
Using Cases as Heuristics in Reinforcement Learning:
a Transfer Learning Application

Luiz A. Celiberto Jr.
Dept. of Electrical Engineering,

Technological Institute of
Aeronautics (ITA)

São José dos Campos, Brazil
celibertojr@fei.edu.br

Jackson P. Matsuura
Dept. of Electrical Engineering,

Technological Institute of
Aeronautics (ITA)

São José dos Campos, Brazil
jackson@ita.br

Ramon Lopez de
Mantaras

Artificial Intelligence Research
Institute (IIIA-CSIC)

Campus Universitat Autonoma de
Barcelona, Bellaterra, Spain

mantaras@iiia.csic.es

Reinaldo A. C. Bianchi
Dept. of Electrical Engineering,

Centro Universitário da FEI
São Bernardo do Campo, Brazil

rbianchi@fei.edu.br

Abstract
In this paper we propose to combine three AI tech-
niques to speed up a Reinforcement Learning al-
gorithm in a Transfer Learning problem: Case-
based Reasoning, Heuristically Accelerated Rein-
forcement Learning and Neural Networks. To do
so, we propose a new algorithm, called L3, which
works in 3 stages: in the first stage, it uses Rein-
forcement Learning to learn how to perform one
task, and stores the optimal policy for this problem
as a case-base; in the second stage, it uses a Neural
Network to map actions from one domain to actions
in the other domain and; in the third stage, it uses
the case-base learned in the first stage as heuris-
tics to speed up the learning performance in a re-
lated, but different, task. The RL algorithm used
in the first phase is the Q-learning and in the third
phase is the recently proposed Case-based Heuris-
tically Accelerated Q-learning. A set of empiri-
cal evaluations were conducted in transferring the
learning between two domains, the Acrobot and the
Robocup 3D: the policy learned during the solution
of the Acrobot Problem is transferred and used to
speed up the learning of stability policies for a hu-
manoid robot in the Robocup 3D simulator. The
results show that the use of this algorithm can lead
to a significant improvement in the performance of
the agent.

1 Introduction
One of the main problems of Reinforcement Learning (RL)
[Sutton and Barto, 1998] algorithms is that they typically suf-
fers from very slow learning rates, requiring a huge number
of iterations to converge on a good solution. This problem
becomes worse in tasks with high dimensional or continuous
state spaces and when the system is given sparse rewards.

One way to speed up RL algorithms is by making use of a
conveniently chosen heuristic function, which is used for se-
lecting appropriate actions to perform in order to guide explo-
ration during the learning process [Bianchi et al., 2008]. Sev-
eral methods have been successfully applied for defining the
heuristic function, including the reuse of previously learned
policies, using a Case-Based Reasoning approach [Bianchi et

al., 2009]. Another way to speed up a RL algorithm is by
using Transfer Learning, a paradigm of machine learning that
reuses knowledge accumulated in a previous task to speed up
the learning of a novel, but related, target task [Taylor and
Stone, 2009].

This paper investigates the use of the Case-Based Heuris-
tically Accelerated Reinforcement Learning (CB-HARL) al-
gorithm [Bianchi et al., 2009] as a means to transfer learning
acquired by one agent during its training in one problem to
another agent that has to learn how to solve a similar, but
more complex, problem. To do so, we propose a new algo-
rithm, called L3, which works in 3 stages: in the first stage,
it uses the Q-learning algorithm [Watkins, 1989] to learn how
to perform one task, and stores the optimal policy for this
problem as a case-base; in the second stage, it uses a Neu-
ral Network to map actions from one domain to actions in
the other domain and; in the third stage, it uses the case-base
learned in the first stage as heuristics in the CB-HARL algo-
rithm, speeding up the learning process.

Experiments in this work were conducted in two domains:
the Acrobot [Sutton and Barto, 1998], where the actions
learned during the solution of the problem are stored as a
case-base; and the Robocup 3D Simulator, where the case
based is used to speed up the learning of stability policies for
a humanoid robot. Nevertheless, the technique described in
this work is domain independent and can be used to solve a
wide range of problems.

