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Abstract  

Computer Science and Artificial Intelligence are technologies and research topics applied 
to multiple domains. The goal of this paper is to explore which of the new topics of Artifi-
cial Intelligence can be applied in the future to Archaeology. The aim is not to give solu-
tions to archaeological problems, but to present three new areas that can be useful to it: 
Knowledge Discovery in Databases (KDD), Visual Information Management (VIM) and 
Multi-agent Systems (MAS). 

Introduction 

Early in this century, only privileged people—who had the time, the money and the intel-
lectual curiosity—could be working in archaeology. We can say that archaeology was for 
erudite people, everyone being an expert on his knowledge area. Excavation diaries are an 
example of information gathering used then (see Figure 1). They consisted of natural lan-

guage explanations of the works and circumstances of the excavation, besides photographs 
and drawings of the discovered materials. 

After that, as a result of the development of archaeology, information gathering in the ex-
cavations was performed in a more systematic way. The system used was based on record 
cards. For every object or structure found, a record card was filled with some slots or at-
tributes more or less well defined, and natural language descriptions, photographs and 
drawings. There are still thousands of manual records cards. 

 
Figure 1. Excavation diary of Empúries by Emili Gandia [MS89] 
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The development of computers and computer science produced a change of thought—in the 
same way as in other areas—and put some hopes and apprehensions concerning those news 
technologies. It is very interesting to consider some of the opinions about computer science 
and archaeology of professor James Doran—one of the pioneers in the application of com-
puter science in archaeology—in the seventies. 

 “[...] It was hard to see how the complex and ill-structured problems facing ar-
chaeologists could be tackled other than by the direct application of their own ex-
perience and intelligence” [Doran70] 

We have to remark some of the words appearing in the text above: the knowledge domains 
of archaeology are complex and ill-structured; archaeologists need their experience and in-
telligence to solve these problems. 

There are many domains of this type, complex and ill-structured. In general all the knowl-
edge domains related with experience: for instance, some parts of medicine, biology, engi-
neering, moreover archaeology. Experts in some domain are able to make good deductions 
from their experience, despite managing imperfect knowledge. Artificial intelligence is one 
form of attacking this type of problems. One of its goals is the simulation of the reasoning 
capabilities of experts when solving problems. 

Another interesting fragment of James Doran is the following: 

 “[...] Archaeologists collect large quantities of data, and if numerical techniques 
are to be used at all then a computer is almost certain to be needed [...]” [Doran70] 

We should take into account another aspect of archaeology: its practice produces large 
quantities of data. Professor Doran said—of course in the seventies—that we would have 
to use computers (almost certain) to apply numerical techniques. With the perspective of 
our current technology, it could seem quite ridiculous to talk about the possibility of using 
computers. Moreover it could seem curious talking about numerical techniques forgetting 
the symbolic ones, one of the foundations of artificial intelligence. 
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Computer-based treatment of archaeological problems in the seventies was tough as the 
numerical managing of databases, normally using statistical techniques. The interpretation 

was obviously manual, by means of the 
experience and intelligence of the ar-
chaeologist. 

Which are the things that have changed 
since then? Computer and communica-
tion technologies have been spectacu-
larly developed. Now we can talk about 
the digital world. Using the argument 
of the best-seller of Nicholas Negro-
ponte (the Media-Lab director at MIT) 
we can think in the transformation of 
the material world (composed by at-
oms) to the digital world (composed by 
bits) [Neg95]. The main advantages of 
this new digital world are: the facility 
of transportation—at the light speed—
of the bits, their compression, storage 
and manipulation. 

So far we have only talked about bits, 
but we have not to forget pixels. A 

pixel—a chain of bits—is the informational unit of digital images. Although photography 
has been a useful tool for archaeologists for years, it could be more important in the future. 
The new digital cameras appearing in the market in the last two or three years offer easier 
methods to work with digital images: directly, without intermediate processing—chemical 
processing, of course, atomic processing. Today archaeologists are using video as archaeo-
logical documentation, then we can say the same things for digital video. 

Because of that we have to consider multimedia databases. Multimedia information con-
tains from alphanumeric characters to graphics, animation, image, video and audio. Multi-
media technology is growing rapidly thanks to the cheaper and more powerful hardware 
needed for the digitalisation and treatment of the information. 

