2nd. Part

◆ Modeling
 ■ Primality/Duality
 ■ Global Constraints
◆ Constraint programming
 ■ examples in CHOCO
◆ Soft Constraints
 ■ Models
 ■ Algorithms

Modeling

◆ Any CSP can be formulated in different (equivalent) ways
◆ The efficiency of the solving algorithms can vary dramatically
◆ No strong results are known
◆ Active line of research
◆ Alternative formulations:
 ■ Primal/Dual
 ■ Primitive/Global constraints
Primal/Dual

Primal CSP: \((X, D, C)\)
- \(X = \{x_1, x_2, \ldots, x_n\}\), \(D = \{d_1, d_2, \ldots, d_k\}\), \(C = \{c_1, c_2, \ldots, c_r\}\)
- \(c \in C\) \(\text{var}(c) = \{x_\alpha, x_\beta, \ldots, x_\kappa\}\) \(\text{scope}
- \(\text{rel}(c) \subseteq d_\iota \times d_\jota \times \ldots \times d_\kappa\) \(\text{permitted tuples}\)

Dual CSP: \((X', D', C')\)
- \(X' = \{x'_1, x'_2, \ldots, x'_r\}\), \(D' = \{d'_1, d'_2, \ldots, d'_r\}\), where \(d'_i = \text{rel}(c_i)\)
- \(C' = \{c'_{ij}\}\), binary constraints
- \(\text{var}(c'_{ij}) = \{x'_\alpha, x'_\beta\}\)
- \(c'_{ij} \in C'\) \(\text{if} \) \(\text{var}(c_i) \cap \text{var}(c_j) \neq \emptyset\)
- \(\text{rel}(c'_{ij}) = \text{consistent pairs of tuples}\)

Example: Crossword puzzles

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & \text{...} \\
\end{array}
\]

a, monarch
aardvark, monarchy
aback, monarda
abacus, ...
abaft, zymurgy
abalone, zyrian
abandon, zythum
...
Primal model (Non-binary)

- **variables**: cells
- **domains**: ‘a’, ..., ‘z’
- **constraints**: contiguous letters must form words in dictionary

Dual model (binary)

- **variables**: words across and down
- **domains**: words from dictionary
- **constraints**: intersecting words must agree on common letter
Global Constraints

c is global iff:
- $\text{arity}(c) = r > 2$
- c is logically equivalent to $\{c_1, c_2, \ldots, c_k\}$ binary
- $\text{AC}(c)$ prunes more than $\text{AC}(c_1, c_2, \ldots, c_k)$

Propagation:
- There is a specialized efficient algorithm (exploits the semantics)

Catalog:
- Set of global constraints
- Best known algorithms for propagation

Example: all-different

3 binary constraints, they are AC, no pruning
Example: all-different

3 binary constraints, they are AC, no pruning

1 ternary constraint, it is not AC, AC pruning [] empty domain no solution!!

Example: all-different

Enforcing arc-consistency:
- n variables, d values
- $n(n-1)/2$ binary constraints: $O(n^2 d^2)$
- 1 n-ary constraint:
 - general purpose algorithm $O(d^n)$
 - specialized algorithm $O(n^2 d^2)$
Constraint Programming

Declarative Programming: you declare
- Variables
- Domains
- Constraints

and ask the SOLVER to find a solution!!

SOLVER offers:
- Implementation for variables / domains / constraints
- Hybrid algorithm: backtracking + incomplete inference
- Global constraints + optimized AC propagation
- Empty domain detection
- Embedded heuristics

Constraint Logic Programming

- **Logic Programming:**
 - implements chronological backtracking
- **Constraint logic programming:**
 - extension including constraint satisfaction facilities
- **Existing solvers:**
 - Chip (www.cosytec.com)
 - Eclipse (www-icparc.doc.ic.ac.uk/eclipse)
 - Sicstus Prolog (www.sics.se/sicstus)
 - ...
Imperative Constraint Programming

Library to be included in your (procedural) program

Provides:
- Special objects:
 - Variables / Domains / Constraints (global)
- Special functions to find:
 - One solution / the next solution