The paper is organized as follows: Section 2 describes
the Case Based Reasoning technique and Section 3 briefly
reviews the heuristic approach to speed up RL and the CB-
HAQL algorithm. Section 4 describes the Transfer Learning
problem and Section 5 describes the combination of the tech-
niques and the L3 algorithm. Section 6 describes the experi-
ments and results and finally, Section 7 concludes this work.

2 Case Based Reasoning
Case Based Reasoning [de Mántaras et al., 2005] is an AI
technique that has been shown to be useful in a multitude of
domains. CBR uses knowledge of previous situations (cases)
to solve new problems, by finding a similar past case and
reusing it in the new problem situation. In the CBR approach,
a case usually describes a problem and its solution, i.e., the
state of the world in a given instant and action to perform to
solve that problem.

According to López de Mántaras et al [2005], solving a
problem by CBR involves “obtaining a problem description,
measuring the similarity of the current problem to previous
problems stored in a case base with their known solutions, re-
trieving one or more similar cases, and attempting to reuse the
solution of the retrieved case(s), possibly after adapting it to
account for differences in problem descriptions”. Other steps
that are usually found in CBR systems are the evaluation of
the proposed solution, the revision of the solution, if required
in light of its evaluation, and the retention (learning) of a new
case, if the system has learned to solve a new problem.

In general, in CBR a case is composed of a problem de-
scription (P) and the corresponding description of the solu-
tion (A). Therefore, the case definition is formally described
as a tuple:

case = (P,A).

The case retrieval process consists in obtaining from the base
the most similar case, the retrieved case. Therefore, it is nec-
essary to compute the similarity between the current problem
and the cases in the base. The similarity function indicates
how similar a problem and a case are. In this work this func-
tion is defined by the quadratic distance between the problem
and the case.

3 Combining CBR and Heuristics in
Reinforcement Learning

The RL problem can be formulated as a discrete time, fi-
nite state, finite action Markov Decision Process (MDP).
The learning environment can be modeled by a 4-tuple
〈S,A, T ,R〉, where: S: is a finite set of states. A: is a fi-
nite set of actions that the agent can perform. T : S × A →
Π(S): is a state transition function, where Π(S) is a prob-
ability distribution over S. T (s, a, s′) represents the proba-
bility of moving from state s to s′ by performing action a.
R : S ×A → <: is a scalar reward function.

A Heuristically Accelerated Reinforcement Learning
(HARL) algorithm [Bianchi et al., 2008] is a way to solve
a MDP problem with explicit use of a heuristic function
H : S × A → < for influencing the choice of actions by the
learning agent. H(s, a) defines the heuristic that indicates the
importance of performing action a when visiting state s. The
heuristic function is strongly associated with the policy indi-
cating which action must be taken regardless of the action-
value of the other actions that could be used in the state.

The first HARL algorithm proposed was the Heuristically
Accelerated Q–Learning (HAQL) [Bianchi et al., 2004], as
an extension of the Q–Learning algorithm [Watkins, 1989].
The only difference between the two algorithms is that in the
HAQL makes use of an heuristic function H(s, a) in the ε −
greedy action choice rule, that can be written as:

π(s) =

{
arg maxa

[
Q̂(s, a) + ξH(s, a)β

]
if q ≤ p,

arandom otherwise,
(1)

where H(s, a) is the heuristic function that plays a role in
the action choice, ξ and β are design parameters that control
the influence of the heuristic function, q is a random value

Table 1: The CB-HAQL algorithm [Bianchi et al., 2009].

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a) using Equation 2 with the

actions suggested by the case selected.
Select an action a using equation 1.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a).
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

with uniform probability in [0,1] and p (0 ≤ p ≤ 1) is the
parameter which defines the exploration/exploitation trade-
off and arandom is an action randomly chosen among those
available in state s.

The Q-values are updated using the traditional Q-learning
equation. As a general rule, the value of H(s, a) used in
HAQL should be higher than the variation among the Q̂(s, a)
values for the same s ∈ S, in such a way that it can influence
the choice of actions, and it should be as low as possible in
order to minimize the error. It can be defined as:

H(s, a) =

{
max
i

Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(2)

where η is a small real value (usually 1) and πH(s) is the
action suggested by the heuristic policy.