Record cards mentioned above was made by atoms (ink for the writing on paper, silver for 
the photographs) and humans, by means of their intelligence was interpreting that informa-
tion. Digital world drives us to think on the digitalisation of multimedia information and the 
posterior treatment using computer science and artificial intelligence techniques. In Figure 
2 we can see a computer record of a roman coin from the database of the Empúries Mu-
seum, containing alphanumeric information and images. Multimedia and hypertext data-
base development allows to store large quantities of record cards mentioned above, but with 
digital information. 

We should not forget the fast growing of telecommunication technology, the Internet net-
work and multimedia languages forming the well-known WWW—World Wide Web. Now 
we have not to consider local information but distributed along the world. This has driven a 
new area of artificial intelligence based on the idea of agent. 

 
Figure 2. Record card from Empúries Museum. 
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How the future will be? Which are the new research areas and techniques of computer sci-
ence and artificial intelligence able to offer useful tools for archaeology? We will talk on 
three points in this paper: 

1. KDD (Knowledge Discovery in Databases): It is not possible to make manual knowl-
edge discovery in archaeological databases. We have to automatise it with the supervi-
sion of human experts for validating and interpreting the new discovered theories. Be-
sides we should take into account that information—by the intrinsic nature of archaeo-
logical problems—is imperfect, that is, imprecise, uncertain, vague, and with temporal 
dependencies. 

2. VIM (Visual Information Management): The introduction of multimedia information—
specially image and video—to the archaeological databases produce a need to find effi-
cient techniques to store, retrieve and understand that kind of information. 

3. MAS (Multi-agent Systems): Simulation of primitive societies is a well-known area in 
archaeology. The current interest in the artificial intelligence research community on 
multiagent systems offers a new opportunity for considering simulation based on agent 
ideas. 

KDD 

Database technology provides easy and efficient methods to store and access large volumes 
of data. What is the utility of a large dataset stored in a database? The value of data is given 
by the ability to extract information from them—information is data with semantics—
useful for decision making and for the understanding of the source of data. Extract informa-
tion or knowledge from a database is difficult. The analysis and manual interpretation of 
data—as the statistical visualisation—is slow, expensive and subjective, and it becomes 
more difficult as datasets become larger. 

Knowledge discovery in databases can be defined as the following: 

 “The nontrivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data” [FPSS96] 

The goal is to identify patterns from data. Patterns are expressions in some language that 
allow structuring or grouping data: for instance, identifying dependencies among them. 
Models have to be potentially useful for something; understandable, they have no sense if it 
is not possible to understand them; novel, original, new; and valid, clearly applicable on 
new data. 

The KDD process 

The KDD process is represented as three steps, as depicted in Figure 3: the pre-processing 
of data; the data mining—sometimes named as archaeology of data—for obtaining pat-
terns; and the interpretation of those patterns. We want to automatize the first and second 
step. The last one, the interpretation, has to be made by the human expert, to determine, as 
mentioned above, whether the discovered patterns are: valid, useful, novel, and understand-
able. 
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Pre-processing of data is the first step, from raw data to data mining. It consists in manipu-
lating the raw data to make them more tractable, by reducing the noise or the errors, or se-
lecting only the relevant attributes. In this step we have to choose which model of database 
to use: relational, objet oriented, deductive or hypertext; and the algorithms to make data 
mining in function of our goals. 

Data mining is the step where we will obtain patterns from pre-processed data. It is the 
most interesting step in this paper. The goals of the discovered patterns will be the descrip-
tion and the prediction. There are two kinds of techniques for the discovery of patterns: sta-
tistics—we can say classical techniques—, and Artificial Intelligence techniques—
sometimes using also statistics. 

Some of the well-known classical techniques are: classification, consisting in identifying to 
which of the previously known categories belongs data; clustering, from data we find a set 
of categories useful to classify data; or dependence modelling, to discover dependencies 
among data. 

In this paper we will talk about Artificial Intelligence techniques to make data mining. We 
will use association rules and bayesian networks as knowledge representation formalisms. 
We will discuss the process of knowledge discovery from a database using these formal-
isms. 

From the patterns obtained in the previous step, we need the final step of human interpreta-
tion. A set of questions will appear  in this step. Is it useful this knowledge? Can we apply 
this new knowledge to new data? Do we have conflicts with our previous knowledge? Can 
we solve those conflicts? 

