
The Use of Lisp in Semantic Web Applications

Yarden Katz
University of Maryland

MIND Lab
8400 Baltimore Ave.

College Park MD 20742, USA

yarden@umd.edu

James Hendler
University of Maryland

Computer Science Department
College Park MD 20742, USA

hendler@cs.umd.edu

ABSTRACT
The Semantic Web adds a layer of logic and metadata to the
current World Wide Web. By utilizing traditional Artifical
Intelligence (AI) and Knowledge Representation (KR) tech-
niques for both the construction of new documents and link-
ing of existing ones, the Semantic Web facilitates machine-
to-machine (or ”agent-to-agent”) communication. Lisp’s proven
reliability and flexibility in AI and KR make it ideal for
constructing intelligent Semantic Web applications. In this
paper, we survey the current use of Lisp on the Semantic
Web, and suggest some potential uses of it in the future.
We conclude the paper with descriptions of Lisp in selected
Semantic Web projects that demonstrate its strength and
usability.

General Terms
Semantic Web, AI, Lisp, Web Services, Reasoning, Planning

1. INTRODUCTION: LISP DOMINATES AI
Lisp’s highly dynamic nature and flexible handling of data
has established it as the obvious tool choice for many types
of complex Artificial Intelligence applications. Additionally,
some of the most exciting research in the fields of Description
Logics and other Knowledge Representation areas has used
Lisp as its vehicle of representation.

Despite its success in those fields, Lisp has not gained widespread
popularity in the realm of Web programming. The current
arena of web development is dominated primarily by lan-
guages such as Perl and Python. Java also plays a significant
role in web client/server software.

The popularity of those languages in this domain is legiti-
mate: they are highly portable, fairly easy to learn and most
importantly, they provide extensive text manipulation func-
tionality which is one of the most needed features in current
web-related applications that process non-semantic docu-
ments (HTML, TXT, TEX, etc.) Moreover, these languages

International Lisp Conference2003 NYC, New York, USA

came into popularity at the same time as the Web, and thus
their architecture and supporting libraries/environments were
evolving to be more compelling for web-oriented usage. Lisp
has reached widespread popularity in programming circles
before the Web’s existence and therefore followed a differ-
ent path of development. Although it has been shown that
Lisp’s unique handling of data structures is equally suitable
to process even those non-semantic formats[22], Lisp has
never caught on as a Web language.

As the current Web evolves into the Semantic Web, appli-
cation developers will require a different set of functionality
from their tools. Easy access to text manipulation (e.g.,
Perl’s built-in regular expressions) will no longer be the
prime focus of every Web application. Reasoning, planning
and formal representation of data will become ubiquitous,
standard tasks that need to be performed by agents to fully
utilize the new semantic data on the web. Lisp is already
capable of providing such functionality as shown from its
extensive history in those fields.

We believe that Lisp can, in the Semantic Web application
domain, take on the role of both the “behind the scenes en-
gine” (serving as a reasoner or planner, for example) as well
as the application interface, or front end. In the little use
that it has received in web projects, Lisp conventionally only
served the former role, leaving the latter to other languages
such as Perl, Python and Java.

2. SEMANTIC WEB LANGUAGES
The World Wide Web Consortium (W3C) is overseeing de-
velopments of several Semantic Web languages.

The Semantic Web relies on XML[10] as the basis of its rep-
resentation syntax. The Resource Description Framework
(RDF)[36] is an XML application designed to allow state-
ments in the form of subject, predicate, object (a “triple”)
to be made about resources. RDF Schema (RDFS) in turn
adds classes and class/property relationships (such as do-
main and range) to RDF[18].

The ontology layer consisted of DAML+OIL[34], now suc-
ceeded by the Web Ontology Language (OWL)[33], a W3C
candidate recommendation. Three species of OWL are avail-
able: Lite, DL and Full.

OWL builds on the capbilities of RDFS in several ways[16]:



• Enhanced restrictions: the ability to restrict a prop-
erty to all values or some values (one or more) of a
class.

• Enhanced class relations: set operations (unionOf, in-
tersection, complementOf, disjointWith) on classes.

• Enhanced property relations: inverse, functional, tran-
sitive, and symmetric properties.