In order to provide HARL algorithms the capability of
reusing previous knowledge from a domain, Bianchi et al.
[2009] proposed the Case Based HAQL, which extends the
HAQL algorithm with the abilities to retrieve a case stored in
a base, adapt it to the current situation, and build a heuristic
function that corresponds to the case.

In this new algorithm steps were added before the action
selection is made to compute the similarity of the cases with
the current state and the cost of adaptation of these cases. A
case is retrieved if the similarity is above a certain threshold,
and the adaptation cost is low. After a case is retrieved, an
heuristic is computed using Equation 2 and the sequence of
actions suggested by the case selected. This heuristic is used
for a certain amount of time, equal to the number of actions
of the retrieved case. After that time, a new case can be re-
trieved. The complete CB-HAQL algorithm is presented in
Table 1.

Several authors have been studying the use of CBR to-
gether with RL: Sharma et al [2007] makes use of CBR as a
function approximator for RL, and RL as revision algorithm
for CBR in a hybrid architecture system; Gabel and Ried-
miller [2005] also makes use of CBR in the task of approxi-
mating a function over high-dimensional, continuous spaces;
Juell and Paulson [2003] exploit the use of RL to learn simi-
larity metrics in response to feedback from the environment;
Auslander et al [2008] uses CBR to adapt quickly an RL

agent to changing conditions of the environment by the use of
previously stored policies and Li, Zonghai and Feng [2002]
proposes an algorithm that makes use of knowledge acquired
by reinforcement learning to construct and extend a case base.

4 Transfer Learning
According to Taylor and Stone [2009], only recently the use
of Transfer Learning for Reinforcement Learning has gained
attention in the artificial intelligence community. Transfer
Learning is not a new idea: it has been studied in the psy-
chological literature on transfer of learning since the work of
Thorndike and Woodworth [1901]. Also, TL has been used to
transfer between machine learning tasks for some time now.
These works usually study transfer of learning in the context
of classification, multitask learning and inductive learning.

Is possible to divided the TL in two main categories: intra-
domain transfer, where TL is used to solve a new task within
a given domain and cross-domain transfer where transfer is
made between domains. Usually, Intra-domain transfer uses
the same space state and transforms primitive actions in more
complex actions to be uses in new tasks within this domain.
Cross-domain transfer tries to find similar structure between
the source and target task to transfer the learning. An RL
agent must, at least, perform the following steps [Taylor and
Stone, 2009]:

• Given a target task, select an appropriate source task or
set of tasks from which to transfer.

• Learn how the source task(s) and target task are related.

• Effectively transfer knowledge from the source task(s)
to the target task.

Transfer Learning is a very important tool to speed up RL
algorithms because, in RL, even a small change on the config-
uration of a problem may requires a complete new training.
With TL, what an agent has learned can be transferred to a
new situation, helping it to learn faster. Drummond [2002]
was probably the first to use CBR to speed up RL, proposing
to accelerate RL by transferring parts of previously learned
solutions to a new problem, exploiting the results of prior
learning to speed up the process. More recent works on TL
that have combined CBR and RL include, for example, van
Hessing and Goel [2005] proposal of a technique for abstract-
ing reusable cases from RL, enabling the transfer of acquired
knowledge to other instances of the same problem and Aha et
al. [2009] method for recognizing intent in a source task, and
then applying that knowledge to improve the performance of
a case-based reinforcement learner in a target task.

Other important works that focus on other aspects of the
use of TL in TL include: Fernandez and Veloso [2006], that
focus on exploration and policy reuse; Torrey et al. [2005],
which create rules from the learned policy to help another
agent. Banerjee and Stone [2007] transfer knowledge learned
in one game to expedite learning in many other games; Soni
and Singh [2006] used homomorphisms to take a policy from
one MDP and transfer it to the other, directly; Taylor et al
[2008] shows that an action and state variable mapping can
be learned, but does not directly transfers the policy between

Table 2: The L3 algorithm.

1.a) Use the Q-learning algorithm to compute the optimal
policy for the source domain.