Existing Solvers:
- Ilog Solver (www.ilog.com)
- Choco (www.choco-constraints.net)

CHOCO

- Library for modeling and solving combinatorial problems
- Intended for academic purposes
- Plus:
 - Free software (GPL from FSF)
 - Simple
 - Efficient
 - Generic
- Minus:
 - Implemented in Claire (which is implemented in C++)
 - Not (completely) stable
Choco: 1st example

[sillyCSP() : void
-> let pb := choco/makeProblem("Silly CSP",3),
 x := choco/makeIntVar(pb, "x", 1, 3),
 y := choco/makeIntVar(pb, "y", 1, 3),
 z := choco/makeIntVar(pb, "z", 1, 3) in
 (choco/post(pb, x + y == z),
 choco/post(pb, x > y),
 choco/solve(pb,false),
 printf("~S ~S ~S\n",x,y,z))]

Choco: 2nd example

[queens(n:integer, all:boolean)
-> let pb := choco/makeProblem(" n queens",n),
 queens := list{choco/makeIntVar(pb,"Q" /+ string!(i), 1, n) | i in (1 .. n) } in
 (for i in (1 .. n)
 for j in (i + 1 .. n)
 let k := j - i in
 (choco/post(pb, queens[i] !== queens[j]),
 choco/post(pb, queens[i] !== queens[j] + k),
 choco/post(pb, queens[j] !== queens[i] + k)),
 choco/solve(pb,all))]
Soft Constraints (2nd. Part)

Motivation (10’)
Models (20’)
Algorithms (60’)

Motivation

Using the classical CSP framework:

- Many problems have many solutions
 - Algorithms either give the first one they find or all of them
 - Typically, the user likes some solutions more than others

- Many problems do not have any solution
 - Algorithms just report failure
 - Typically, the user can identify some non critical constraint
Soft CSP

- Problems:
 - Variables and domains as in classical CSP
 - Mandatory constraints (hard)
 - Preference constraints (soft)

- Feasible solution:
 - Complete assignment which satisfies every hard constraint

- Optimal solution:
 - Preferred feasible solution, according to soft constraints

- Complexity:
 - Np-hard
 - Much harder than classical CSP

Soft Constraints Models

- Max-csp [freuder and wallace 92]
- Fuzzy CSP [dubois et al 93]
- Lexicographic CSP [fargier et al 93]
- Weighted CSP
- Probabilistic CSP [fargier and lang 93]
- Valued CSP [schiex et al 95]
- Semiring-based CSP [bistarelli et al 95]
Classical CSP

- Expressable as classical logic
- Constraints: boolean functions
 - \(c_i(t) = \text{true/false} \)

Task of interest:
\[
\square t \square c_i \ c_i(t)
\]

Fuzzy CSP

- Extension of classical CSP to fuzzy logic
 - Conjunction: t-norm (minimum)
 - Disjunction: t-conorm (maximum)
 - \(c_i(t) \in [0,1] \)

Task:
\[
\max_t \{ \min_{c_i} \{ c_i(t) \} \}
\]
Weighted CSP

Preferences are expressed as costs

- **Constraints:** cost functions

 \[c_i(t) \geq \{0, 1, \ldots, \} \]

- **Task:**

 \[\min_{i} \{c_i(t)\} \]

Example

- **Airlines flight scheduling:**

 - **Input:**
 - Aircrafts, airports
 - Flights: (origin, destination, frequency)
 - Requirements:
 - From origin to destination on the corresponding date
 - ...
 - Requests:
 - No more than four legs per flight
 - 1 hour < transfer time < 5 hours
 - ...

