
element bi). In this case, requirement RQ.3 is satisfied
and the mapping is a morphism between the
corresponding algebras. As a particular case, if a map
fulfill RQ.1 and RQ.2, we have not only the morphism
conditions, but a one-to-one application, that is, an
injective function called monomorphism. But we can
not always find these kind of mappings, so in the case
of a map involving intervals of truth-values, we named
it a quasi-morphism.

We are mainly interested in monomorphisms because
they embed An into Bm and because they are order
preserving mappings (it is equivalent to a
communication without any loose of information).
Then, we are interested in morphisms, which
accomplish the algebra operations (it is a transmission
of information fulfil ling the required properties).
Finally, because of the strong conditions morphisms
and monomorphisms must satisfy, it is not always
possible to find these kind of renaming functions,
quasi-morphisms can be useful thanks to the additional
freedom of map truth-values of an algebra into
intervals of the other (we allow certain loose of
information).

3.3 Renaming Algorithm

Before seeing the process to find these algebra
morphisms, let us part from the previously well-known
negation operation. For a given set of truth-values An,
there exists only one negation Nn, and it is defined by
Nn(ai) = an-i-1. Then, we can partitioned this set into
three subsets :

• the set of negative elements Nn = {x | x < Nn(x)}
• the set of fixed elements Fn = {x | x = Nn(x)}
• the set of positive elements Pn = {x | x > Nn(x)}

being the subsets : Fn = {ak }, Nn = {ai | i < k}, Pn = {ai

| i > k}, if n = 2k+1; and Fn = ∅ , Nn = {ai | i < k} and
Pn = {ai | i ≥ k}, if n = 2k.

In the same way, we can do the same with a set Bm,

obtaining N m
* ,Fm

* andPm
* for the case of working with

intervals. Then, the renaming algorithm is as follows :

1) Initialization :

 Obtain the subsets Nn, Fn, N m
* and Fm

* .

2) Maps Generation :

 Generate all the maps h1 : Nn ∪ Fn → N m
* ∪

Fm
* such that :

a) h1 (0) = 0 .

b) h1 (Fn) ∈ Fm
* .

c) x ≤ y implies h1 (x) /> h1 (y), where x, y ∈ An

and h1 (x), h1 (y) ∈ Int(Bm).

3) Map extension :
Extend each mapping h1 with respect to the
negation operation defining the morphism h as :

h(x)
h x

N h xm

=
∈ ∪

∈





1

1 n

(x)

((N (x)))

,

,*

if .

if .

N F

P

n n

n

 (6)

4) Conjunction checking :
Check which ones are compatible with the
conjunction operators T and T’ .

5) Renaming checking :
Finally, we check which maps h are morphisms,
monomorphisms or quasi-morphism.

As an example, consider two logics declared with the
sets of truth-values A7 and B5, and with the conjunction
operations TA7 and TB5

(defined in Tables 1 and 3

respectively).

A7 = {impos, few_p, sli_p, possib, quite_p, very_p, sure}

B5 = {false, unlikely, may_be, likely, true}

First, we obtain the initial subsets N5, F5, N7
* and F7

* :

N5 = {false, unlikely}
F5 = {may_be}

N7
*

= {impos, few_p, sli_p, possib, [impos, few_p], [impos,

sli_p], [impos, possib], [few_p, sli_p], [few_p, possib],
[sli_p, possib]}

F7
*

= {possib, [few_p, very_p], [sli_p, quite_p], [impos,

sure]}

impos few_p sli_p possib quite_p very_p sure

impos impos impos impos impos impos impos impos
few_p impos few_p few_p few_p few_p few_p few_p

sli_p impos few_p sli_p sli_p sli_p sli_p sli_p

possib impos few_p sli_p possib possib possib possib

quite_p impos few_p sli_p possib quite_p quite_p quite_p

very_p impos few_p sli_p possib quite_p very_p very_p

sure impos few_p sli_p possib quite_p very_p sure

Table 3: TB7
 conjunction operation.

And following the above algorithm schema, we can
find several mappings between both logics. There are
here two mappings that are examples of those that hold
the last requirement RQ.3 :

false impos

unlikely impos few p

may be few p very p

likely very p sure

true sure

→
→
→

→
→










[]

[]

[]

, _

_ _ , _

_ ,

false impos

unlikely few p sli p

may be possib

likely quite p very p

true sure

→
→
→

→
→










[]

[]

_ , _

_

_ , _

When ending the generation process, the list of
inference preserving mappings is presented to the user
in this way :

1) First, we offer the existent monomorphisms
considered as one-to-one morphisms.

2) Next, we show which morphisms are between
both algebras, if any.

3) Finally, we display the list of generated quasi-
morphisms.