• Arbitrary cardinality for properties.

While OWL Lite and OWL DL provide expressive logic func-
tionality, OWL Full’s capabilities extend beyond the bound-
aries of conventional Description Logics.

2.1 Building on XML
XML allows information on the web to be modelled struc-
turally. To represent that “John” is the name of an em-
ployee, we can write:

<Employee>

<Name>John</Name>

</Employee>

Using a DTD, we can also express that the Name tag must
only appear within an Employee tag. Additionally, XML
data types can be used to enforce that only string liter-
als can be valid Name tag values. However, all of these are
structural properties; nothing about the meaning or seman-
tics of the concepts employee and name was conveyed. We
have simply asserted that in our document, there exists some
tag (Employee) whose child tag (Name) has the string literal
value “John.”

The Resource Description Framework (RDF) builds on XML
to describe resources. A resource can be anything: a per-
son named John, the concept of an employee, John’s work-
place, etc. Resources are represented by URIs. To enhance
our previous example, we can add that “John works for
Google.com” using RDF:

<Employee

rdf:about="http://john-homepage.com/John>

<name

rdf:datatype="http://www.w3.org/2001/XMLSchema#st-

ring">

John

</name>

<worksFor rdf:resource="http://www.google.com"/>

</Employee>

The above snippet states that the resource http://john-home-
page.com/John, has the name “John,” and a worksFor prop-
erty whose value is the resource http://www.google.com.
We have also restricted the values of the name property to
XML strings.

Using ontology languages, we can further enhance our model
by adding semantics. For example, we can define the con-
cepts “employee” and “name” as follows: an employee is a

person, and a name can only be given to people. Similarly,
it may also be useful to express that people only work for
people1. To accomplish this, we use OWL:

<owl:Class rdf:ID="Employee">

<rdfs:subClassOf

rdf:resource="http://john-homepage.com/Person"/>

</owl:Class>

<owl:ObjectProperty

rdf:ID="http://john-homepage.com/name">

<rdfs:domain

rdf:resource="http://john-homepage.com/Person"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Person">

<owl:Restriction>

<owl:onProperty

rdf:resource="http://john-homepage.com/worksFor"/>

<owl:allValuesFrom

rdf:resource="http://john-homepage.com/Person"/>

</owl:Restriction>

</owl:Class>

We now know that employees are a subset of people, a name
can only be given to people2, and a person can only work
for another person.

Given this new layer of semantics in our data, there are
several entailments that we can make. Very simply, since an
employee is a person, and John is an employee, John is also
a person. By the same logic, the class Employee can also be
used as a value for the worksFor property due to the same
subsumption relation.

We can now refer to the above collection of definitions (an
ontology) in our RDF. In practice, it is wise to use defini-
tions from popular, prewritten ontologies (about people or
employees, in our case) rather than reinvent our own.

3. LISP ON THE WWW
While Lisp has not reached the mainstream in the world
of Web programming, several robust Web tools in Lisp are
available. Some of the well-known tools are described herein.

On the server-side, the Common Lisp Hypermedia Server[26]
(CL-HTTP) stands out as a stable and full-featured alterna-
tive to the average webserver. CL-HTTP served the White
House Publication System, both as a web and email inter-
face, focusing on fault tolerance (handling failed mail pro-
cessing) and allowing complex querying of the document
base.

Franz Inc. has also released an open-source webserver, Alle-
groServe[13] (AServe), that was modified by the Lisp com-
munity to run on multiple Lisp implementations[1]. Our use
of AServe in a Semantic Web application is described in a
later section.

1It is important to note that in practical ontology modelling
such strong restrictions should be carefully evaluated.
2Note our valid use of an RDF Schema property, domain, in
an OWL document. Integration with RDF Schema was an
important goal in the design of OWL.



Finally, Araneida[4] provides a similar webserver environ-
ment for the SBCL implementation[5]. A popular Araneida-
powered application is CLiki[2], the Lisp community’s wiki
pages.

