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Abstract

The research at the IIIA has produced over more than a decade two versions of a tool for

developing knowledge-based systems: Milord and Milord II. This tool has been mainly used for the

development of medical applications. In this paper we summarize the Milord II approximate

reasoning approach based on fuzzy sets, and three medical applications: rheumatology diagnosis

(Renoir), pneumonia diagnosis (Pneumon-IA) and pneumonia treatment (Terap-IA). # 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In this paper we describe the programming environment Milord II, from the point of

view of its fuzzy set based approximate reasoning capabilities. Milord II's reasoning

mechanisms are an extension of those provided by its predecessor Milord [1]. In [2±4] the

interested reader can ®nd a complete description of the language and its logical semantics.

To illustrate how useful these mechanisms have proved to be we brie¯y describe three

large medical applications. Renoir is an expert system aimed to aid the nonspecialist

physician to diagnose rheumatic diseases. Renoir knowledge base spans over the 37 major

diagnoses in collagen diseases and in¯ammatory arthropathies and 15 diagnostic variants.

Pneumon-IA and Terap-IA are expert systems devoted to the diagnosis and treatment of

community-acquired pneumonia. Pneumon-IA covers over 22 etiological agents, and
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Terap-IA suggests treatments based on over 35 antibiotics. Community-acquired pneu-

monia are frequent infections, especially for people with chronic diseases and old people. It

is one of the most common causes of mortality related to infectious diseases (the ®rst in

USA).

2. Milord II

Milord II is a modular language for knowledge-based systems. The structural construct

of Milord II is the module. A program consists of a set of modules that can recursively

contain other modules, then forming a hierarchy.

The approximate reasoning capability of Milord II is based on attaching to each module

a particular logic from a family of ®nitely-valued fuzzy logics. Each logic is de®ned by an

algebra of truth-values. This allows to assign a degree of truth within a module to each one

of its propositions. These graded assignments are used to model the inherent incomplete-

ness of data and knowledge.

The many-valued logic attached to a module is completely determined by ®xing (1) an

ordered set of linguistic terms representing truth degrees and (2) a conjunction operator

de®ned over the linguistic terms. Hence, the programmer may generate different multiple-

valued logics by simply varying these components.

In Renoir, for instance, several modules share these linguistic terms: impossible, almost

impossible, slightly possible, moderately possible, possible, quite possible, very possible,

almost de®nite and de®nite, where impossible stands for the boolean false and de®nite for

the boolean true. An example of conjunction is T�ai; aj� � min�ai; aj�.

2.1. Propositions and variables

Propositions and variables are the simplest knowledge representation units in Milord II.

They are structures that represent the concepts dealt within a module. Their declaration is

made by binding an atomic name (identi®er) with a set of attributes. The attributes may be a

long name, the type, relations with other propositions or variables, and so on. For instance,

relations like `̀ membership to a group of antibiotics'' or `̀ smaller spectrum'' are

intensively used when modelling antibiotics in Terap-IA.

The type is the only attribute that is mandatory in these declarations and determines the

set of allowed values a proposition or a variable can take, apart from the special value

unknown.

There are three types of propositions, boolean, fuzzy and many-valued; and three types of

variables, numerical, linguistic and set. Boolean propositions represent concepts which

can only be evaluated as either false or true, and the value of a numerical variable is a real

number. The rest of this section concentrates on the other types which are more interesting

with respect to the focus of this paper.

2.1.1. Fuzzy propositions

In some cases we need to deal with vague concepts. For instance, in Terap-IA we are

interested in the degree of truth of presence of creatinine in order to support the diagnosis
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of a renal failure, instead of a concrete numerical value of the variable creatinine (see the

example in Section 2.2). Vagueness of concepts can be quanti®ed by the degree of

membership of a numerical value to a fuzzy set, so, the presence of creatinine is modelled

by giving a fuzzy set (see Fig. 1) that takes as argument the numerical value in millimolar

per liter of the amount of creatinine.

The value of a fuzzy proposition is obtained by the application of its associated fuzzy

membership function to the value of a numerical variable. The ®nal answer is the narrowest

interval of linguistic terms1 containing that number.

2.1.2. Linguistic variables

Their values are a user-de®ned ®nite set of linguistic values. Similarly to the case of

fuzzy propositions we declare a linguistic variable by associating to every linguistic value,

a fuzzy set with respect to a numerical variable.

In Fig. 2 we can see a representation of the concept status of white blood cells (swbc for

short) by means of three fuzzy sets (linguistic values), leukopenia, normal, and leuko-

cytosis. Given a numerical value for leukocytes the system can calculate the truth degree of

a predicate `̀ is'' used to compare variables and linguistic values Ð the value for swbc is

leukopenia, swbc is normal and swbc is leukocytosis Ð by applying the corresponding

fuzzy sets.