Discovery of association rules 

To work with knowledge, we need to represent it. One of the most used formalism for 
knowledge representation is based on association rules. They are the base of most of expert 
systems language representation. Rules have a very simple syntax; its semantics is easily 
understandable, based on logic; it does not imply knowledge about programming or com-
puter science. Here we have an example of rule of an archaeological domain: 

If pottery(X) and type(X,bf) then chronology(X, 1570) 

Using natural language we can express this rule as: If X is a pottery and X is of type black 
slip, then we can assure that the chronology of X is 1570. Every expression of a rule, the 
antecedents and the consequent, has a logic value, that is, they are true or false. For in-
stance, given an object X, if this object is a pottery, then the expression pottery(X) is true. If 

Data
Preprocessed Data Patterns

Knowledge

Data MiningPreprocess Interpretation

Figure 3. The steps of the KDD process. 
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all the antecedents of a rule are true, then will be the consequent; if any antecedent is false, 
then the consequent could be true or false. 

Remember that in general—and in particular in archaeological domains—knowledge is im-
perfect, that is, imprecise, uncertain and incomplete. Consider a modification of the previ-
ous example of rule that introduces the uncertainty idea: 

If pottery(X) and type(X,bs) then chronology(X, 1570) in the 80% of cases. 

This rule is more realistic that the explained before. It is closer to the knowledge of the hu-
man expert. This rule is only true in the eighty per cent of cases. That means that in spite of 
having an object that is a pottery of type black slip, it would be possible that they do not 
have that chronology. We have introduced a certainty degree to the rule—it is not always 
true—because we would need more antecedents or conditions—that we ignore them be-
cause we have incomplete knowledge—to conclude the chronology surely. 

Consider to use the result of the application of the previous rule as antecedent of another 
one: 

If chronology(X, 1570) and ... 

The logical value of the expression chronology(X,1570) now it is not true or false as before. 
Its value belongs to a certain confidence degree of being true, between 0% of confidence—
false—and 100%—of course, true. The confidence of the consequent of a rule of this type 
will be a function of the confidences of its antecedents and the confidence of the rule. The 
computation of the confidences is a task performed by the expert system program, in this 
case the human expert has nothing to do with it. This kind of programming is called de-
clarative programming, as opposed to procedural one. Experts declare the knowledge, but 
they do not specify how to execute it. An expert system would have many rules of this type. 

There are two main steps to build an expert system: knowledge acquisition and validation. 
Knowledge acquisition is the step of programming the knowledge of the human expert us-
ing some language, for instance, rules. The validation step consists in verifying that the ex-
pert system is useful for solving problems comparing the expert system results with those 
of the human experts. Validation results should prove a high degree of similarity between 
the answers of the expert system and the answers of the human experts. 

The human expert encodes—or helps the knowledge engineer to encode—the rules ob-
tained from his previous experience in a concrete domain, in the example above the classi-
fication of pottery. If a rule can not be applied in all the situations, he associates a confi-
dence based on probability—objective or subjective—that the rule may be applied when its 

validation

knowledge
adquisition Expert System

Data
Data Mining

rules
supervised
knowledge
adquisition

Expert

 
Figure 4. Discovery of association rules. 



 7

antecedents are true. 

The certainty of rules can be based on objective or subjective probability. Subjective prob-
ability is given by the human expert based on his previous experience. Objective probabil-
ity is based on frequencies. An example of frequency is the relation between all the cases of 
pottery of type black slip with chronology 1570 and the total of cases of pottery of type 
black slip. 

At this point we should return to the origin of this section, the discovery of association 
rules. Notice that a database contains information about frequencies, objective probability. 
We will be able to profit this to extract, automatically, rules from a database. Will these 
rules be useful, valid, novel and understandable?  

We can think of a knowledge acquisition process supervised by the human expert as repre-
sented in Figure 4. Consider a database of archaeological objects. Every object has a set of 
attributes: for instance, the type of material, its colour and its chronology. Consider we are 
interested in discovering knowledge from that database about pottery of type black slip. 

It is easy to obtain from the database, using classical techniques, the number of occurrences 
of objects that are pottery of type black slip. That number represents the support of the 
search. If we decide that this support is enough, we can decide to follow finding patterns for 
determining the chronology of those objects. Now we can ask the database about the num-
ber of objects that are pottery of type black slip, and with chronology 1570. To obtain the 
confidence on the rule above, we should calculate the frequency of pottery of type black 
slip with chronology 1570 with respect the total of pottery of type black slip. The truth 
value of the new discovered rule will be that confidence, for instance eighty per cent as in 
the example above. 

From this example we can say that it is possible to discover rules from a database, though 
we need the supervision of the human expert to guide this process. The human expert 
should also decide whether the new rules are useful, valid, novel and understandable. This 
is the step of result interpretation. The automatic generation of rules without restriction will 
obtain a large number of rules. Most of those rules will not fulfil the goals of knowledge 
discovery [AMS+96]. 