To construct a usable client-side, several web development
toolkits are available. onShore Development’s IMHO[29]
(Internet Metahumble Objects) provides extensive function-
ality for handling web sessions and serving pages via a so-
phisticated template system. It runs alongside the Apache
webserver. IMHO’s interface is consistently object-based,
allowing customization of methods for specific types of con-
tent. WebCheckout[30] is an example of a popular and so-
phisticated institutional management system (capable of as-
set management, equipment scheduling, classroom-related
tasks and more) developed using IMHO.

4. LISP IN CURRENT SEMANTIC WEB
Significant research and development in Lisp is already on-
going in the areas of planning, reasoning and querying of
Semantic Web data. A brief overview of some of those ap-
plications is provided below.

4.1 Accessing Semantic Data with Wilbur
Wilbur[25] is Nokia’s open-source toolkit for Semantic Web
programming. Wilbur’s object-oriented interface, implemented
using CLOS, provides access to a DAML parser, validating
RDF and XML parsers, triple store and frame-based RDF
query language[24].

Wilbur’s straight-forward API lets developers access RDF
data in a ”node-centric”[23] manner. A ”database” (or triple
store) is automatically instantiated upon parsing of a doc-
ument, into which all triples are asserted as CLOS objects
(this allows for interesting extensability, described in a later
section.) By default, Wilbur’s initial database contains a
static set of triples along with an RDF Schema that define
and enforce RDF’s basic properties and classes.

4.1.1 Ivanhoe: Frame-based path language for RDF
Ivanhoe is Wilbur’s path language for accessing RDF. Con-
sistent with Wilbur’s node-centric view of RDF, it provides
frame-like access to RDF graphs. Properties (or arcs of a
graph) are represented as slots while subjects and objects
are either nodes or fillers (actual values-in practice these are
always a string.) Querying is handled by the path grammer
described below.

Ivanhoe’s path grammer is implemented as a set of regular
expressions that allow for complex querying of RDF docu-
ments. The basic building blocks of the grammer are shown
in Table 1.

For example, to find all the parents of a given class, the
following query is used:

(all-values !dcms:UndergraduateStudent

’(:rep+ !rdfs:subClassOf))→
(!dcms:Student !dcms:Swapper)

Similarly, we can test whether a given class is related to
another via subclassing:

Table 1: Ivanhoe Path Language operators
Operator Description

seq Sequence
rep+ Repetition (0 or more)
rep* Repetition (1 or more)
inv Inverse
or Disjunction

value/all-values Single path value/all values to path

(relatedp !dcms:UndergraduateStudent

’(:rep+ !rdfs:subClassOf) !dcms:Swapper)
→
T

In the above example, although the class UndergraduateStudent
is not a direct subclass of Swapper, the path language ex-
pression still matches because of the use of the eager :rep+
operator.

Ivanhoe’s path language operators allow for basic, axiomatic
inferencing to be built into RDF applications. As shown
above, it is trivial, for example, to trace all of the subClassOf
pointers in a given document to locate the root superclass.
While this approach may result in incomplete sets of an-
swers for certain knowledge bases, it is sufficient for many
Semantic Web applications that work with a defined set of
data. If it is reasonable to expect your knowledge base to
consistenly have all subClassOf relationships made explicit
(any class P that subsumes class Q has Q subClassOf P),
then the power and overhead of a full-fledged reasoner is
unnecessary for simple queries such as What is the topmost
superclass of P or What is the most specific subclass of Q.
Ivanhoe’s path language is sufficient for such ubiquitous and
minimal inference requirements.

5. REASONING ABOUT ONTOLOGIES
Reasoning is one of the most powerful and ubiquitous fea-
tures of Semantic Web applications. In order to increase
interoperability of different agents, inferences must be made
about the data being exchanged. Lisp’s accomplishments
and capabilities in formal Description Logic reasoning ex-
tend to the Semantic Web.3

5.1 RACER: Renamed ABox and Concept Ex-
pression Reasoner

RACER[15] is a robust Description Logic reasoning engine
geared toward Semantic Web applications. It is capable of
answering queries with sensitivity to DAML+OIL ontolo-
gies.

RACER can be used as the reasoning service for the reason-
able ontology editor OilEd[7], not natively, but via the DIG
interface[6].

5.2 FaCT: Fast Classification of Terminologies
FaCT[17] is a highly optimized Description Logic reasoner.
It currently serves as the reasoning engine behind OilEd.