 - **Output:**
 - Schedule: each flight is a sequence of scheduled legs
Example

- **Classical CSP:**
 - Consistent schedules

- **Fuzzy CSP:**
 - Schedules where every request is reasonably good
 - Maximizes the quality of the worst request

- **Weighted CSP:**
 - Schedules where, globally, flights are good
 - Maximizes the sum of qualities over request
 - Some request can be very unsatisfied

Valued CSP (VCSP) [Schiex et al. 95]

- Axiomatic model aiming at maximal generality
- It includes all previous models
- **Valuation structure** \((E, \sqcap, \triangleright)\):
 - \(E\) is the set of valuations
 - Totally ordered by \(\triangleright\), the maximum element is \(\top\), the minimum element is \(\bot\).
 - \(\sqcap\) is the aggregation of valuations
 - binary operation on \(E\), commutative and associative.
 - \(\sqcap\) is the identity
 - \(\top\) is absorbing
 - \(\sqcap\) grows monotonically
Valued CSP

(Soft) constraints:
- $c_i(t) \leq E$

Task:
- $\min_{t} \{c_i(t)\}$
Solving Valued CSP
(solving Weighted CSP)

Binary Weighted CSPs

\[P=(X,D,C) \]
- \[X=\{x_1,\ldots, x_n\} \] variables
- \[D=\{D_1,\ldots, D_n\} \] finite domains
- \[C=\{C_{\emptyset}, C_i, C_{ij}\} \] soft constraints
 - \[C_{ij} : D_i \times D_j \rightarrow \text{Cost} \]
 - \[C_i : D_i \rightarrow \text{Cost} \]
 - \[C_{\emptyset} : \text{Cost} \] (it is a constant)
Valuation Structure

Costs: Natural numbers in $[0..k]$
- 0: most preferred ($0=\emptyset$)
- k: least preferred (i.e, unacceptable) ($k=T$)

Aggregation:

$$a \oplus b = \min\{T, a+b\}$$

Weighted CSP

Solution: complete assignment with cost less than T

Goal: find solution with minimum cost

Complexity: NP-hard

Classical CSP = WCSP ($T=1$)
WCSP: Example

\[X = \{x, y, z\} \]
\[D = \{v, w\} \]
\[C = \{C_{xz}, C_{yz}, C_x, C_y, C_z, \emptyset\} \]
WCSP: Example

\[X = \{ x, y, z \} \]
\[D_i = \{ v, w \} \]
\[C = \{ C_{xz}, C_{yz}, C_x, C_y, C_z, C_{\emptyset} \} \]

Valuation:
\[2 \oplus 1 \oplus 2 \oplus 1 \oplus 0 \oplus 0 = T \]
Not a solution
WCSP: Example

\[X = \{x, y, z\} \]
\[D = \{v, w\} \]
\[C = \{C_{xz}, C_{yz}, C_x, C_y, C_z, C_{xy}, C_{yz}, C_{xz}, C_{∅}\} \]

Valuation:
\[0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 2 \]
(optimal) solution

\[T = 4 \quad C_{∅} = 0 \]

Algorithms

- **Search**
 - Local search
 - Systematic search
- **Inference**
 - Complete inference
 - Incomplete inference
- **Hybrid approaches**
Local search (metaheuristics)

- Simulated annealing
- Tabu search
- Variable neighborhood search
- Greedy rand. adapt. search (GRASP)
- Evolutionary Computation
- Ant colony optimization

Excellent survey: Blum & Roli, ACM computing surveys, 35(3), 2003

Systematic search

- Depth-first tree search:
 - **Internal node:** partial assignment
 - **Leaf:** total assignment

- At each node:
 - **Upper bound (UB):** cost of the current best solution
 - **Lower bound (LB):** underestimation of minimum cost among leaves below current node

- **Pruning:** \(UB \leq LB \)
$T = 4$
$C_0 = 0$
$T = 4$
$C_v = 2$

$\emptyset = 2$

$C_v = 2$
\(T = 4 \)
\(C_\omega = 3 \)

\(T = 4 \)
\(C_\omega = 4 \)
$T = 4$
$\mathcal{C}_w = 3$

$\mathcal{C}_w = 4$
\(T = 4 \)
\(C_0 = 3 \)

\(T = 4 \)
\(C_0 = 2 \)
\[T = 3 \]
\[C_{oc} = 3 \]
T=3
C_\infty = 2

T=2
C_\infty = 2
$T = 2$
$C_\omega = 1$

$T = 2$
$C_\omega = 2$
Search Complexity

- **Time**: $O(\exp(n))$, (num. of variables)
 - The whole search-tree may be traversed
 - Too pessimistic
 - No tight bounds exist