1.b) Create a case-base.
2) Map actions from source domain to target domain

using a Neural Network.
3) Use the case base in the CB-HAQL algorithm to solve

the problem in the target domain.

domains, using instances from the source task as a previ-
ously observed transition in the target task; and Lazaric et al.
[2008] transfer parts of the space states to help to accelerate
learning. Finally, Taylor and Stone [2009] present a frame-
work that classifies transfer learning methods and survey the
existing literature.

5 The L3 algorithm
To transfer the cases between learning agents in two domains
we propose the L3 algorithm, which works in 3 stages: it
learns how to perform a task in the source domain, and stores
the optimal policy for this problem as a case-base; it maps ac-
tions from the source domain to actions in the target domain;
and it uses the case-base learned in the first stage as heuristics
in the CB-HARL algorithm (see Table 2). The name of the
algorithm comes from the fact that it learns three times (the
source task, the mapping and the target task).

The main motivation of using cases as heuristics to transfer
the learning is that the heuristic function is an action policy
modifier which does not interfere with the standard bootstrap-
like update mechanism of RL the algorithm: the new L3 algo-
rithm differs from the Q-learning only in the way exploration
is carried out, which allows many theoretical conclusions ob-
tained for the Q-learning (such as Convergence Theorem) to
remain valid for the L3. Other proposals combining CBR and
RL cannot guarantee this.

5.1 Stage 1: Learning the source task and
construction of the Case-base

In the first stage, the case base construction, the Q-learning
algorithm is used to compute the optimal policy for the source
domain. After the learning stabilizes a case based is built
from the learned policy, with a pre-defined number of cases.

Similar to the model proposed by Ros [Ros et al., 2009],
each case is described by a 3-tuple: case = (P,A,R) where:
P is the description of the problem, containing all relevant
information of the agent state (a state s ∈ S); A is an action
(or a sequence of actions) that must be performed to solve
the problem and; R is the expected return for performing the
action, which indicates the quality of the action stored in this
case.

5.2 Stage 2: Mapping of action between domains
In the second stage, a simple Neural Network learns how to
relate the actions between the source task and the target task
(the mapping between the states is assumed). In this network,
the input nodes correspond to the set of possible actions in the
target domain, and the output nodes corresponds to the set of

Figure 1: The Acrobot (from Sutton and Barto, 1998)

actions of the source domain (usually, the source domain has
fewer actions than the target domain).

To learn the weights of the network, a set of random ac-
tions is executed in both simulators, and the results of the
actions are observed (the result is the distribution over the
next states). If the results of the two actions are similar (for
example, both actions lead to an increase in the x position
of a robot), the weight that links both actions is increased
to strengthen the correlation between the actions, and the
weights of the other connections are decreased; if the results
are not similar, or it is not possible to observe any similarity,
the weights are left as they are.

This scheme can be formalized as a linear, single layer,
forward feed linear perceptron using the Hebb Learning rule,
where the input and output vectors should be in the bipolar
form (1 or−1) and the activation function of the output nodes
are binary. The weights are initially zero and they are adjusted
each time the results of two actions are considered similar
(actions with similar results are the input vector for training),
using the following formula:

∆wi = ηxiy (3)

where wi is weight for input i; xi is the input value i (the
action in the target domain); y is the output value (the action
in the source domain) and η is learning rate. The result of
this training is a table that describes the relation between the
actions in both domains.

5.3 Stage 3: Reusing the case base in the
CB-HARL algorithm

In the last stage, the previously stored case base is used in the
CB-HAQL algorithm to speed up the learning of the task in
the target domain.

Case retrieval is in general driven by a similarity measure
between the new problem and the solved problems in the case
base. In this work we use the case retrieval method proposed
by Ros et al. (2009), which considers the similarity between
the problem and the case (the similarity is computed using
a Gaussian distance between the case and the problem), the
cost of adapting the problem to the case, and the applicability
of the solution of the case. The cost of adapting the problem

Figure 2: The Nao Robot in 3D (from Boedecker et al., 2010)

to the case is computed as a function of the distances between
the features in the problem and the ones specified in the case.
The complete case retrieval algorithm is described in detail in
Ros et al. (2009).

After a case is retrieved, a heuristic is computed using
Equation 2 and the action suggested by the case is selected
and executed. If the case base does not contain a case that
can be used in the current situation, the CB-HAQL algorithm
will behave as the traditional Q-learning algorithm.