3Many commonly used Description Logics are far more ex-
pressive than Semantic Web languages such as OWL or
DAML+OIL.



FaCT’s Common Lisp source code is freely available, al-
though efforts are already underway to rewrite FaCT in
C++. Like RACER, FaCT is able to answer queries via
the DIG interface as well as in a client/server setup.

6. MIND SWAP’S LISP DEVELOPMENTS
MIND SWAP (Semantic Web Agents Projects) is a Seman-
tic Web research group based in the Maryland Information
and Network Dynamics (MIND) lab at the University of
Maryland, College Park. MIND SWAP is headed by Pro-
fessor James Hendler. We have created several Semantic
Web tools, including: an ontology editor[19], a multime-
dia markup environment[21], a web services composition
tool[31], a Semantic Web mail client[35], and most recently,
a tableaux-based OWL reasoner[32].

Several ongoing MIND SWAP projects in the areas of web
services, reasoning, planning and web development are writ-
ten in Lisp. Our projects utilize some of the existing Seman-
tic Web Lisp libraries mentioned previously, as well as other
popular open-source Lisp libraries and toolkits. An overview
of the projects and their implementation is provided below.

6.1 Planning for Web Services
Planning is a crucial requirement for interoperability of web
services. As services become more widespread, it becomes
harder for the end-user to determine what set of services are
required to complete the desired task. Additionally, manu-
ally matching the inputs and outputs of one service to an-
other can often be a tedious process that is better left to
automated software.

6.1.1 The Scientific American Article Scenario
The canonical use case for planning on the Semantic Web is
described in Berners-Lee, Hendler and Lassila[8].

The scenario is a simple everyday task that is shared among
two people: Lucy and Pete are equally partitioning the task
of chauffeuring their mother to a series of doctor appoint-
ments. The siblings’ agents must come up with an optimal
plan such that the assigned driving times for each sibling do
not conflict with their previously scheduled events, and that
their mother is able to attend the doctor’s scheduled ap-
pointments. In this scenario we make the assumption that
Semantic Web agents will have a web service interface to
other entities in the scenario. More specifically, the doctor’s
office’s agent will be able to provide patient-related informa-
tion about the available appointment times and prescribed
treatment, while Lucy’s agent will be able to query Pete’s
agent for information (such as Pete’s availability from his
schedule) and vice versa. Finally, pharmacy locating and
related drug services are also used.

An implementation of a solution to this problem must re-
turn a plan detailing what and how web services should be
called, in order. Our current implementation is powered by
SHOP2[28], an award winning AI planner written in Lisp.

6.1.2 Implementation: DAML-S to SHOP2
SHOP2 (Simple Hierarchical Ordered Planner) is a gener-
alized HTN planning system. SHOP2 works by Ordered
Task Decomposition; this makes it suitable for our scenario,

where the order of tasks in our planned solution is the same
order in which they will later be executed as web services.

Our scenario’s web services are in DAML-Services (DAML-
S)[3], a high-level layer for describing the operations and
inputs/outputs of a Semantic web service.4 In order to in-
tegrate our web services with SHOP2, Allegro’s jLinker[11]
interface between Java and Lisp is utilized.

A set of algorithms written in Java[37] to convert DAML-S
descriptions to to SHOP2 operators is applied to the web
services. Once in this format, SHOP2 is able to reduce our
planning problem to an ordered set of web services that must
be called with their respective values.

Finally, an interface that lets the user specify what services
must be called is also available.

6.1.3 A Planned Solution
Returning to Lucy and Pete’s scenario, a sample plan based
on the two agents’ parameters is generated by SHOP2. The
abstract, abbreviated plan is provided below. A much longer
and more detailed plan is also generated.