Temporal Reasoning 

At this point, after viewing a formalism based on rules to represent knowledge, I think it is 
interesting to talk also about the temporal dimension of knowledge. We have said that in-
formation can be imprecise, uncertain, incomplete moreover with temporal dependencies. 
Temporal reasoning is a topic of Artificial Intelligence devoted to the logic and reasoning 
about time [Vil96]. 
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If we look for applications of temporal reasoning to archaeology we will find a lot. For in-

stance, the chronology of archaeological findings or the stratigraphic study—which deter-
mine what is after or before—talk about time. We can use as an example the stratigraphy. 
In Figure 5 we can see a stratigraphic study of Vilauba excavation (Camós, Girona, Spain): 
the left part corresponds to the spatial stratigraphy, and the right one to the temporal strati-
graphy. 

We can see how to represent the knowledge contained in Figure 5. One form of representa-
tion is using the same formalism of rules, but temporarly qualified. We can add to a predi-
cate an element determining when that predicate is true. We can consider the predicate used 
in the example above as temporarly qualified, “chronology(X,Y)”, where Y referres to time. 
For instance, we can say that “chronology(E299,1570)” is true. 

Besides temporarly qualified rules we can use temporal predicates as “before(X,Y)”, “af-
ter(Z,T)”, etc. Temporal logic is powerful because those predicates are related concerning a 
concrete temporal semantics. For instance, in a temporal logic based on time points, if the 
predicate “before(a,b)” is true then the logic will say that the predicate “after(a,b)” is false. 
For a temporal logic based on time intervals the meaning of those predicates and their rela-
tions would be different and dealing with other semantics. 

Then we can think on rule programming using all those predicates, for example the follow-
ing rule: 

If chronology(E1,X) and chronology(E2,Y) and before(X,Y) and below(E1,E2) ... 

where E1 and E2 are strata, X and Y time points, before is a temporal predicate and below 
refers to the position of strata. We can think, similarly as in the previous Section, on the 
discovery of these rules from a database. The rules will be associated with confidence and 
support degrees. 

time

 
Figure 5. Representation of stratigraphic information. 
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Another interesting aspect to present here is the calculus with fuzzy predicates. Fuzzy logic 
is another research area of artificial intelligence. Let me introduce it by means of an exam-

ple. Imagine we have found two samples, a piece of wood and a seed, in the strata E299 
(see Figure 6). Charcoal-14 proofs give us a chronology for the wood about 1400, and for 
the seed about 1570. We know that wood is a long life sample and a seed is a short life one. 
Then a wood sample is less precise than a seed one. In this case we can talk about vague or 
fuzzy predicates. We can consider the predicate  chronology of the seed as a function, 
named characteristic function, as depicted in Figure 6. The truth degree of that predicate is 
maximum (true) at 1570 and progressively decrease towards false as the data go far from 
1570. Similarly the predicate chronology of wood is represented as another function, whit 
its maximum at 1400 and decreasing slower that the previous function—because it is a less 
precise sample. These functions represent fuzzy sets.  

The difference between classical and fuzzy sets is that the membership of an element to a 
fuzzy set is a degree between true and false instead of only true and false. For instance, the 
membership degree of the seed to the set of samples of a concrete chronology is repre-
sented by its characteristic function. The seed does not belong to the set of samples of the 
year 1300. It clearly belongs to the set of samples of 1570, and it has some membership de-
gree to the set of samples of 1530. 

time
1400 1570

truth degree

C14aggregation

1530

wood
seed

0

1

 
Figure 6. Fuzzy predicates. 
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We can define the chronology of the strata by means a combination of both characteristic 
functions—those of the wood and the seed. For instance, using aggregation we can obtain a 
new characteristic function for the chronology of the strata (see the bold line of Figure 6). 

Discovery of bayesian networks 

Another formalism for knowledge representation is bayesian networks, also named prob-
abilistic networks or causal networks. Bayesian networks have a probabilistic semantic. 
They are used to program probabilistic expert systems. A bayesian network is a graphical 
representation of uncertain knowledge. We draw a directed acyclic graph with arrows rep-

resenting dependencies among nodes, where 
the nodes are facts. For instance, in the Fig-
ure 7 we can see a bayesian network repre-
senting the reasoning process to determine if 
an excavation area is a domestic area. 