- **Space**: Polynomial on n
 - If search is depth-first

Incomplete Inference:
Soft Local Consistency

- **Local** property enforceable in **polynomial time** that makes the problem **more explicit**
 - Node Consistency
 - Arc Consistency
 - Directional AC
 - Full DAC
Node Consistency (NC*)

For all variable i
- $\forall a, C_\emptyset \oplus C_i(a) < T$
- $\forall a, C_i(a) = 0$
Node Consistency (NC*)

- For all variable i
 - $\exists a, C_\emptyset \oplus C_i(a) < T$
 - $\exists a, C_i(a) = 0$

Complexity: $O(nd)$
Arc Consistency (AC*)

- NC*
- For all C_{ij}
 - $a \not\in b$
 - $C_{ij}(a,b) = 0$

b is a support
Arc Consistency (AC*)

- NC*
- For all C_{ij}
 - $a \rightarrow b$
 - $C_i(a, b) = 0$

 b is a support
Arc Consistency (AC*)

- NC*
- For all C_{ij} where $a \neq b$

 $C_{ij}(a,b) = 0$

- b is a support

- Complexity: $O(n^2d^3)$
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $a \leq b$
 - $C_j(a, b) \oplus C_j(b) = 0$

b is a full-support

———

Directional AC (DAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $a \leq b$
 - $C_j(a, b) \oplus C_j(b) = 0$

b is a full-support
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i<j$)
 - $a \preceq b$
 - $C_i(a,b) \oplus C_j(b) = 0$
- b is a full-support
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $a \preceq b$
 - $C_{ij}(a,b) \oplus C_{j}(b) = 0$
- b is a full-support
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i<j$)
 - $a \leq b$
 - $C_{ij}(a,b) \oplus C_{j}(b) = 0$
- b is a full-support
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i<j$)
 - $a \neq b$
 - $C_y(a,b) \oplus C_y(b) = 0$
- b is a full-support
Directional AC (DAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $a \triangleright b$
 - $C_j(a,b) \oplus C_j(b) = 0$

- b is a full-support

- Complexity: $O(ed^2)$
Full DAC (FDAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $\forall a \neq b$
 - $C(a, b) \oplus C(b) = 0$
 (full support)

- For all C_{ij} ($i > j$)
 - $\forall a \neq b$
 - $C(a, b) = 0$
 (support)
Full DAC (FDAC*)

- NC*
- For all C_{ij} $(i < j)$
 - $\Box a \Box b$
 - $C(a, b) \oplus C(b) = 0$
 - (full support)

- For all C_{ij} $(i > j)$
 - $\Box a \Box b$
 - $C(a, b) = 0$
 - (support)

\[T = 4 \quad C_\varnothing = 1 \]
Full DAC (FDAC*)

- NC*
- For all C_{ij} ($i < j$)
 - $a \uparrow b$
 - $C(a,b) \oplus C(b) = 0$
 - (full support)
- For all C_{ij} ($i > j$)
 - $a \downarrow b$
 - $C(a,b) = 0$
 - (support)
Full DAC (FDAC*)

- **NC**
- **For all** $C_{ij} (i < j)$
 - $x \not\sqsubset a \not\sqsubset b$
 - $C(a, b) \oplus C(b) = 0$
 - (full support)
- **For all** $C_{ij} (i > j)$
 - $x \not\sqsubset a \not\sqsubset b$
 - $C(a, b) = 0$
 - (support)

Full DAC (FDAC*)

- **NC**
- **For all** $C_{ij} (i < j)$
 - $x \not\sqsubset a \not\sqsubset b$
 - $C(a, b) \oplus C(b) = 0$
 - (full support)
- **For all** $C_{ij} (i > j)$
 - $x \not\sqsubset a \not\sqsubset b$
 - $C(a, b) = 0$
 - (support)
Full DAC (FDAC*)

