
IIIA

TAPIA 2005-2006

REFLECTION

IIIA

TAPIA 2005-2006

Reflection

o Terms related to self-reference:
o Reflection
o Meta-level
o Multi-level
o Reification
o Meta-logic, etc.

General Theory of reference seeks to study, with universal 
theoretic inclusiveness, an essential constitutive ingredient of
human reality: the phenomenon of referring which, in different 
forms, is involved in all study, all reflection, all discourse. It 
appears to be an inescapable fundamental basis of all that can be 
thought and expressed.

(Barlett i Suber, 1987)

Meta programming: reasoning about a computational system
Reflection: the same language used to reason and act over itself



IIIA

TAPIA 2005-2006

Self-reference

o BIOLOGY
o Self-organization

o LINGUISTICS
o Natural language

o MUSIC
o Cyclic structures, fugue, canon.

o ART
o Painting into a painting

o Psychiatry
o Reflection capacity of patient

o GENERAL SYSTEMS THEORY
o feedback.

o PROOF THEORY
o Incompleteness, decidability

IIIA

TAPIA 2005-2006

o ARTIFICIAL INTELLIGENCE
o Self-awareness
o Self-configuration
o Self-diagnosis
o Self-correction
o Learning
o Self-organization
o Self-reproduction
o Self-repair

o Others
o General programming: data/program
o Logic programming: theory/metatheory
o Partial evaluation



IIIA

TAPIA 2005-2006

Reflection

o A reflective system incorporates structures representing itself (self-
representation). It is possible to answer questions about itself and 
support actions on itself.

o The representation is causally connected to the system:
1. The system always has an accurate representation of itself.
2. The computation of the system is always in compliance with its 

representation.

REFLECTIVE SYSTEM: contains structures representing aspects of itself

Causal connection: internal structures and the domain (represented by internal structures) 
are linked: is one of them changes there is a consistent corresponding effect on the 
other.

REPRESENTATION

(Coordinates x y)
(Height z)Causal connection

DOMAIN

IIIA

TAPIA 2005-2006

General scheme of reflection

Meta-language

Language

Reification Reflection

(Language = Meta-language) → Reified Language(Language = Meta-language) → Reified Language



IIIA

TAPIA 2005-2006

Reflective facilities in languages

o No facilities (ex: debugging with extra statements)
o Fixed facilities (Lisp)

o Programs as data: eval, apply
o Run-time stack: catch & throw
o Run-time environment: boundp
o Interpreter

o Reflective systems
o Explicit

o 3-Lisp, BROWN
o FOL, Meta-Prolog 
o 3-KRS

o Implicit
o TEIRESIAS, SOAR, MILORD

IIIA

TAPIA 2005-2006

Reflective Architecture
o A programming language with reflective architecture (meta-level) 

uses reflection as a fundamental programming concept
o Distinction between classical and AI languages.
o Characteristics of a reflective architecture:

1. The interpreter has to give access to data representing (aspects of) 
the system itself.

2. Programmers write code to manipulate these data.
3. The interpreter has to guarantee the causal connection between 

these data and the system they represent.
o New paradigm

Reflective
level

Object
level

Domain
Problem
solving

Problem
solving

REFLECTIVE ARCHITECTURE



IIIA

TAPIA 2005-2006

Example: trace

IF a rule has the highest priority in a situation
THEN print the rule and the data which match its conditions

Rules

Domain

IIIA

TAPIA 2005-2006

Procedural-based example

o Reflective functions
o Arguments
o Environment (list of bindings)
o Continuation 

(define-reflect boundp-else-bind-to-one (symbol &optional env cont)
(let ((value (binding symbol env)))

(funcall cont
(if value 

value
(rebind symbol 1 env)))))

(let ((x 36) (y 12) )
(/ x (boundp-else-bind-to-one y)))

36 3



IIIA

TAPIA 2005-2006

Common Lisp

(defmacro boundp-else-bind-to-one (symbol)
`(if (boundp (quote ,symbol))

,symbol
(setf ,symbol 1)))

(defun boundp-else-bind-to-one (symbol)
(if (boundp symbol)

(symbol-value symbol)
(setf (symbol-value symbol) 1)))

IIIA

TAPIA 2005-2006

Logic-based example
my-theory: mortal(X) :- human(X).

john’s-theory: human(X) :- greek(X).
greek(socrates).
P :- reflect(meta-t,P).

meta-t: provable(T,F) :- theorem(T,F)
provable(T,and(F,G)) :- provable(T,F), probable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).
provable(T,F) :- clause(my-theory,F,G),provable(T,G),assert(theorem(T,F)).