Our approach differs from previous research combining
CBR and RL because the policy learned in one domain is
stored as a case base and then used in a new domain as a
heuristic: it is used in the action selection rule to guide the
search in the new domain, in the same way a heuristic is
used in an informed search method. At the beginning of
each learning episode, RL operates as a blind search method.
However, cases can be used to improve RL from a blind
search method to an informed search one. By doing this, if the
case base contains a case that can be used in a given situation,
then there will be a speed up in the convergence time. But if
the case base does not contain any useful case – or even if it
contains cases that implement wrong solutions to the problem
– the agent will still learn the optimal solution by using the
RL component of the algorithm.

6 The Transfer Learning Experience
In the this section we present an application of the L3 algo-
rithm, where cases acquired in the Acrobot domain are used
to speed up the learning of stability of a humanoid robot in
the Robocup 3D Soccer Simulator domain.

The Acrobot [Sutton and Barto, 1998] (Figure 1) is a two-
link, underactuated robot where the first joint cannot exert
torque, but the second joint can. This system has four con-
tinuous state variables: two joint positions, θ1 and θ2, and
two joint velocities θ̇1 and θ̇2. The goal is to swing the end-
point above the bar by an amount equal to equilibrium po-
sition (θ1 = (π/2), θ2 = 0), starting from the initial state
θ1 = θ2 = 0. There are three possible actions: positive
torque, negative torque, and no torque [Sutton and Barto,
1998].

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

ti
m

e
s
 t

h
e

 g
o

a
l
is

 r
e

a
c
h

e
d

Episodes

QL
L3

HAQL

Figure 3: The learning curves for the Q–learning, HAQL and
L3 algorithms

Table 3: Action-Mapping.
Robocup 3D Acrobot

+0.5◦ Hip Pitch Positive torque
−0.5◦ Hip Pitch Negative torque

no action no torque

The RoboCup 3D Simulated Soccer League aim is to help
the RoboCup federation to achieve it’s goal of developing
a team of fully autonomous humanoid robots that can win
against the human world soccer champion team in 2050, by
developing a realistic simulator that allows agents to control
humanoid robots competing against one another. The current
robot model used by the simulator is based on the Nao Robot
(Figure 2) by Aldebaran Robotics. This robot is a biped hu-
manoid with 22 degrees of freedom, with height about 57cm
and weight around 4.5kg [Boedecker et al., 2010]. The Nao
robot is equipped with various sensors and effectors, some of
them reproduced in the simulator, for example: angle sensors
in each joint, a gyroscope, an accelerometer and a force sen-
sor that provides information about the force applied upon the
sole of each foot.

In the experiment of learning a stability policy for this
robot, we controlled only three of the robot’s joints to help
to find the equilibrium position: Hip Pitch, Knee Pitch, Foot
Pitch (with left and right joint having the same position). All
the other joints of the robot are kept in the same position. At
each time step, the robot can use one of seven actions possi-
ble: +0.5◦ Hip Pitch, +0.5◦ Knee Pitch, +0.5◦ Foot Pitch,
−0.5◦ Hip Pitch,−0.5◦ Knee Pitch, −0.5◦ Foot Pitch and no
action. The robot starts a trial at a random position close to
the equilibrium (i.e., the body leaning forward or backward
in angles between -20 and 20 degrees in the foot joint).

The first stage of the L3 algorithm is to build the case-base
to be used by the CB-HAQL. To do so, the Q–learning al-
gorithm is used in the Acrobot domain for 10,000 episodes
(each episode ends either after 20,000 steps or when the agent
find the goal state). Acquiring cases begins when the learning

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

V
al

ue
 o

f T

Episodes

QL vs. TL−HAQL
0.05% confidence level

Figure 4: Student’s t-Test between Q-learning and L3.

stabilizes (Q̂(s′, a′) − Q̂(s, a) ∼ 0) which happens near the
9,000th episode. From the episode 9,000 and beyond, 500
cases are acquired by sampling the action-state set randomly.
During this sampling, if a case contains the worst action for
that state (i.e., the one with the lowest Q value), this case is
discarded. Other possible ways to build the case base were
tested (using the 500 actions with the best R, for example)
but, surprisingly, the approach used in this work was the one
that produced the best results. In this experiment, cases are
single step: they represent a single action to be taken in a state
(but the approach is general – sequences of actions can also
be stored in the case base).