If we find burned animal bones and charcoal 
in an excavation, then we can think that this 
site could be a fireplace. Given these evi-
dences, if we find also storage pits we can 
think this site is a domestic area. 

 After the drawing of dependencies we must 
assign probabilities to the nodes and de-
pendencies, representing measures of uncer-
tainty. 

We will use two types of probabilities: a 
priori probabilities and conditioned prob-

abilities. Nodes without parents—and then not conditioned—have a priori probabilities. 
Conditioned probabilities are assigned to nodes with parents. 

Consider again the probabilistic network in Figure 7. We have to assign a priori probabili-
ties to the following facts without parents: charcoal, burned animal bones and storage pits. 

The sense of these probabilities is about the confi-
dence of finding those materials in the excavation 
area, for instance for charcoal, P(C)=80%. Similarly 
we can estimate the probabilities of finding burned 
animal bones or storage pits, P(B) and P(S) respec-
tively. 

Finally we should consider the conditioned prob-
abilities of the nodes with parents, for instance the 
node representing the discovery of a fireplace. The 
fact of finding a fireplace is conditioned for the pre-

vious finding of burned animal bones and charcoal. Then the probabilities of fireplace are 
probabilities conditioned by the facts burned animal bones and charcoal (they can be true or 
false), expressed as P(F | B, C). Similarly the probabilities of domestic area are conditioned 
by the facts fireplace and storage pits, P(D | S, F). How we can give values to these prob-
abilities? We should fill a table as in Table 1. For instance, if we have found a fireplace (F 

P(B)

storage
pits

P(C)

P(S)

domestic
area

fireplace

burned animal 
bones

charcoal

P(D|S,F)

P(F|B,C)

 
Figure 7. Probabilistic network example. 

S         F            P(D|S,F)
false   false   20%    80%
false   true    75%    25%
true    false   90%    10%
true    true    99%      1%

 
Table 1. Conditioned probabilities. 
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is true) but no storage pits (S is false), the probability of finding a domestic area is 75%, 
and that of not finding it is 25%. The probability grows to 99% if we find a fireplace and 
storage pits (both are true). The values of these probabilities can be determined by the 
knowledge and experience of the archaeologist, in this case we say that they are subjective. 

Bayesian networks are useful to represent causal knowledge. The examples above show 
that it is a very simple formalism. How can we use a bayesian network after declaring it? 
Probabilistic network reasoning programs allow to calculate other probabilities. For in-
stance, which is the probability of finding a domestic area without other consideration, 
P(D)? Another example: which is the probability of finding a domestic area given that: we 
have found charcoal, there is no storage pits, and we ignore the truthness—it can be true or 
false—of burned animal bones? This probability can be expressed as P(D | C=true,S=false). 
Another one: which is the probability of finding charcoal given that we only know that the 
excavation area is a domestic one, that is, P(C | D=true)? All these questions can be an-
swered by those programs. They actualise the other probabilities from a given a set of evi-
dences—the set of facts that are true. 

Similarly with the discovery of association rules in the previous section, we can think in the 
discovery of bayesian networks from a database. 

The archaeologist can build a bayesian network with subjective probabilities, but the data-
base contains objective probabilities. The domain knowledge of a human expert represented 
by means of a bayesian network with subjective probabilities in addition to the statistical 
data—objective probabilities—of a database can be used to refine the initial knowledge of 
the human expert [Hec96]. The initial knowledge of the human expert can be refined by 
changing dependencies or identifying new ones, creating new networks, etc. The Figure 8 is 
a scheme that represents this process: an initial network given by the expert is used to guide 
the process of knowledge discovery. Finally the expert should supervise the new bayesian 
networks obtained to determine if he can consider that is really a discovery of knowledge. 

VIM 

The management of visual information has its difficulties, different from those of numeric 
or symbolic information management. First, we can compare this topic with that of free text 
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Figure 8. Discovery of probabilistic networks. 
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information. Retrieval of free text information is based on different techniques: form statis-
tics to natural language processing. In spite of knowledge extraction is very difficult, free 
text has the advantage that every word has a limited number of meanings. This is different 
with visual information. 

The kind of questions when managing visual information is similar to those appearing in 
textual information. What is the content of the text, the photography or the video sequence? 
How can we extract semantic labels from the contents of a picture to classify the objects we 
have seen? 

Consider the Figure 9. To do that the first problem is to isolate the different objects of the 
picture, that is called the segmentation problem. It is much more difficult to deduce that the 
four objects of the picture can share the same semantic label, alabastron.  