Due to the strong conditions monomorphisms and
morphisms must fit, it is not always possible to find
them. However, it is very possible that the renaming
generation produces a large list of quasi-morphisms, so
the possibili ty of giving an ordered list of quasi-
morphisms to aid users in their selection may be
considered. Note that in the case of morphisms, all the
renaming mappings have the same evaluation, hence
the selection is left to the user' s criteria.

For the purpose of producing an ordered list of
quasi-morphisms, we consider a weigh among the
cardinal c of the set of terms which have an atomic
image (that is, an interval with the form [ai , ai]) and
the length L of the remainder of intervals (number of
truth-values included in this interval).

Given two chains An and Bm, we will generate
mappings between An and the set of intervals Int(Bm).
In order to obtain an evaluation for every map, we can
use the following empirical function :

η =
∑

∑

=

=

L

c

i
i

n

i
i

n
1

1

.
, 1 ≤ Li ≤ m , 1 ≤ ci ≤ n (7)

where Li is the length of the interval i and ci is the
number of points which have an atomic image. Then,
for every mapping we obtain a value η, such that :

1 ≤ η ≤
(n 2) m 2

2

− +
 (8)

This method produces an ordered list of quasi-
morphisms that let user to simplify the selection.

User is also able to establish the behavior that can
take the generated maps defining a partial map
between both algebras. This definition must satisfy the
set of requirements suggested previously in order to be
a negation morphism. That is, our partial map must
accomplish the next points :

1) It must be a non-decreasing function.
2) If our map involves the truth-value a0 , its image

must be the truth-value b0 . For instance, in the
above example any map must fit h(false) =
impossible. Therefore, to be a negation
morphism, it is the same for the case of truth-
value an-1, so it is required that h(true) = sure.

3) If our map implies the fixed element of the first
chain An , we must give as its image an element

belonging to the set of fixed elements Fm
* . In the

above example, a map of this type must fit
h(may_be) ∈ {impos, few_p, sli_p, possib,
[impos, few_p], [impos, sli_p], [impos, possib],
[few_p, sli_p], [few_p, possib], [sli_p, possib]}.

When we have defined our partial map (or total, or
none), a list of renaming functions fulfil ling these
defined characteristics will be generated.

Now we know how to declare a MV-logic and how
to establish a conservative communication between
two of these logics. In the following section we will
present the interactive implemented tool to define and
combine MV-logics.

4 The QMORPH Tool

QMORPH [8] is a tool that allows users to define and
combine MV-logics. Two different interfaces have
been developed : a graphical interface for the UNIX
operative system using Tcl/Tk packages, running under
the X-Windows environment and developed on Sun
machines; and a generic text mode interface performed
in Common Lisp.
In the present, this tool is attached to Milord II, a
specific expert system building environment, as an aid
tool to assist experts when developing modular
applications.

In this section, we illustrate the use of QMORPH
throughout the use of a practical example in which we

try to find existing morphisms between two MV-logics
(as it include the particular case of a logic definition).
For this purpose, we will make use of the most
friendly graphical interface.

We consider the same example of section 3.3. Let us
suppose we need to establish a communication
between the logic A = <A5, N5, T5> (belonging to the
Origin Module or O-Module) and B = <B7, N7, T7>
(belonging to the Image Module or I-Module). This
schema is shown if Figure 3.

Figure 3 : Communication example.

Initially, it is mandatory to declare the truth-value
sets of Origin and Image modules. Besides, user has to
declare the T operation of the Origin Module for
avoiding a computational explosion.

First of all , user must fix the sets of linguistic terms
that settled both logics. For this purpose, it is
necessary to decide how many linguistic terms have
the logics (see Figure 4). Following our example , we
must enter 5 and 7 terms for the Origin and Image
logic respectively.

Figure 4: Entrying Algebra's Dimensions.

Next step consists in introducing the name of the
terms for each logic see (Figure 5). If user does not
consider necessary to name the terms, they will be
generated automaticall y. To declare the logics A and
B ̧we may enter here {false, unlikely, may_be, likely,
true} and {impos, few_p, sli_p, possib, quite_p, very_p,
sure} respectively.

Figure 5: Entrying Truth-Values Sets.

Origin Module Image Module

A=<A5, N5, T5> B=<B7, N7, T7>

Following, it is needed to declare the conjunction
operator that A uses to combine and propagate the
linguistic terms when making inference. User can
choose a T function depending on the meaning he
wants give to the conjunction operation. There are
some matrix values that remain fixed (by properties :
T(0,ai)=0 and T(1,ai)=ai), so these values will be
presented automatically avoiding any changes. There
are some possibilities here : user can give a full
operator, that will be checked to assure it as a
conjunction operator; it is also possible to settle the
behavior of the operator and give a partial matrix with
some pre-settled values; and finally, there is the
possibility of not giving any value, so all the
conjunction operators would be generated. To restrict
the number of possible solutions, user can apply
strictness and α-smoothness constraints over the
process generation. In our example (see Figure 6), we
require that T5(unlikely, unlikely) = unlikely.