For the second stage of the L3 algorithm, it is needed to
relate the actions between the two domains. To compare the
output of the actions, we compared the Acrobot’s θ1 to the
movement of the Nao Robot ankle (foot pitch) and θ2 with
the movement of it’s knee. All other joint and velocities were
left out of this comparison, which can be considered as an
intra-domain transfer of learning.

In the experiment, the neural network input consists of the
seven action used in the Robocup 3D Simulator and the out-
puts are the three possible actions in the Acrobot. Table 3
shows the result of the automatic action-mapping.

At the last stage of the L3 algorithm, the case-base is used
in the CB-HAQL algorithm to learn the Nao Robot’s equi-
librium position. The features used to compute the distance
between a case and the problem is the angles in the joints (the
states in both domains).

To verify the hypothesis that the L3 algorithm improves the
learning rate of the system, we compare the obtained results
with two other algorithms: the Q-learning and the HAQL.
Thirty training sessions were executed for these three algo-
rithms, each session consisting of 400 episodes, each episode
having 120 seconds of duration. The results of the three algo-
rithms can be seen in Figure 3. This Figure shows the leaning
curves (i.e., how many times per episode the agent reached
the goal).

It can be seen that the performance of the Q–learning is
worse than that of the HAQL, which is worse than that of

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

V
al

ue
 o

f T

Episodes

HAQL vs. TL−HAQL
0.05% confidence level

Figure 5: Student’s t-Test between HAQL and L3.

Table 4: Learning time for the three algorithms.
Algorithm Time (in minutes)
Q-learning 700

HAQL 200
L3 90

the L3 at the initial learning phase; later the performance of
the three algorithms becomes more similar, as expected. It is
important to remember that the HAQL uses a domain knowl-
edge that must be introduced by the programmer, while the
L3 uses less domain knowledge.

Student’s t-Test was used to verify the hypothesis that the
transfer of learning speeds up the learning process. For the
experiments the absolute value of T was computed for each
episode using the same data presented in Figure 3. The
greater the absolute value of T, the more significantly differ-
ent is the result. The dotted line indicates the 0.05% confi-
dence limit, i.e. results above the line are different and the
probability for this statement to be erroneous is 0.05%. The
results, presented in Figures 5 and 4, show that L3 performs
significantly better than Q–learning until the 350th episode
and HAQL until the 50th episode, with a level of confidence
greater than 99.95%. After that, the results became closer.

Finally, the learning time of the L3 algorithm was com-
pared with that of the other algorithms (Table 4). The 3D
simulator takes 120 seconds for each episode, regardless of
the algorithm it is running. The Q-learning takes 350 episodes
(700 minutes) to reach optimality and the HAQL takes 100
episodes (200 minutes). The L3 takes 40 episodes to con-
verge. Adding this to the learning time for the Acrobot (ap-
prox. 10 minutes) and the time to build the case-base (less
than 1 minute), gives a total time of approximately 90 min-
utes for L3. The time to learn the action mapping was not
taken into account when computing the total time of the L3
algorithm because it was much smaller than the rest of the
learning times: very few data is used in the this step – in this
experiment, it ranged from 50 to 100 steps – much less than
one complete episode.

The parameters used in all the experiments were the same:
α = 0.25, γ = 0.9, the exploration/ exploitation rate = 0.1
and the Q table initialized with zeroes. HAQL and the L3
algorithms use η = 1. The reward is -1 on all steps, ex-
cept when the goal is reached. In this case the reward is
+1. The heuristic used in the HAQL algorithm was defined
using a simple rule: if the Robocup 3D is laying forward,
move the HIP back (−0.5◦), if it is laying backwards, move
the HIP forward (+0.5◦). The algorithm uses a discretized
Q-table, composed by the angles of the joints, discretized at
one-degree intervals.

