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Reinforcement Learning (RL) techniques are very attractiv
in the context of Multiagent systems: they are easy to uset,
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Abstract

Trust and reputation are concepts that have been
traditionally studied in domains such as electronic
markets, e-commerce, game theory and bibliomet-
rics, among others. More recently, researchers
started to investigate the benefits of using these
concepts in multi-robot domains: when one robot
has to decide if it should cooperate with another one
to accomplish a task, should the trustin the other be
taken into account? This paper proposes the use of
a trust model to define when one agent can take an
action that depends on other agents of his team. To
implement this idea, a Heuristic Multiagent Rein-
forcement Learning algorithm is modified to take
into account the trust in the other agents, before se-
lecting an action that depends on them. Simulations
were made in a robot soccer domain, which extends
a very well known one proposed by Littman by ex-
panding its size, the number of agents and by us-
ing heterogeneous agents. Based on the results it
is possible to show the performance of the learning
algorithm can be improved even when using very
simple trust models.
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or-Foe Q-Learning [Littman, 2001] and the Nash Q-Learning
[Hu and Wellman, 2003].

An recently proposed way of increasing the convergence
rate of an RL algorithm is to use heuristic functions for stle
ing actions in order to guide the exploration of the statéeac
space in an useful way [Bianckt al, 2008]. In this pro-
posal, called heuristically Accelerated Reinforcemerarhe
ing (HARL), the heuristic function is associated with a pref
erence policy that indicates that a certain action musthenta
instead of another. This proposal was also extended to deal
with Multiagent problems [Bianchet al., 2007], but without
taking into account that different agents may not perform in
the way the heuristic action demands.

This paper investigates the use of a trust model to define
when one agent can take an action that depends on other
agents of his team. To implement this idea, a Heuristic Multi
agent Reinforcement Learning algorithm called Heurifitica
Accelerated Minimax-Q (HAMMQ) was modified to take
into account the trust one agent have in the other agents, be-
fore selecting an action that depends on them.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the Multiagent Reinforcement Learn-
ing problem and the Distributed Q—Learning algorithm, whil
Section 3 describes the heuristic approach to RL. Section 4
shows how to incorporate a simple trust model in the Heuris-
tically Accelerated Minimax-Q algorithm. Section 5 pretsen
the experiments performed and shows the results obtained.
Finally, Section 6 provides our conclusions and outlines fu
ure work.

have guarantee of convergence to equilibrium in the limit . . .
(provided that some conditions are satisfied, such as a larg¢ Multiagent Reinforcement Learning

number of visits to every state-action pair [Watkins, 1989] Formally, an MG is defined by [Littman, 1994]:

are based on sound theoretical foundations [Littman and
Szepesvari, 1996], and have been applied to solve a widle var
ety of control and planning problems when neither an analyt-

ical model nor a sampling model is availalalgriori [Kael-
bling et al,, 1996; Munos and Bourgine, 1998].

Unfortunately, convergence of any RL algorithm may only
be achieved after extensive exploration of the state4actio
space, which can be very time consuming, a problem that is
worsened by the existence of multiple agents. Despite that,
Multiagent Reinforcement Learning (MRL) algorithms have

e S: afinite set of environment states.

e A ... Ax: acollection of sets4; with the possible ac-
tions of each agernit

o 7T:S8x A x...x A — II(S): astate transition func-
tion that depends on the current state and on the actions
of each agent.

e R;:SxA x...x A, — R: asetof reward functions
specifying the reward that each agéneéceives.

been proposed and successfully applied to some simple prob- Solving an MG consists in computing the poligy: S x
lems, such as the Minimax-Q [Littman, 1994], the Friend-.A; x...x A, that maximizes the reward received by an agent



Initialise Q¢ (s, a, 0). Initialize Q (s, a, o) andHy(s, a, 0).

Repeat: Repeat:
Visit states. Visit states.
Select an action using thee — Greedy rule (eq. 4). Select an action using the modified—Greedy rule
Executeu, observe the opponent’s action (Equation 5).
Receive the reinforcements, a, o) Executen, observe the opponent’s action
Observe the next staté. Receive the reinforcements, a, o)
Update the values @ (s, a, o) according to: Observe the next staté.
Ors1(s,a,0) — Oy(s,a,0)+ Update the values off; (s, a, 0). _
alr(s,a,0) + yVi(s') — Qt(& a,0)]. UQdate the vaIuesAG@(s, a, o) according to:
S <—S/. Qt+1(s7a10) <—Qt(8,a,0)+ .
Until some stop criterion is reached. afr(s,a,0) + vVi(s") — Q+(s,a,0)].
s« g
Table 1: The Minimax-Q algorithm. Until some stop criterion is reached.
. Table 2: The HAMMQ algorithm.
along time.