(((!NS_ORDERPRESCRIPTIONCVS PRESCRIPTION1)

(!MAKEAPPOINTMENTEMG1 APPOINTMENT78)

(!UPDATESCHEDULELUCY APPOINTMENT78)

(!MAKEAPPOINTMENTH1 APPOINTMENT182)

(!UPDATESCHEDULELUCY APPOINTMENT182)

(!MAKEAPPOINTMENTD APPOINTMENT203)

(!UPDATESCHEDULEPETE APPOINTMENT203)))

Due to the use of the jLinker component, SHOP2 is un-
aware of URIs or web-specific data; all web service execu-
tion is handled by Java. Therefore, in the final plan, meth-
ods and operators cannot directly refer to the URIs of the
web services that must be executed. Instead, our Java im-
plementation assigns unique identifiers for every available
planning possibility (multiple appointments times, prescrip-
tions pickup times, locations of pharmacies.) For example,
the above set of APPOINTMENT identifiers are encoded in RDF
in the AppointmentList property:

<ns1:AppointmentList rdf:ID="AppointmentList65"

parseType="daml:collection">

...

<ns1:Appointment rdf:ID="Appointment66">

<ns1:day>20021216</ns1:day>

<ns1:availability>yes</ns1:availability>

<ns1:hour>9</ns1:hour>

</ns1:Appointment>

<ns1:Appointment rdf:ID="Appointment78">

<ns1:day>20021219</ns1:day>

<ns1:availability>yes</ns1:availability>

<ns1:hour>9</ns1:hour>

</ns1:Appointment>

<ns1:Appointment rdf:ID="Appointment70">

4The lower-level details are abstracted to WSDL ground-
ings, where the specific mechanical workings of the web ser-
vice are specified.



<ns1:day>20021217</ns1:day>

<ns1:availability>yes</ns1:availability>

<ns1:hour>9</ns1:hour>

</ns1:Appointment>

...

</ns1:AppointmentList>

This mapping is saved to allow the Java component to look
up the details of every appointment as it appears in the
SHOP2 plan. The same is done with location preferences,
pharmacy locators, available time slots for drivers, and other
intricate details of the solution that are not included in the
above abstract plan.

6.1.4 Future work
In the near future, we intend to create another version of the
web services planning system that is written purely in Lisp,
eliminating the use of jLinker. Wilbur and the upcoming
native SOAP and WSDL interfaces[12] from Franz Inc. will
allow Semantic Web resources to be manipulated directly
from SHOP2, rather than relying on the Java components
to do the web-oriented work.

6.2 Reasoning Services: OWLLisaKB
OWLLisaKB[20] is a rule-based reasoner for the OWL lan-
guage. It is powered by the LISA[38] forward-chaining in-
ference engine and the Wilbur RDF toolkit. OWLLisaKB’s
primary focus is on OWL Full, whose scope extends beyond
the scope of Description Logics.

6.2.1 LISA
One of the primary advantages of the LISA system is its
ability to reason with arbitrary CLOS objects. Since the
Wilbur triple store uses CLOS objects to internally repre-
sent triples, very little translation is required to share data
between the two systems. Figure 2 illustrates the interaction
between Wilbur and LISA that occurs internally in OWL-
LisaKB.

6.2.2 Mapping Triples for Reasoning
The first step is to process the semantic data in Wilbur.
This results in a database of CLOS objects, each represent-
ing a triple. In order for LISA to reason about these CLOS
objects, they must be explicitly asserted into our knowledge
base; this is the second step. Once asserted as facts, a se-
ries of synchronization rules (along with some intervention
from Lisp5) keep the LISA knowledge base up to date with
Wilbur’s triple database and vice versa.

When the LISA inference engine runs, a series of rules and
preasserted facts are applied to the newly asserted triples.
Our rules express basic OWL and RDF semantics and our
preasserted facts express simple RDF truths such as, type
is of type Property and Class is a subclass of Resource.

The mapping that took place earlier between Wilbur triples
and LISA facts allows us to match triple elements in rules
5We overloaded Wilbur’s add-triple method to automati-
cally assert every newly added triple as a fact in LISA. This
mechanism is only triggered for the global Wilbur database
so that separate triple databases that are unaffected by the
Wilbur to LISA synchronization could still be created.

Figure 1: LISA and Wilbur interaction in OWL-
LisaKB

as slot names. Consider the RDFS rule below for enforcing
the subclass relationship in instances: An instance I of a
subclass C is an instance of the parent class P, provided that
I is not of type P.