2.1.3. Many-valued propositions

The concepts represented as many-valued propositions are those whose truth may be

graded. That is the case of most deduced concepts in Milord II (see Section 2.2), for

instance, severity of illness of the patient or resistance of pneumococci to penicillin.

Fig. 1. Fuzzy set representing the concept `creatinine'.

1 For this purpose we consider the set of linguistic terms to be uniformly distributed in the interval �0; 1�.

Fig. 2. Linguistic variable representing the concept `swbc'.
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2.1.4. Set variables

They are fuzzy sets over ®nite domains. An example is the set variable allergic

reactions. It is a set whose domain is the possible allergic reactions of the patient.

Giving value to a set variable means associating to each element of the domain a truth

degree. If a patient has only a clear allergy to penicillin, the set variable allergic reactions is

bound to a set with value true for penicillin and false for the other allergic reactions of the

domain.

Milord II contains comparison predicates over set variables and permits operations

over them. We can compare different sets by their non-empty intersection, inclusion,

or equality degree. For instance, we can know which is the degree of the presence of

penicillin and macrolides in the set allergies by applying the intersection degree relation

between the set variable allergic reactions and the crisp set with elements penicillin and

macrolides.

2.2. Rules

In Milord II, a rule is composed of a premise (a conjunction of conditions), a conclusion,

and a truth-value. In the case of conditions containing variables, the language provides with

a set of prede®ned predicates that when applied to the conditions, produce as result

intervals of truth values. Premises of rules are conjunctions of elemental conditions either

in af®rmative or in negative form. Conditions can be just propositions. For instance, using

the fuzzy proposition presence of creatinine de®ned above, we can build the rule If

presence of creatinine then renal failure is de®nite,2 and with many-valued propositions a

rule could be If penicillin can be administrated to a patient and his situation is severe then

it is almost impossible to administrate ampicillin.

In Milord II rules we can use numerical expressions composed by numbers, numerical

variables and arithmetic operations. For instance, If respiratory frequency is �30 breaths

per minute then we can conclude that tachypnea is de®nite. We can also build set

expressions that evaluate as degrees of inclusion, intersection and equality between fuzzy

sets. For instance, If the patient has allergic reaction to penicillin then he is also allergic to

cephalosporins and cabapenems. In this case allergic reaction to penicillin means that the

set variable allergies has a non-empty intersection with the crisp set {penicillin}.

For an example of use of a linguistic variable, take the previously de®ned linguistic

variable state of white blood cells to de®ne: if state of white blood cells is leukopenia then

there is analytical evidence of severity of pneumonia.

Conclusions of rules are simpler than conditions. Conclusions may appear either

in af®rmative or in negative forms. Only many-valued propositions and set variables

can be used as conclusions in rules. In fact we have seen examples of conclusions in the

examples above. For instance the conclusion tachypnea is about a many-valued proposition

and, the patient has allergic reaction to cephalosporins and cabapenems is about a set

2 We use here an English version of the real syntax of rules. The interested reader is referred to [2] for a

complete syntax description of Milord II.
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variable. Deduction in these logics is performed by a `̀ modus ponens''-like inference

rule [3].

3. Renoir

Diagnosing rheumatic diseases is usually dif®cult for the nonspecialist physician, partly

due to lack of skills through the pregraduate studies, and partly because of the absence of

pathognomonic ®ndings in many rheumatic diseases. If we look at most classi®cation

criteria tables we see that diagnosis (which is in itself basically a classi®cation task) is

usually performed combining a bizarre group of ®ndings. For the same reasons, the

nosology of the rheumatic diseases is not clear-cut. In this sense, we can say that

rheumatology is a fuzzy domain of knowledge because the limits or boundaries among

the diseases are not always well de®ned and the information available has high levels of

uncertainty associated with it. Clear examples of these statements are collagen diseases and

vasculitis.

The medical knowledge included in Renoir [5] comes from three main sources: (1)

widely available rheumatologic concepts from books, manuals, and journals; (2) the more

recent and internationally accepted classi®cation criteria tables and trees for those diseases

where such criteria are available; and (3) rules-of-thumb extracted from the clinical

experience.

3.1. Materials and methods

Renoir's KB spans along 37 main in¯ammatory arthropathies and collagen diseases plus

15 diagnostic subtypes of these. The number of representation elements are: 978

propositions and variables, 1058 rules, 34 modules, and 220 meta-rules to control the

applicability of the rules, to prune irrelevant facts, and to generate strategies, that is,

problem solving methods. The main groups of propositions and variables in Renoir are:

anamnesis, exploration, hematology, biochemistry, serology, urine, microbiology, skin,

spine, articular, synovial-liquid, diagnosis, and therapy.