To solve a MG, Littman [1994] proposed the use of a sim- " .
ilar strategy to Minimax for choosing an action in the Q- 3 He_U”St'Ca”y Accelera_ted Multiagent
Learning algorithm, the Minimax-Q algorithm (see Table 1). Reinforcement Learning
The action-value function of an actiatin a states when the

e Several algorithms that speed up Multiagent Reinforcement
opponent takes an actieris given by:

Learning (MRL) have been proposed. One of them is the
, , Heuristically Accelerated Minimax Q (HAMMQ) algorithm
Q(s,a,0) =7r(s,a,0)+7 > _ T(s,a,0,8)V(s'), (1)  [Bianchietal, 2007], which can be defined as a way of solv-
s'€ES ing a ZSMG by making explicit use of a heuristic function
H: S x Ax O — Rtoinfluence the choice of actions during
Yhe learning processH (s, a, 0) defines a heuristic that indi-
cates the desirability of performing actiarwhen the agent
is in states and the opponent executes actionThe action

and the value of a state can be computed using linear pr
gramming via the equation:

Vis) = relioa) min Z Q(s,a,0)7a, (@) choice rule used in HAMMQ is a modification of the standard
acA e — Greedy rule that includes the heuristic function:
where the agent’s policy is a probability distribution oaer . TA .
tions, € I1(A), andr, is the probability of taking the action () = { &> 1 Q(s,a,0) + EHy(s, a,0)| if g < p,
a against the opponent’s action Qrandom Otherwise

An MG where players take their actions in consecutive (5)
turns is called an Alternating Markov Game (AMG). In this whereH : S x Ax O — R is the heuristic functiony is a ran-
case, as the agent knows in advance the action taken by tldem value uniformly distributed ovéd, 1] and0 < p < 1is
opponent, the policy becomes deterministic,S x A x O  a parameter that defines the exploration/exploitatiorewéd

and equation 2 can be simplified: The subscript indicates that it can be non-stationary &nd
' a real variable used to weight the influence of the heuristic.
V(s)= max min Q(s,a,0). ) As a general rule, the value &f, (s, a, 0) used in HAMMQ
should be higher than the variation among €h@, a, o) val-
In this case, the optimal policy isz* = ues for the same € S, o € O, in such a way that it can
arg max, min, Q*(s, a, o). A possible action choice influence the choice of actions, and it should be as low as
rule to be used is the standard Greedy: possible in order to minimize the error. It can be defined as:
(s) arg max min 6:2(57 a,0) if ¢ <p, @ Hisa max Q(S, i,0) — Q(s7 a,0) +nif a =7t (s),
Ts) = a o s &y = v .
Qrandom otherwise 0 otherwise
(6)

whereq is a random value with uniform probability in [0,1] wheren is a small real value (usually 1) and?(s) is the
andp (0 < p < 1) is a parameter that defines the explo- action suggested by the heuristic policy. Convergenceisf th
ration/exploitation trade-off: the greater the valuepofthe  algorithm is presented by Biancéi al.[2007], together with
smaller is the probability of a random choice, ang,,qom iS the definition of an upper bound for the error. The complete
a random action selected among the possible actions in stattAMMQ algorithm is presented in Table 2.

s. For non-deterministic action policies, a general formu- One important characteristic of the HARL algorithms is
lation of Minimax-Q has been defined elsewhere [Littman,that, as the heuristic function is explicit, the learningaal
1994, Banerjeet al, 2001]. rithm is able to further refine it, quickly removing any error



that the heuristic may contain. Despite the fact that RL is a The agents in this extended simulator are heterogeneous in
method that has been traditionally applied in the Robotiz So the sense that they have different perception and execution
cer domain, only recently HARL methods started being useaapabilities: some agents can perceive the whole field ewhil

in this domain. Bianchét al. [2007] investigated the use of others can perceive only a small grid around them; some
the HAMMQ in a Multiagent domain, a simplified simulator agents runs faster than others, and some agents are capable
for the robot soccer domain; Celibentd al. [2007] studied  of kicking the ball further.

the use of the HAMRL algorithms to speed up learning in the In this experiment each team is composed by the goalie,