(defrule subclass-instances ()

(triple

(subject ?C)

(predicate

"http://www.w3.org/2000/01/rdf-schema#subClassOf")

(object ?P))

(triple

(subject ?I)

(predicate

"http://www.w3.org/1999/02/22-rdf-syntax-ns#type")

(object ?C))

(not

(triple

(subject ?I)

(predicate

"http://www.w3.org/1999/02/22-rdf-syntax-ns#type")

(object ?P)))

=>

(assert

?I

"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

?P))

The components of a Wilbur CLOS triple are now accessed
through the slot name holders subject, predicate, object.

OWLLisaKB is currently being tested against the W3C OWL
test cases[9]. Our focus has been mainly on PETs (Positive



Entailment Tests) but we are also experimenting with sev-
eral techniques for passing the suggested consistency and
inconsistency tests.

The simplicity of OWLLisaKB coupled with LISA’s perfor-
mance and efficiency make it attractive for use in Lisp ap-
plications that need native access to inference. An example
of such application is the MIND SWAP Search page, de-
scribed below. In addition, non-Lisp applications that pre-
fer a lighter-weight component to call out to (be it via a
web service interface, TCP socket, or FFIs) might find a
rule-based reasoner to be more suitable than a full-fledged
reasoning environment like RACER or FaCT.

6.3 MIND SWAP Search: A Pure Lisp Appli-
cation

A prime example of a pure Lisp Semantic Web application
is the MIND SWAP Search page. The search page allows
arbitrary searches of both instances and concepts (ABox and
TBox queries) in our OWL-backed website[27]. In order
to get complete results, a reasoner must be used to fully
capture the meaning and implications of our semantic data.

MIND SWAP Search relies on OWLLisaKB and Franz’s
AServe. OWLLisaKB performs all of the reasoning behind
the search page. During initialization, OWLLisaKB reasons
about the entire MIND SWAP database (a total of around
7,500 triples) in approximately two minutes. All search op-
erations are then performed as a series of Ivanhoe path lan-
guage queries, as illustrated earlier, to the updated Wilbur
database that contains the OWLLisaKB inferred triples.

AServe provides the web interface (Figure 2) for MIND
SWAP Search. As argued by Graham[14], subroutine-like
functionality in web application greatly increases usability.
AServe easily facilitates this functionality by allowing the

Figure 2: MIND SWAP Search Page

developer to bind6 blocks of code to specific URIs. This
simulates to the user Graham’s subroutine functionality; a
user can follow a link, enter some data, and return to the
main page where the updated data will appear, just as if
the link were a function call that returned to the main body
of the program. The search page uses this structure for
displaying large, multi-property instances of OWL data in
navigable form to the user.

7. CONCLUSIONS
Lisp fulfills its typical role of the “powerful backend” in
many Semantic Web applications like OilEd and the web-
services planning system. In the former, it is invoked to per-
form the reasoning, while in the latter the planning. Lisp’s
expressivity and power naturally lends it to these compu-
tationally intense tasks. As argued earlier, this is due in
part to Lisp’s decades of experience with conventional AI
problems such as reasoning and planning.

However, in both OilEd and the web-services planning sys-
tem, less computationally intense implementation aspects
such as the interface to the semantic data are abstracted
away from Lisp and left to Java. Our search page illus-
trates that this does not have to be the case. Lisp easily
fulfills the role of both the interface (via Wilbur and Alle-
groServe) and the backend (reasoning via OWLLisaKB) in
the search page. Moreover, in systems like the web-services
planner, using a native-Lisp interface to the semantic data
(e.g., Wilbur) in parallel with SHOP2 eliminates the wasted
computation time currently spent on mapping SHOP2 sym-
bols to their respective resources on the web, thus improv-
ing performance. We are currently experimenting with such
system.

Finally, it is easier and more logical to try to bridge the gap
between Lisp’s web capabilities and newer programming lan-
guages than attempt to reimplement decades of AI research
in the former. Systems like Wilbur have made advancements
on this front by providing a solid foundation for supporting
the rapidly evolving Semantic Web standards, such as RDF,
RDFS and OWL. Readily available Lisp implementations of
reasoning, planning, rule-based expert systems and other
AI techniques make it a perfect match for use in Semantic
Web applications. Lisp vendors like Franz are also mak-
ing progress in this direction with their new interfaces for
SOAP and WSDL. For progress to continue, such web stan-
dards must be actively supported for Lisp to play a key role
in Semantic Web application development.