Although our goal was not to diagnose non-in¯ammatory diseases, we decided

to implement a small group of rules for osteoarthritis, ®bromyalgia, and non-in-

¯ammatory myopathies (Steinert disease, trichinosis). It should be noticed that Renoir

has not been primarily designed to deal with multiple rheumatic diagnoses in the same

patient.

Rules directly or indirectly related to the same diagnosis are grouped in 34 modules.

Which can be classi®ed into the following ®ve general classes:

1. A data-gathering module.

2. Four intermediate hypothesis-generating (IHG) modules intended to develop

intermediate hypothesis such as chronic polyarthritis or serositis. These intermediate

hypothesis are used to set the problem in more concrete search spaces or contexts.

3. Twenty-three disease-speci®c modules to re®ne the reasoning process. Their goals are

single disease entities such as rheumatoid arthritis or polymyositis.
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4. Five general purpose modules to perform a qualitative abstraction from laboratory and

radiologic data.

5. One last module with meta-rules to generate problem solving strategies.

3.2. Results

Renoir has been validated in a multicentric trial that has been described in detail in [6].

We have performed a validation of Renoir based on 32 patients from unselected

hospitalisation reports from the Hospital General de CastelloÂ in Spain. In this test, Renoir

reached an overall 75% diagnostic accuracy when comparing the system's diagnoses with

those in patient charts and reports. A formal, double blind, multicentric validation of 81

cases from ®ve hospitals in several communities of Spain has been also done. In this

validation a cluster analysis of the results was made to compare the way Renoir and 12

physicians with diverse experience in rheumatology performed diagnostic tasks. Renoir

clustered near the top experts' cluster, so we can say that its performance is indeed very

good.

4. Pneumon-IA

The aim of Pneumon-IA is to assess the etiology of community-acquired pneumonia

from clinical, radiological, and laboratory data obtained at the onset of the disease.

Pneumon-IA considers 22 possible etiological agents: 15 bacterial pneumonia, four viral

pneumonia, two fungal pneumonia, and a pneumonia caused by parasites (Pneumocystis

carinii).

Although of obvious importance for its treatment, etiological diagnoses of pneumonia

imply great uncertainty, since etiology is seldom con®rmed and therefore it is dif®cult to

establish a gold standard to compare this knowledge-based system with human experts.

4.1. Materials and methods

Pneumon-IA's KB is mainly implemented through rules. It comprises 487 propositions

and variables, 659 rules, 92 meta-rules and 25 modules. Each etiological agent is

represented by a module. Each diagnosis is quali®ed with one of eight labels of possibility.

Validation was performed using data from medical records of 76 patients with con®rmed

clinical diagnoses of pneumonia. The etiological diagnosis provided by Pneumon-IA were

compared to those established by ®ve specialists unrelated to the development of the

knowledge-based system. For each etiological possibility, both Pneumon-IA and the

experts provided a causal possibility, expressed by means of linguistic labels. Linguistic

labels were then converted to numeric values. In the majority of cases, an etiological

diagnosis was unavailable to be used as a gold standard. To overcome this limitation,

distances between arrays of etiological possibilities given by specialists and by Pneumon-

IA were considered as an agreement measure between diagnosis. Cluster analysis based on

those distances was used to rank Pneumon-IA in relation to experts. See [7] for details.
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4.2. Results

The results obtained applying our approach to Pneumon-IA validation show that

differences between etiological diagnosis made by the knowledge-based system and those

made by some specialists were smaller that differences between some specialists them-

selves. Specialists with highest pro®ciency scores gave the closest diagnosis. The best

specialist was, moreover, the one with the least omitted etiologies (that is, an etiology

mentioned by every specialist, including Pneumon-IA, except one) and least singular

etiologies (those mentioned only by one specialist). Pneumon-IA was much closer to the

`̀ best'' than to the `̀ worst'' specialist. It supplied the highest number of singular etiologies,

largely because it takes viral etiologies into consideration more often. The success of

Pneumon-IA in cases of con®rmed etiology was similar to that of clinical specialists.

Etiological diagnoses emmited by the knowledge-based system agreed with the best known

specialist in our area. See [7,8] for details.

5. Terap-IA

There are many microorganisms causing pneumonia. Nowadays, with the avail-

able diagnostic methodology, it is still very dif®cult to determine which of the micro-

organisms is the infecting agent in a particular pneumonia case. The research focused

to determine which are the microorganisms causing pneumonia only succeeds in 50% of

the cases.