Figure 6: Entrying O-Module AND Truth-Table.

If many matrices have been generated, user must
choose one of them. If user consider that there are too
many matrices, it is possible to come back to redefine
the matrix and/or the restrictions over it. In our
example, 5 matrices has been generated (Figure 7).

To choose among the set of generated matrices,
results are presented in the Matrices Reproducer
(Figure 8) where we can display all the generated
matrices and select the one that fits better.

Once the logic of the A (O-Module) has been
determined, we must define the logic concerning to B
(I-Module).

Figure 7: Number of generated matrices.

Figure 8: Browsing a conjunction operator.

Figure 9: Defining a Renaming Mapping.

The procedure for defining an I-Module conjunction
operator is exactly the same that in the case of the O-
Module, but it is not necessary to choose one of them.
Then, for every matrix solution, all the renaming
mappings between both defined algebras will be
generated. It is the possible to give a partial map
between both algebras. If user desire a particular truth-
value from one logic to be translated to another truth-
value (or to an interval), the values of the partial map
will be checked to be correct (see Figure 9). It is

permitted to choose a determinate criteria to be
satisfied during renaming generation. There are three
criteria : A, B and C, corresponding to requirements
RQ.1, RQ.2 and RQ.3, respectively.

When all mappings between the two algebras have
been generated, for every I-Module operation, the
possible monomorphisms and morphisms, if any, and
an ordered list with all the quasi-morphisms is
presented.

5 Conclusions

In this paper we have defined which are the theoretical
bases that allow to deal with uncertainty by means of
multiple-valued logics. We have settled how to declare
a suitable MV-logic from a parametric family of
algebra of truth-values, and also, which are the
necessary and/or sufficient requirements when we
need to establish a communication between two of
these logics. This problem arises in large knowledge-
based systems in which different tasks need to
cooperate using uncertain reasoning, as well as in
distributed systems.

We have presented the developed algorithms to aid
users in the generation of conjunction operations
(implemented as a classic CSP) and in the search of
inference preserving mappings.

The performed tool has been designed with the aim
of automating these problems, as well as assisting
users and offering different alternative possibili ties.
Beyond its particular use within Milord II, it can be
deployed by any other system using MV-logics.

This work focuses on the unidirectional interaction
between two logics, but the more general problem of
communicating various uncertainty reasoning systems
is far more complex. This work along with further
research will make possible this goal.

Acknowledgments

Partially supported by project MODELOGOS funded
by CICYT (TIC 97-0579-C02-01) and through
SMASH by by CICYT (TIC 96-1038-C04-01).

References

[1] Agustí, J.; Esteva, F.; Garcia, P.; Godo, L.; Sierra, C.;
Combining multiple-valued logics in modular expert
systems, Proceedings of 7th Conference on Uncertainty
in AI Bruce d-Ambrosio et al. (eds), (1991), pages 17-25.

[2] Agustí, J.; Esteva, F.; Garcia, P.; Godo, L.; López de
Mántaras, R.; Local multi -valued logics in modular
expert systems, Journal of Experimental & Theoretical
AI (JETAI), vol. 6 n. 3 (1993), pages 303-321.

[3] Bonissone, P.; Gans, S.; Decker, K.; Rum : A layered
architecture for reasoning with uncertainty, in IJCAI’ 87
(1987), pages 891-898.

[4] Esteva, F.; Garcia-Calves, P.; Godo, L.; Enriched interval
bilattices : An approach to deal with uncertainty and
imprecision, International Journal on Uncertainty,
Fuzzyness and Knowledge-Based Systems, 1-2 (1994).

[5] Godo, L.; López de Mántaras, R; Sierra, C.; Verdaguer,
A.; Milord : The architecture and management of
linguistically expressed uncertainty, International
Journal of Intelli gent Systems, Vol. 4 n. 4 (1989), pages
471-501.

[6] López de Mántaras, R.; Approximate Reasoning Models,
Elli s Horwood Series in Artificial Intell igence, 1990.

[7] Puyol, J.; MILORD II: A language for knowledge-Based
Systems, Vol. 1 of Monografies del III A, II IA-CSIC,
1996.

[8] Reyes, J. A.; QMORPH : A tool to define and combine
local logics in Milord II, Mst. Thesis, Universitat
Autònoma de Barcelona, (1997).

[9] Trill as, E.; Valverde, L.; On mode and implication in
approximate reasoning, in Gupa et al. (eds.):
Approximate Reasoning in expert systems, (1985), pages
157-166.

[10] Turner, R.; Logics for Artifi cial Intelligence, Elli s
Horwood Series in Artificial Intelli gence, 1984.