8. ACKNOWLEDGEMENTS
Thanks to David Silber and Jennifer Golbeck for patiently
reviewing drafts of this paper and providing valuable feed-
back.

9. REFERENCES
[1] Portable allegroserve, August 2001.

http://portableaserve.sourceforge.net/.

[2] The Common Lisp Wiki, August 2003.
http://www.cliki.net/CLiki.

6This is implemented using AServe’s publish function.



[3] DAML-S Coalition: Anupriya Ankolekar, Mark
Burstein, Jerry R. Hobbs, Ora Lassila, David Martin,
Drew McDermott, Sheila A. McIlraith, Srini
Narayanan, Massimo Paolucci, Terry Payne, and
Katia Sycara. DAML-S: Web service description for
the Semantic Web. Lecture Notes in Computer
Science, 2342:348–??, 2002. http://link.springer-
ny.com/link/service/series/0558/papers/2342/23420348.pdf.

[4] Daniel Barlow. Araneida: a free CL web server,
August 2003.
http://araneida.telent.net/docs/index.html.

[5] Daniel Barlow. The SBCL Project - Steel Bank
Common Lisp, August 2003. http://www.sbcl.org.

[6] Sean Bechhofer. The DIG Description Logic Interface:
DIG/1.0. February 2003.
http://dl-web.man.ac.uk/dig/2003/02/interface.pdf.

[7] Sean Bechhofer, Ian Horrocks, Carole Goble, and
Robert Stevens. OilEd: a Reason-able Ontology
Editor for the Semantic Web. In Proceedings of
KI2001, Joint German/Austrian conference on
Artificial Intelligence, number 2174 in Lecture Notes
in Computer Science, pages 396–408, Vienna,
September 2001. Springer-Verlag.

[8] Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic Web. Scientific American, 284(5):34–43,
May 2001.
http://www.sciam.com/2001/0501issue/0501berners-
lee.html.

[9] Jeremy J. Carroll and Jos De Roo. OWL Web
Ontology Language Test Cases, May 2003.
http://www.w3.org/TR/owl-test/.

[10] World Wide Web Consortium. Extensible markup
language (XML) 1.0 (second edition) – W3C
recommendation. Available at
http://www.w3.org/TR/2000/WD-xml-2e-20000814,
2000.

[11] Franz, Inc. jLinker -
A Dynamic Link between Lisp and Java, February 2002.
franz.com/support/documentation/6.2/doc/jlinker.htm.

[12] Franz, Inc. A SOAP 1.1 API for Allegro CL, July
2003.
franz.com/support/documentation/6.2/doc/soap-
client.htm.

[13] Franz, Inc. AllegroServe - a Web Application Server,
May 2003. http://opensource.franz.com/aserve/.

[14] Paul Graham. Lisp in Web-Based Applications, April
2001.
http://yahoo.com/lib/paulgraham/bbnexcerpts.txt.

[15] Volker Haarslev and Ralf Moller. Description of the
RACER System and its Applications. In Proceedubgs
International Workshop on Description Logics
(DL-2001), pages 1–3, August 2001.
http://kogs-www.informatik.uni-
hamburg.de/ moeller/papers/DL-2001-Racer.ps.gz.

[16] James Hendler. Web Ontology Status, May 2003.
Available at http://www.w3.org/2003/Talks/0522-
webont-hendler/.

[17] Ian Horrocks. The FaCT system. In Harrie de Swart,
editor, Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX-98), volume 1397 of
LNAI, pages 307–312, Berlin, may 1998. Springer.

[18] Ian Horrocks, Peter F. Patel-Schneider, and Frank van
Harmelen. From SHIQ and RDF to OWL: The
Making of a Web Ontology Language. Journal of Web
Semantics, 2003. To appear.

[19] Aditya Kalyanpur. SMORE: Semantic Markup,
Ontology and RDF Editor, November 2002.
http://mindswap.org/ãditkal/editor.shtml.