- NC*
- For all $C_{ij} (i<j)$
 - $\square \quad a \quad \square \quad b$
 - $C_{ij}(a,b) \oplus C_{ij}(b) = 0$
 - (full support)

- For all $C_{ij} (i>j)$
 - $\square \quad a \quad \square \quad b$
 - $C_{ij}(a,b) = 0$
 - (support)
Full DAC (FDAC*)

- NC*
- For all C_{ij} ($i<j$)
 - $a owtie b$
 - $C_{ij}(a,b) + C_{j}(b) = 0$
 - (full support)
- For all C_{ij} ($i>j$)
 - $a owtie b$
 - $C_{ij}(a,b) = 0$
 - (support)
- complexity: $O(\text{end}^3)$

Hierarchy

- NC* $O(nd)$
- AC* $O(n^2d^3)$
- DAC* $O(ed^2)$
- FDAC* $O(\text{end}^3)$
Hybrid: search+local consist.

- WCSPs are solved with search:
 - Lower Bound \geq Upperbound \Rightarrow Backtrack
- Each node is a WCSP subproblem
 - T: Upper Bound (best known solution)
 - C_\emptyset: Lower Bound

Algorithm: maintain local consistency during search
- MNC, MAC, MDAC, MFDAC

Experiments

- Overconstrained Random CSPs
Complete Inference: Bucket Elimination

- Backtracking-free approach
- Sequence of problem reductions that preserve the best solution
- **Bucket Elimination** (BE) [Dechter 99]
 - Variables are eliminated one at a time
 - When no variable remains, the problem is trivially solved
- This approach has been rediscovered once and again [Bertele and Brioschi 72]

Bucket Elimination (BE)

- Two primitive operators:
 - **Sum of functions** \((f + g)\)
 - **Elimination of a variable** \(\text{elim}_i(f)\)
 \[f(x_1, x_2) = x_1 + x_2, \quad g(x_2, x_3) = x_2 x_3 \]
 - e.g.: \((f + g)(x_1, x_2, x_3) = x_1 + x_2 + x_2 x_3\)
 \[e \text{lim}_1(f)(x_2) = \min_{a \in D_1} \{ f(a, x_2) \} \]
BE Basic Step: Variable Elimination

Select a variable

BE Basic Step: Variable Elimination

Select a variable
BE Basic Step: Variable Elimination

Compute its *bucket*

Bucket: set of functions that *mention* the variable

BE Basic Step: Variable Elimination

Compute new function

\[g \elim_1(\boxed{f}) \]
BE Basic Step: Variable Elimination

- Remove variable and functions in Bucket

Complexity of Variable Elimination

- Eliminating x_i:
 - time: $O(\exp(dg))$
 - space: $O(\exp(dg))$
BE: complexity

- **time:** $O(\exp(w^*))$
- **space:** $O(\exp(w^*))$
- $w^* \leq n$
- these bounds are tight
- the space complexity renders BE infeasible as a general method

Hybrid: search + complete inference
Search Basic Step: Variable Branching

- Select a variable
Search Basic Step: Variable Branching

Hybrid: search + complete inference

- Idea:
 - Select a variable
 - If it is not too costly, then eliminate it
 - Else let search take care of it

- Two examples:
 - BE-BB(k) [Larrosa and Dechter, 2001]
 - SBE(k) [Dechter and El Fattah 2000, Kask et al 2001]

- k is a control parameter
 - k small, more search
 - k large, more variable elimination
BE-BB(\(k\))

- At each node:
 - \(x_i\) select a future variable
 - if \(dg(x_i) \leq k\) then eliminate \(x_i\)
 - else branch on the values of \(x_i\)

- Property:
 - BE-BB(-1) is BB
 - BE-BB(w*) is BE

BE-BB(2): example
BE-BB(2): example
BE-BB(2): example
BE-BB(2): example

...
BE-BB(2): example

...
BE-BB(2): example
BE-BB(2): example

BE-BB(2): example
BE-BB(2): example

BE-BB(k): complexity

Space: $O(\exp(k))$

Time: $O(\exp(k + z(k)))$
 - $z(k)$: number of branched variables
 - $z(k)$: it can be computed out of the k-restricted induced graph $G^*(k,o)$
Empirical Evaluation (time bounds)