7 Conclusion
In this paper we proposed a new algorithm, called L3, which
combines three AI techniques to speed up a Reinforcement
Learning algorithm in a Transfer Learning problem: Case-
based Reasoning, Heuristically Accelerated Reinforcement
Learning and Neural Networks.

The experiments showed that transferring the policy
learned by an agent in one domain to another agent in a dif-
ferent domain by means of the case-base speeds up the con-
vergence time of the L3 algorithm, when compared to the Q–
learning or the HAQL algorithm. Although this work used
the Q-learning algorithm in the L3 algorithm, the proposed
method can be integrated with any TD learning algorithm.

The major problem with this approach is to define when
two actions have a similar result. In this work, which we con-
sidered as an intra-domain transfer of learning, the variables
which should be compared were defined by the programmer.
A solution to this problem, which is well known in the TL
literature, is the most important work to be done in the fu-
ture. Another issue with the algorithm proposed here is that
the neural network used is very simple - other network archi-
tectures may lead to better results.

Acknowledgments
Luiz Celiberto Jr. acknowledges the support of CAPES and
Reinaldo Bianchi acknowledges the support of the CNPq
(201591/2007-3) and FAPESP (2011/07127-0). This work
has been partially funded by the AGAUR 2009-SGR-1434
grant of the Generalitat de Catalunya and the NEXT-CBR
MICINN TIN2009-13692 project.

References
[Aha et al., 2009] David W. Aha, Matthew Molineaux, and

Gita Sukthankar. Case-based reasoning in transfer learn-
ing. In Lorraine McGinty and David C. Wilson, editors,
8th International Conference on Case-Based Reasoning,
volume 5650 of Lecture Notes in Computer Science, pages
29–44. Springer, 2009.

[Auslander et al., 2008] Bryan Auslander, Stephen Lee-
Urban, Chad Hogg, and Héctor Muñoz-Avila. Rec-
ognizing the enemy: Combining reinforcement learning
with strategy selection using case-based reasoning. In
Klaus-Dieter Althoff, Ralph Bergmann, Mirjam Minor,
and Alexandre Hanft, editors, 9th European Conference
on Case-Based Reasoning, volume 5239 of Lecture Notes
in Computer Science, pages 59–73. Springer, 2008.

[Banerjee and Stone, 2007] Bikramjit Banerjee and Peter
Stone. General game learning using knowledge transfer. In
Manuela M. Veloso, editor, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, pages
672–677. AAAI Press, 2007.

[Bianchi et al., 2004] Reinaldo A. C. Bianchi, Carlos H. C.
Ribeiro, and Anna H. R. Costa. Heuristically Acceler-
ated Q-learning: a new approach to speed up reinforce-
ment learning. Lecture Notes in Artificial Intelligence,
3171:245–254, 2004.

[Bianchi et al., 2008] Reinaldo A. C. Bianchi, Carlos H. C.
Ribeiro, and Anna H. R. Costa. Accelerating autonomous
learning by using heuristic selection of actions. Journal of
Heuristics, 14(2):135–168, 2008.

[Bianchi et al., 2009] Reinaldo A. C. Bianchi, Raquel Ros,
and Ramon López de Mántaras. Improving reinforce-
ment learning by using case based heuristics. In Lor-
raine McGinty and David C. Wilson, editors, 8th Inter-
national Conference on Case-Based Reasoning, volume
5650 of Lecture Notes in Computer Science, pages 75–89.
Springer, 2009.

[Boedecker et al., 2010] Joschka Boedecker, Klaus Dorer,
Markus Rollmann andYuan Xu, Feng Xue, Marian Buchta,
and Hedayat Vatankhah. Spark 3D Simulation System.
2010.

[de Mántaras et al., 2005] Ramon López de Mántaras, David
McSherry, Derek Bridge, David Leake, Barry Smyth, Su-
san Craw, Boi Faltings, Mary Lou Maher, Michael T. Cox,
Kenneth Forbus, Mark Keane, Agnar Aamodt, and Ian
Watson. Retrieval, reuse, revision and retention in case-
based reasoning. Knowl. Eng. Rev., 20(3):215–240, 2005.

[Drummond, 2002] Chris Drummond. Accelerating rein-
forcement learning by composing solutions of automati-
cally identified subtasks. Journal of Artificial Intelligence
Research, 16:59–104, 2002.