[20] Yarden Katz and Bijan Parsia. OWLLisaKB: A
rule-based OWL reasoner, July 2003.
http://www.mindswap.org/k̃atz/OWLLisaKB.

[21] Grecia Lapizco-Encinas. Photostuff, August 2003.
http://www.mindswap.org/g̃lapizco/PS.shtml.

[22] Ora Lassila. Enabling Semantic Web Programming by
Integrating RDF and Common Lisp. 2002.

[23] Ora Lassila. Taking the RDF model theory out for a
spin. Lecture Notes in Computer Science, 2342:307–??,
2002. http://link.springer-
ny.com/link/service/series/0558/papers/2342/23420307.pdf.

[24] Ora Lassila. Wilbur: Nokia’s RDF Toolkit for CLOS.
2002. http://wilbur-rdf.sourceforge.net/docs/.

[25] Ora Lassila. Wilbur: Nokia’s RDF Toolkit for CLOS,
2003. http://wilbur-rdf.sourceforge.net/docs/.

[26] J. C. Mallery. A common lisp hypermedia server. In
Proc. 1st Int. Conf. on the World-Wide Web., pages
?–?, May 1994.

[27] MINDSWAP, University of Maryland. The
MINDSWAP Website, 2003. http://owl.mindswap.org.

[28] Dana Nau, Yue Cao, Amnon Lotem, and Hector
Munoz-Avia. SHOP: Simple hierarchical ordered
planner. Technical Report CS-TR-3981, University of
Maryland, College Park, January 1999.

[29] onShore Development, Inc. Lisp Software.
http://alpha.onshored.com/lisp-software/#imho.

[30] onShore Development, Inc. WebCheckout, 2003.
http://www.onshored.com/.

[31] Evren Sirin. Web Service Composer, 2003.
http://www.mindswap.org/ẽvren/composer/.

[32] Evren Sirin, Bijan Parsia, and Ron Alford. Pellet
OWL Reasoner, August 2003.
http://www.mindswap.org/2003/pellet/.

[33] Michael K. Smith, Raphael Volz, Deborah McGuiness,
and Christopher Welty. Web ontology language
(OWL) guide version 1.0. Technical report, W3C
World Wide Web Concortium, 2002.
http://www.w3.org/TR/2002/WD-owl-guide-
20021104/.



[34] Frank van Harmelen, Peter F. Patel-Schneider, and
Ian Horrocks. Reference description of the
DAML+OIL (March 2001) ontology markup language.
Technical report, W3C, March 2001.
http://www.daml.org/2001/03/reference.html.

[35] Matt Westhoff and Ross Baker. MailSMORE: A
modification to the Semantic Markup, Ontology and
RDF Editor, 2002.
http://www.mindswap.org/r̃oark/mailSMORE.shtml.

[36] World Wide Web Consortium. Resource Description
Framework (RDF) model and syntax specification.
Technical report, World Wide Web Consortium,
February 1999.

[37] Dan Wu, Evren Sirin, James Hendler, Dana Nau, and
Bijan Parsia. Automatic Web Services Composition
Using SHOP2. In The 13th International Conference
on Automated Planning and Scheduling - ICAPS2003,
June 2003.
http://www.isi.edu/info-agents/workshops/icaps2003-
p4ws/papers/wu-icaps2003-p4ws.pdf.

[38] David E. Young. LISA - Intelligent Software Agents
for Common Lisp. http://lisa.sourceforge.net.


	Introduction: Lisp dominates AI
	Semantic Web Languages
	Building on XML

	Lisp on The WWW
	Lisp in current Semantic Web
	Accessing Semantic Data with Wilbur
	Ivanhoe: Frame-based path language for RDF


	Reasoning about ontologies
	RACER: Renamed ABox and Concept Expression Reasoner
	FaCT: Fast Classification of Terminologies

	MIND SWAP's Lisp Developments
	Planning for Web Services
	The Scientific American Article Scenario
	Implementation: DAML-S to SHOP2
	A Planned Solution
	Future work

	Reasoning Services: OWLLisaKB
	LISA
	Mapping Triples for Reasoning

	MIND SWAP Search: A Pure Lisp Application

	Conclusions
	Acknowledgements
	REFERENCES 