Despite the uncertainty of the diagnosis, a treatment has to be speedily administrated to

avoid a negative evolution of the severity of the illness or in some cases the death. Besides

the uncertainty on the diagnosis, data about the patient is in many cases also uncertain and

incomplete.

In Terap-IA we made two main assumptions:

1. Existence of a previous diagnosis: A pneumonia is normally caused by only one

microorganism, but symptoms and signs are not speci®c enough to determine which

one. Diagnosis usually gives evidence for two or three microorganisms possibly

causing pneumonia. We assume that such diagnosis already exists. It can be obtained

from Pneumon-IA (see Section 4).

2. Independence of treatments: We can independently ®nd the best treatment for every

microorganism appearing in a diagnosis. Moreover, these treatments can be combined

to give a treatment covering all the possible causes. By `̀ covering'' we mean that a

treatment is speci®c for a particular microorganism.

5.1. Materials and methods

The concepts managed in Terap-IA are those related to the pharmacological knowledge

about pneumonia treatments and those related to the clinical condition of the patient. The

goal of the system is to ®nd the best combination of antibiotics to treat a patient with

pneumonia (see [9] for details).
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We consider an antibiotic treatment for a microorganism as a set of antibiotics, normally

one and occasionally two. An antibiotic combination is the result of covering more than

one microorganism. It is a set of one (some antibiotics cover more than one microorgan-

ism), two, or exceptionally three antibiotics.

The implementation was made by programming about one hundred Milord II modules.

Next we give an idea of their commonalities by explaining groups of modules.

5.1.1. Pharmacological modules

These modules contain the knowledge about antibiotics in the domain of Terap-IA. We

represent each antibiotic as a concept for which we declare the pharmacological group it

belongs to; which is the administration route of that antibiotic (oral or parenteral); the

possible interactions with other drugs administrated to the patient and which are the

antibiotics with the same activity.

5.1.2. Data acquisition modules

These modules gather the patient data that the expert considered to be relevant for a

correct treatment determination.

Many concepts in the domain are vague. In some cases quantitative data are qualitatively

abstracted by means of fuzzy sets to facilitate the task of the expert and the user. For

instance, it is easier for the expert to reason about the concept the state of white blood cells

is normal than the number of leukocytes is 7000 cells per cubic millimeter. This qualitative

abstraction allows the expert to say, for example, that there is penicillin-resistance of

pneumococci when the state of white blood cells is leukopenia.

5.1.3. Sieve modules

These modules modify the current antibiotic treatment independently of the micro-

organism we want to treat, by eliminating antibiotics belonging to concrete groups of the

list of possible treatments for a patient. These modules use the pharmacological and

acquisition data modules to determine which are the groups of antibiotics that is possible to

administrate to a given patient. The modules of this group are: pregnancy; allergies; renal

failure; and genetic conditions.

5.1.4. Microorganism modules

There are twenty-two groups of microorganism modules, one group for each micro-

organism treated by Terap-IA. They deduce which antibiotics to use to treat a micro-

organism, giving a truth-value for each antibiotic. The truth-value of an antibiotic is

obtained taking into account the truth-value of its pharmacological group (obtained by the

sieve modules) and data about the patient. Given a diagnosis (one, two or three possible

microorganisms) the system only considers the modules corresponding to the microorgan-

isms in the diagnosis.

5.1.5. Combination modules

These modules combine the results of the microorganism modules. The results of

these modules are weighted antibiotic combinations. These combinations take into account

some restrictions. Examples of restrictions are: combinations never contain antibiotics
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belonging to the same group, or combinations never contain antibiotics that have the same

sensibility.

5.1.6. Sieve combinations modules

The combinations of antibiotics are `̀ sieved'' taking into account other restrictions such

as speci®city or cost.

The treatment generation process gives a ranking of combinations from which the

clinician chooses according to his/her preferences.

5.2. Results

The expert has developed a partial validation of the system contrasting real world cases

of antibiotic treatment of pneumonia with the answers of Terap-IA. The treatment for each

previous diagnosis has been veri®ed separately, producing hopeful results. The ongoing

®nal validation is carried out by providing ®fty real world cases of pneumonia to four

human experts and Terap-IA, and comparing the results.

6. Future directions

We are working on the use of Milord II in a multi-agent environment as the deliberative

component of agents in the framework of the SMASH project. It is very promising to model

an hospital as a set of specialised autonomous agents communicating among them. Besides

the interaction among human agents Ð physicians, nurses and administrators Ð arti®cial

agents can interact among them and also with human agents facilitating some tasks. Milord

II would be adequate as the deliberative engine of agents performing intelligent tasks.

7. Resources

The last version Ð available for research and educational purposes Ð and more

information on Milord II can be found at http://www.iiia.csic.es/�milord.
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