- Random Graphs (50 nodes, 200 edges, average degree 8, $w^*[23]$)

Empirical Evaluation (time bounds)
Empirical Evaluation (CPU time)

<table>
<thead>
<tr>
<th>k</th>
<th>$n=30, r=5, dg=6$</th>
<th>$n=35, r=5, dg=6$</th>
<th>$n=20, r=5, dg=7$</th>
<th>$n=40, r=2, dg=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>43.0</td>
<td>107.5</td>
<td>45.3</td>
<td>84.9</td>
</tr>
<tr>
<td>0</td>
<td>6.1</td>
<td>27.5</td>
<td>38.8</td>
<td>63.2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>11.2</td>
<td>31.1</td>
<td>26.5</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>4.3</td>
<td>15.9</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>.9</td>
<td>3.7</td>
<td>8.8</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>.5</td>
<td>2.1</td>
<td>11.5</td>
<td>8.7</td>
</tr>
<tr>
<td>5</td>
<td>2.6</td>
<td>6.2</td>
<td>46.3</td>
<td>29.6</td>
</tr>
<tr>
<td>6</td>
<td>3.2</td>
<td>9.6</td>
<td>89.8</td>
<td>131.3</td>
</tr>
</tbody>
</table>
Super-Bucket Elimination, SBE(k)

- Eliminate sets of variables such that:
 - individual eliminations are too costly in space (namely, each variable in the set has degree larger than k)
 - the join degree is lower than k

SBE(2): example
SBE(2): example

\[\begin{align*}
&x_1 \quad d_{g_1} = 5 \\
&x_2 \quad d_{g_2} = 5 \\
&x_3 \quad d_{g_3} = 6 \\
&x_4 \quad d_{g_4} = 5 \\
&x_5 \quad d_{g_5} = 5
\end{align*} \]

SBE(2): example

\[\begin{align*}
&x_s \\
&x_1 \\
&x_2 \\
&x_3 \\
&x_4 \\
&x_5 \\
&x_6 \\
&x_7 \quad s
\end{align*} \]
SBE(2): example

Super bucket: set of functions mentioning variables in the set S

$$\text{lim}_{i=1,2,3,4,5} \left(\bigwedge f \right)$$
SBE(2): example

Each super-bucket elimination is a set of COP instances that can be solved with BB!!

e.g.:

\[f(x_1, x_2, x_4), g(x_1, x_4, x_3), h(x_2, x_3, x_5), \]

\[e \lim_{1,2,3} (f + g + h)(x_4, x_5) \]

\[D_1 \sqcap D_2 \text{ optimization problems} \]
SBE\((k) \)

\[\text{Repeat:} \]
\[S \not\in \{x_i\}, \text{ future variable} \]
\[\text{while } |N_S| > k \text{ do} \]
\[S \not\in S \not\in \{x_j\}, \text{ future variable} \]
\[\text{endwhile} \]
\[\text{eliminate } S \text{ from the super-bucket (Branch and Bound)} \]

\[\text{Property:} \]
\[\text{SBE(0) is BB} \]
\[\text{SBE(w*) is BE} \]

SBE(2): example
SBE(2): example
SBE(2): example

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7 \]

SBE(2): example

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7 \]
SBE(2): example

SBE(2): example
SBE(k)

- Complexity:
 - space: $O(\exp(k))$
 - time: $O(\exp(w_k^*))$

\[k \]-augmented induced width

Empirical Evaluation (time bounds)

- Random Graphs (50 nodes, 200 edges, average degree 8, $w^*[23]$)

- Branch and bound
- Bucket elimination
Empirical Evaluation (time bounds)

Summary

- Soft constraints:
 - augment the CSP framework
 - find best solution
- Valued CSP:
 - general axiomatic framework
- Solving techniques:
 - generalization of CSP techniques
That’s all!

Slides available next week at:

- wwwlsi.upc.es/~larrosa
- www.iiia.csic.es/~pedro