Forward and backward chaining

- **Horn Form** (restricted)
 - $KB = \text{conjunction of Horn clauses}$
 - Horn clause =
 - proposition symbol; or
 - $(\text{conjunction of symbols}) \Rightarrow \text{symbol}$
 - E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$

- **Modus Ponens** (for Horn Form); complete for Horn KBs
 \[
 \alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
 \]
 \[
 \beta
 \]

- Can be used with **forward chaining** or **backward chaining**.
- These algorithms are very natural and run in **linear time**

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found
Forward chaining algorithm

function PL-FC-ENTAILS?((KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false

• Forward chaining is sound and complete for Horn KB

Forward chaining example
Forward chaining example

Forward chaining example
Forward chaining example

IAGA 2005/2006
Forward chaining example

Proof of completeness

- FC derives every atomic sentence that is entailed by KB
 1. FC reaches a fixed point where no new atomic sentences are derived
 2. Consider the final state as a model m, assigning true/false to symbols
 3. Every clause in the original KB is true in m
 $a_1 \land \ldots \land a_k \Rightarrow b$
 4. Hence m is a model of KB
 5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query q: to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

Backward chaining example
Backward chaining example
Backward chaining example
Backward chaining example

IAGA 2005/2006

Backward chaining example

IAGA 2005/2006
Backward chaining example

Backward chaining example
Backward chaining example

Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be **much less** than linear in size of KB
Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms
• DPLL algorithm (Davis, Putnam, Logemann, Loveland)
• Incomplete local search algorithms
 – WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:
1. Early termination
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure,
 C is impure.
 Make a pure symbol literal true.

3. Unit clause heuristic
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.
The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value ← FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then DPLL(clauses, symbols\-P, [P = value|model])
if P is non-null then DPLL(clauses, symbols\-P, [P = value|model])
P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses, rest, [P = true|model]) or DPLL(clauses, rest, [P = false|model])

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness
The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
max-flips, number of flips allowed before giving up
model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max-flips do
 if model satisfies clauses then return model
 clause ← a randomly selected clause from clauses that is false in model
 with probability p flip the value in model of a randomly selected symbol
 from clause
 else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Hard satisfiability problems

• Consider random 3-CNF sentences.
e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

– Hard problems seem to cluster near $m/n = 4.3$ (critical point)
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

\[
\neg P_{1,1} \\
\neg W_{1,1} \\
B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y}) \\
S_{x,y} \Leftrightarrow (W_{x,y+1} \vee W_{x,y-1} \vee W_{x+1,y} \vee W_{x-1,y}) \\
W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
\neg W_{1,1} \vee \neg W_{1,2} \\
\neg W_{1,1} \vee \neg W_{1,3} \\
\ldots
\]

\[\Rightarrow 64 \text{ distinct proposition symbols, } 155 \text{ sentences}\]

function PL-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list [stench, breeze, glitter]
static: KB, initially containing the "physics" of the wumpus world
 x, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
 visited, an array indicating which squares have been visited, initially false
 action, the agent's most recent action, initially null
 plan, an action sequence, initially empty

update x, y, orientation, visited based on action
if stench then TELL(KB, S_{x,y}) else TELL(KB, \neg S_{x,y})
if breeze then TELL(KB, B_{x,y}) else TELL(KB, \neg B_{x,y})
if glitter then action <- grab
else if plan is nonempty then action <- POP(plan)
else if for some fringe square [i,j], \text{ASK}(KB, (\neg P_{i,j} \land \neg W_{i,j})) is true or
 for some fringe square [i,j], \text{ASK}(KB, (P_{i,j} \lor W_{i,j})) is false then do
 plan <- A*-GRAPH-SEARCH(ROUTE-PB([x,y], orientation, [i,j], visited))
 action <- POP(plan)
else action <- a randomly chosen move
return action
Expressiveness limitation of propositional logic

• KB contains "physics" sentences for every single square

• For every time t and every location $[x,y]$, $L_{x,y}^t \land FacingRight^t \land Forward^t \Rightarrow L_{x+1,y}^t$

• Rapid proliferation of clauses

Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

• Resolution is complete for propositional logic
 Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power