RoboCup 2D Simulation domain. the defender and the attacker. The goalie only perceives a
5 x 5 grid around itself, while the other agents perceive the
4 Combining Trust and MRL whole field. The attacker runs at twice the speed of the other

agents, and the goalkeeper can only kick the ball as far as
that involve more than one agent, one is never sure if th he middle of the field. The reinforce the agents receive are:

other agents will collaborate and perform as the heuristic d + ¢ goalie receiveslpO every time a gogl is scored against
mands.gAIso, in the case where P?eterogeneous agents exisfs (N€ defender receives100 every time it gets the ball and
one agent cannot be sure that the other will be capable onO le\i/ery t|?13 |{)Iors1iest|t, ?r?d _tl_hhe acﬁgd:erz reﬁﬁ“ﬁ‘&‘)? If/v rd
completing the task. One way to tackle this problem is to us goal Is scored by nis team. 1he ditference € rewards

an explicit value that weights the influence of the heurjstic h(_aryhreﬁewg rpake? them Igarn dgfefr_en;rolgs. imole rule:
deciding if it should be used or not. e heuristic policy used was defined using a simple rule:

This paper proposes the use of a trust model to weigh'?ass the ball to the agent closest to the goal. Note that the

the influence of the heuristic. Among several trust modeld'€U"istic policy does not take into account the opponents po
and definitions in the literature [Ramchuenal, 2004], we sition, leaving the task of how to avoid them to the learning

choose to implement an observed individual model of trustPrOCess. In this example, the trus}; in an agenu; in the

following the one defined in [Muét al,, 2002]. In this work, eyes ofa; is the number of goal made_tmg— observed by

the trust in an agent; in the eyes of, is a real variable over the_ total number of passes received. T;; starts the

0 < T;; < 1 which is the number of successful cooperation93Me€ with t_hg value Cﬁ5 -

observed by:; over the total number of observations made  Thirty training sessions were run for the Minimax-Q, the

by a; of a; collaborations.T; ; is only factored in actions HAMMQ and the -HAMMQ, with each session consisting

that includes a collaboration between agents i and j; astion®f 3000 games of 10 trials. A trial finishes whenever a goal is

that do not include a collaboration between two agents hayecered or when 500 moves are completed. _
T, = 1. Figure 1 presents the learning curves (the difference of
To implement this model, the action choice rule used in théd0als made at the end of a game) for the three algorithms
t-HAMMQ is a modification of the original one, where the when learning while playing against a learning opponent us-
trust value is used to weight the influence of the heuristic: N9 Minimax-Q. It can be seen that t-HAMMQ is better at
the beginning of the learning process. Studett®est was

(s) {arg max min [Q(s, a,0) + T ;H(s,a, 0)} if < p, usedto verifythe hypothesis that the use of heuristicsdpee
m(s) = a o ’ -

One problem with the HAMMQ algorithm is that, in actions

up the learning process. The result is that the t-HAMMQ is
better than Minimax-Q until the 1500 game,gvgith a level

. . of confidence greater than 5%. After the 150game the

5 Robotic Soccer using t-HAMMQ results are comparable, since both converge to equilibrium
A set of empirical evaluations of t-HAMMQ were carried out (Tests were made until the 10.00@ame to verify if the al-

in a proposed simulator for the robot soccer domain that exgorithms had reached their equilibrium). The same compar-
tends the one proposed by Littman [1994]. In this domainjson, between the t-HAMMQ and the HAMMQ, shows that
two teams, A and B, of three players compete in a 15 x 12he first is better than the latter until the 30@ame.

grid. Each cell can be occupied by one of the players, which Finally, table 3 shows the average number of goals and ta-
can take an action at a turn. The actions that are allowed aréle 4 presents the average number of games won at the end of
keep the agent still, move — north, south, east and west — @000 games. It can be seen that when Minimax-Q agents are
pass the ball to another agent. The action “pass the balfi fro playing against other Minimax-Q agents, the number of goals
agenta; to a; is successful if there is no opponentin betweenmade and games won are approximately the same, while
them. If there is an opponent, it will catch the ball and thewhen t-HAMMQ agents played against Minimax-Q ones, t-
action will fail. The ball is always with one of the players. HAMMQ team made more goals and won more games.
When a player executes an action that would finish in a cell The parameters used in the experiments were the same for
occupied by the opponent, it looses the ball and stays in thall the algorithms. The learning rate is = 0,9, the ex-
same cell. If an action taken by the agent leads it out theloration/ exploitation rate was defined as being equal2o 0.
board, the agent stands still. When a player with the badl getand the discount factoy = 0.9 (these parameters are sim-
into the opponent’s goal, the move ends and its team scorélar to those used by Littman [1994]). The valuepfvas

one point. At the beginning of each game, the agents are pset to 1. Values in the Q table were randomly initiated, with
sitioned in a random position and the possession of the ball < Q(s;,at, 0;) < 1. The experiments were programmed in

is randomly determined, with the player that holds the ballC++ (GNU g++ compiler) and executed in a MacBook Pro,
making the first move. with 4GB of RAM in a Mac OS X platform.

Arandom Otherwise
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