[Fernández and Veloso, 2006] Fernando Fernández and
Manuela Veloso. Probabilistic policy reuse in a reinforce-
ment learning agent. In Hideyuki Nakashima, Michael
P. Wellman, Gerhard Weiss and Peter Stone, editors,
Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages
720–727. ACM, 2006.

[Gabel and Riedmiller, 2005] Thomas Gabel and Martin A.
Riedmiller. CBR for state value function approximation
in reinforcement learning. In Héctor Muñoz-Avila and
Francesco Ricci, editors, 6th International Conference on
Case-Based Reasoning, volume 3620 of Lecture Notes in
Computer Science, pages 206–221. Springer, 2005.

[Juell and Paulson, 2003] Paul Juell and Patrick Paulson.
Using reinforcement learning for similarity assessment in
case-based systems. IEEE Intelligent Systems, 18(4):60–
67, 2003.

[Lazaric et al., 2008] Alessandro Lazaric, Marcello Restelli,
and Andrea Bonarini. Transfer of samples in batch rein-
forcement learning. In William W. Cohen, Andrew Mc-
Callum and Sam T. Roweis, editors, 25th International

Conference on Machine Learning, pages 544–551. ACM,
2008.

[Li et al., 2002] Yang Li, Chen Zonghai, and Chen Feng. A
case-based reinforcement learning for probe robot path
planning. In 4th World Congress on Intelligent Control
and Automation, pages 1161– 1165. 2002.

[Ros et al., 2009] Raquel Ros, Josep Lluis Arcos, Ra-
mon López de Mántaras, and Manuela Veloso. A
case-based approach for coordinated action selection in
robot soccer. Artificial Intelligence, 173(9-10):1014–1039,
2009.

[Sharma et al., 2007] Manu Sharma, Michael Holmes,
Juan Carlos Santamarı́a, Arya Irani, Charles Lee Isbell
Jr., and Ashwin Ram. Transfer learning in real-time
strategy games using hybrid CBR/RL. In Manuela M.
Veloso, editor, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 1041–1046.
AAAI Press, 2007.

[Soni and Singh, 2006] Vishal Soni and Satinder Singh. Us-
ing homomorphisms to transfer options across continuous
reinforcement learning domains. In Proceedings of the
21st National Conference on Artificial Intelligence, vol-
ume 1, pages 494–499. AAAI Press, 2006.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[Taylor and Stone, 2009] Matthew E. Taylor and Peter
Stone. Transfer learning for reinforcement learning do-
mains: A survey. Journal of Machine Learning Research,
10(1):1633–1685, 2009.

[Taylor et al., 2008] Matthew E. Taylor, Nicholas K. Jong,
and Peter Stone. Transferring instances for model-
based reinforcement learning. In Walter Daelemans, Bart
Goethals and Katharina Morik, editors, 19th European
Conference on Machine Learning, volume 5212 of Lecture
Notes in Artificial Intelligence, pages 488–505. Springer,
2008.

[Thorndike and Woodworth, 1901] E. L. Thorndike and
R. S. Woodworth. The influence of improvement in one
mental function upon the efficiency of other functions.
Psychological Review, 8:247–261, 1901.

[Torrey et al., 2005] Lisa Torrey, Trevor Walker, Jude W.
Shavlik, and Richard Maclin. Using advice to transfer
knowledge acquired in one reinforcement learning task to
another. In João Gama, Rui Camacho, Alı́pio Jorge, and
Luı́s Torgo, editors, 16th European Conference on Ma-
chine Learning, volume 3720 of Lecture Notes in Com-
puter Science, pages 412–424. Springer, 2005.

[von Hessling and Goel, 2005] Andreas von Hessling and
Ashok K. Goel. Abstracting reusable cases from reinforce-
ment learning. In Stefanie Brüninghaus, editor, 6th Inter-
national Conference on Case-Based Reasoning, Workshop
Proceedings, pages 227–236, 2005.

[Watkins, 1989] Christopher J. C. H. Watkins. Learning from
Delayed Rewards. PhD thesis, University of Cambridge,
1989.