Theories

Meta-theory
(provable, clause)

o John-theory mortal(socrates)
o failure reflect(meta-t, mortal(socrates))

o Meta-theory
o provable(john-theory,mortal(socrates) 

clause(my-theory,mortal(socrates),human(socrates)),
provable(john-theory,human(socrates)),
assert(theorem(john-theory,mortal(socrates)))



IIIA

TAPIA 2005-2006

Rule-based example

o Reflection with the goal rule-to-be-fired(?rule) = true
o Contradiction: rules (1) and (2) meta-rule (4)
o Error flag to true
o Rule (3) s2 to false and the rule to be fired (2)

Working memory: ((s1 . true) (s2 . true) (s3 . true))
Goal: ((p1 . true)(p2 . true))
Rules:

(1) if s1 and s2 then set(p1,true) and set(p2,false)
(2) if s3 then set(p2,true) and set(p1,false)
…

Meta-rules:
(3) if error-flag-1 then set(data-elm(s2),False) 

and set(rule-to-be-fired(2), True)
(4) if satisfied(1) and satisfied(2) then set(error-flag-1,True)

IIIA

TAPIA 2005-2006

Object-based example

o 3-KRS (P. Maes)
o All are objects, data as well as programs
o Meta-objects
o Every object in the language has a meta-object



IIIA

TAPIA 2005-2006

Implementation
o Common issue: all the languages operate by means of a 

meta-circular interpreter. 
o Representation of the interpreter of the language (in the same 

language) is actually used to run the language.
o Minimum representation: a name for the interpreter (eval in 

LISP) plus some reified interpreter data (environment, 
continuation, …). 

o Procedural reflection: the causal connection is easy, the self-
representation is used to implement the system.

o First example:
o Interpreter program: eval
o Program: expr
o Environment: env
o Continuation: cont

(define meta-1 (expr &optional env cont)
(eval expr env cont))Scheme

IIIA

TAPIA 2005-2006

Extended version

(define meta-circular-2 (expr &optional (env ()))
(cond

((null expr) nil)
((numberp expr) expr)
((eq expr t) expr)
((symbolp expr) (binding expr env))
((eq (first expr) 'quote) (second expr))
((primitive-function-p (first expr))

(apply (first expr)
(make-list-of-evaluated-args (cdr expr) env)))

(t (eval (definition-of (first expr))
(lexic-meta

(definition-args-of (first expr))
(cdr expr)
env)))))

Explicit internal aspects of Lisp 

env



IIIA

TAPIA 2005-2006

(define lexic-meta (args-def args-for old-env)
(cond ((null args-def) nil)

(t (add-binding (first args-def)
(eval (first args-for) old-env)
(lexic-meta (cdr args-def)

(cdr args-for)
old-env)))))

(define variant-meta-1 (expr &optional env cont)))
(do-something-with-the-result

(eval (do-something-with-the-input expr) env cont)))

(loop (print (do-something-with-the-result
(eval (do-something-with-the-input (read))))))

Common Lisp

IIIA

TAPIA 2005-2006

o Variant that modifies the interpreter such that it has dynamical
scoping

o Not possible with the first version

(define dinam-meta (args-def args-for old-env)
(cond ((null args-def) old-env)

(t (add-binding (first args-def)
(eval (first args-for) old-env)
(dina-meta (cdr args-def)

(cdr args-for)
old-env)))))



IIIA

TAPIA 2005-2006

Lisp Example

o Roots of Lisp
o Primitives

1. quote
2. atom
3. eq
4. car
5. cdr
6. cons
7. cond

o More
1. null.
2. and.
3. not.
4. append.
5. pair.
6. assoc.

IIIA

TAPIA 2005-2006

Interpreter
(defun eval. (e a)

(cond
((atom e) (assoc. e a))
((atom (car e))
(cond
((eq (car e) 'quote) (cadr e))
((eq (car e) 'atom) (atom (eval. (cadr e) a)))
((eq (car e) 'eq) (eq (eval. (cadr e) a (eval. (caddr e) a)))
((eq (car e) 'car) (car (eval. (cadr e) a)))
((eq (car e) 'cdr) (cdr (eval. (cadr e) a)))
((eq (car e) 'cons) (cons (eval. (cadr e) a) (eval. (caddr e) a)))
((eq (car e) 'cond) (evcon. (cdr e) a))
('t (eval. (cons (assoc. (car e) a) (cdr e)) a))))

((eq (caar e) 'label)
(eval. (cons (caddar e) (cdr e))

(cons (list (cadar e) (car e)) a)))
((eq (caar e) 'lambda)
(eval. (caddar e)

(append. (pair. (cadar e) (evlis. (cdr e) a)) a)))))