Visual information is different from tex-
tual one because objects with the same 
semantic label can have very different ap-
pearances, in fact, infinite different ones. 
As an example, consider changing the 
point of view of an observer of an object, 
the perspective.  

When talk about visual information man-
agement we distinguish among four cate-
gories of information: features, feature 
space, feature groups and image space 
[GSJ97]. 

Image analysis algorithms can extract 
some interesting features of a visual ob-
ject. Examples of some features are: red-

ness, texture, contrast, etc. Image analysis algorithms transform the original visual object 
by means of projections, applying functions and making distance measures among features. 
Filtering of a hue histogram of an image is an example of function to extract its degree of 
redness. Distance functions determine degrees of similarity among different objects by ap-
plying that function to a feature of the objects. 

Image features always belong to a region in the space. For instance, if we 
consider the texture of an alabastron in Figure 9, that feature belongs only 
to the region where the alabastron is. This is an example of feature space. 
Typical operations in feature space are: finding boundaries; given an ob-
ject feature, find which of the other objects with the same feature are its 
neighbours; making  a space partition, etc. 

Feature groups are a category of visual information that group different 
features to create a more complex one. Image space is the combination of 
all the previous categories: feature groups belonging to a concrete region 

in the space. We can imagine questions to a database of the following type: find pieces with 
circular geometrical characteristic, with copper colour, with a human face in the middle and 
letters around the perimeter. Of course, it is not easy to identify human faces, it is a more 
complex feature, but it could be a useful description to find coins in the database (see Fig-

 
Figure 9. Alabastrons. [MS89] 

 
Figure 10. Ro-
man coin from 

Empúries 
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ure 10). We can think in similar descriptions for the Figure 11. Which are the characteris-
tics that combined will be useful to identify mosaics into an image? Given a set of mosaic 
examples, it is possible to obtain an automatic description of the object mosaic? 

People at the California University in San Diego have developed a par-
ticular software for the retrieval of information in an image database. 
The images in the database are represented in a three-dimensional 
space. Each dimension is a feature chosen by the user. Then the im-
ages are ordered into that space following three features.  The process 
is a cycle of navigating through the space till an image similar to that 
we are finding is found. We select that image and choose other fea-
tures of the image found. With these features the program will repre-
sent again the database. That cycle is repeated then approximating to 
the image we are finding. 

Archaeological databases contain much visual information, then the 
discovery of knowledge has to be associated to visual management techniques. We can 
think in discovering knowledge from a visual database. We can obtain rules managing con-
cepts as features, image space, semantic labels, etc. 

 

MAS 

Multiagent systems is a growing interest area in the community of artificial intelligence. In 
the previous sections we have tried to program or simulate the reasoning processes of hu-
man experts, archaeologists in this case. Simulation in archaeology is devoted to the simu-
lation of the objects of the archaeological study, the people and their societies, the relations 
with the environment and other people, the commerce, hunting, etc. Multiagent systems for 
simulation of Palaeolithic societies has been yet used in the project EOS [Doran95]. 

What is an agent from the point of 
view of artificial intelligence? Follow-
ing Wooldridge [WJ95] we can con-
sider it from two approaches: the weak 
idea and the strong one. From the weak 
point of view an agent is a set of pro-
grams that share the following features: 
autonomy, agents evolve without hu-
man operation, they has control over 
their own actions; sociability, agents 
interact and communicate among them; 
reactivity, agents have perception of 
the environment—physical or virtual—
and react to the changes on it; activity, 
agents are able to take the initiative, 

their behaviour is goal-driven. The strong approach considers agents from an anthropomor-
phic point of view, because it associates mental notions to agents, as knowledge, beliefs, 
obligations, commitments, intentions moreover emotions. 

 
Figure 11. Mosaic  

[MS89] 

 
Figure 12. Rock-art from Tanzania  
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From this perspective we can see societies of artificial agents as particularly suitable for the 
simulation of human societies (Figure 12). A multiagent program consists in the program-
ming of agents, with their particularities—roles—in the society, the communication capa-
bilities with other agents, the perception and reaction behaviour on the environment, etc. 
We can consider to define this behaviour by means of the rule formalism explained before. 

Conclusions 

Early in the future archaeologists will be able to use the results of these new areas on com-
puter science and artificial intelligence to improve their research. Digital world besides the 
management techniques of visual information and knowledge discovery in databases will 
be useful to the understanding of the information sources. Artificial intelligence is espe-
cially useful for experience based knowledge. 
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