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Abstract This paper presents a vision-based approach
for mobile robot localization. The model of the environ-
ment is topological. The new approach characterize a
place using a signature. This signature consists of a con-
stellation of descriptors computed over different types
of local affine covariant regions extracted from an omni-
directional image acquired rotating a standard camera
with a pan-tilt unit. This type of representation per-
mits a reliable and distinctive environment modeling.
Our objectives were to validate the proposed method
in indoor environments and, also, to find out if the
combination of complementary local feature region de-
tectors improves the localization versus using a single
region detector. Our experimental results show that if
false matches are efectively rejected, the combination
of different covariant affine region detectors increases
notably the performance of the approach by combin-
ing the different strengths of the individual detectors.
In order to reduce the localization time, two strategies
are evaluated: re-ranking the map nodes using a global
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1 Introduction

Finding an efficient solution to the robot localization
problem will have a tremendous impact on the manner
in which robots are integrated into our daily lives. Most
tasks for which robots are well suited demand a high
degree of robustness in their localizing capabilities be-
fore they are actually applied in real-life scenarios (e.g.,
assistive tasks).

Since localization is a fundamental problem in mo-
bile robotics, many methods have been developed and
discussed in the literature. The existing approaches can
be broadly classified into three major types: metric,
topological and hybrid. Metric approaches (Dissanayake.
et al, 2001; Castellanos and Tardos, 1999; Thrun, 1998,
2000) are useful when it is necessary for the robot to
know its location accurately in terms of metric coordi-
nates (i.e. Cartesian coordinates). However, the state
of the robot can also be represented in a more qual-
itative manner, by using a topological map (i.e. ad-
jacency graph representation) (Choset and Nagatani,
2001; Tapus and Siegwart, 2006; Beeson et al, 2005).
Because the odometry does not provide enough and
complete data in order to localize a mobile autonomous
robot, laser range finders and/or vision sensors are usu-
ally used to provide richer scene information. The rapid
increase in computational power in the last few years
had a significant impact in the development of better
approaches to solve the simultaneous localization and
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mapping (SLAM) problem, by using qualitative infor-
mation provided by vision. Furthermore, vision units
are cheaper, smaller and more practical than large ex-
pensive laser scanners.

In this work, we propose a topological vision-based
localization approach of a mobile robot evolving in dy-
namic indoor environments. Robot visual localization
and place recognition are not easy tasks, and this is
mainly due to the perceptive ambiguity of acquired data
and the sensibility to noise and illumination variations
of real world environments. We propose to approach
this problem by using a combination of affine covariant
detectors so as to extract a robust spatial signature of
the environment.

We decided to use combinations of the following
three feature region detectors: MSER (Maximally Sta-
ble Extremal Regions) (Matas et al, 2002), Harris-Affine
(Lindeberg, 1998), and Hessian-Affine (Mikolajczyk and
Schmid, 2004), which have shown to perform better
when compared to other region detectors.

When a new signature is acquired, it is compared
to the stored panoramas from the a priori map. The
panorama with the highest number of matches is se-
lected. To improve the results and discard false matches,
the essential matrix is computed and the outliers fil-
tered. Finally, the panorama with the highest number
of inliers is selected as the best match. In our approach
images are acquired using a rotating conventional per-
spective camera. When a set of images covering 360
degrees is acquired, they are projected to cylindrical
coordinates and the feature regions are extracted and
described. The descriptors constellation is next con-
structed automatically. Hence, by using feature regions
to construct the signature of a location, our approach is
much more robust to occlusions and partial changes in
the image than the approaches using global descriptors.
This robustness is obtained because many individual
regions are used for every signature of a location and,
thus, if some of them disappear the constellation can
still be recognized.

Nevertheless, combining different region detectors
increases the computational time and memory require-
ments. For this reason we show that a re-ranking mech-
anism based on a global appearance-based similarity
measure can be used to prioritize the most similar map
nodes.

This framework gives us an interesting solution to
the perceptual aliasing problem (one of the main dif-
ficulties when dealing with qualitative navigation and
localization). Our approach is validated in real world
experiments and is compared with other vision-based
localization methods.

The remainder of this paper is organized as follows:
In Section 2 we will first present a review of most re-
cent related work on visual-based localization and navi-
gation. Section 3 summarizes the different affine covari-
ant region detectors and descriptors that we used in our
work. Section 4 describes the localization procedure in
details and the experimental design. Experimental re-
sults are reported in Section 5. And finally, Section 6
concludes our paper.

2 Related Work

Over the last decade, many appearance-based localiza-
tion methods have been proposed (Owen and Nehmzow,
1998; Franz et al, 1998; Se et al, 2002). SIFT (Scale In-
variant Feature Transform) features (Lowe, 2004) have
been widely used for robot localization. The SIFT ap-
proach detects and extracts feature region descriptors
that are invariant to illumination changes, image noise,
rotation and scaling. In (Se et al, 2002), the authors
used SIFT scale and orientation constraints so as to
match stereo images; least-square procedure was used
to obtain better localization results. The model de-
signed by Andreasson et al (2005) combines SIFT al-
gorithm for image matching and Monte-Carlo localiza-
tion; their approach takes the properties of panoramic
images into consideration. Another interesting subset of
invariant features are the affine covariant regions which
can be correctly detected in a wide range of acquisition
conditions (Mikolajczyk et al, 2005). Therefore, Silpa-
Anan and R. Hartley (2004) construct an image map
based on Harris Affine feature Regions with SIFT de-
scriptors that is later used for robot localization.

The work proposed by Tapus and Siegwart (2006)
defined fingerprints of places as generic descriptors of
environment locations. Fingerprints of places are cir-
cular lists of features and they are represented as a
sequence of characters where each character is an in-
stance of a specific feature type. The authors used a
multi-perceptional system and global low-level features
(i.e., vertical edges, color blobs, and corners) are em-
ployed for localization.

Moreover, recently, several robot global localization
methods similar to the one proposed in this paper have
been presented. Booij et al (2007) build first an appear-
ance graph from a set of training images recorded dur-
ing exploration. The Differences of Gaussians (DoG)
feature detector and the SIFT descriptor are used to
find matches between omnidirectional images in the
same manner as described in (Lowe, 2004), and the es-
sential matrix relating every two images is computed
with the 4-point algorithm with planar motion assump-
tion in RANSAC. The similarity measure between each
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pair of nodes of the map is the ratio between the inliers
according to the essential matrix and the lowest number
of features found in the two images. Appearance based
navigation is performed by first localizing the robot in
the map with a newly acquired image and then using
Dijkstra’s algorithm to find a path to the destination.
Several navigation runs are successfully completed in
an indoor environment even with occlusions caused by
people walking close to the robot. Valgren and Lilien-
thal (2008) evaluate an approach focusing on visual out-
door localization across seasons using spherical images
taken with a high resolution omnidirectional camera.
Then, Upright Speeded Up Robust Features (U-SURF)
(Bay et al, 2008), that are not invariant to rotation,
are used to find matches between the images and the
4-point algorithm is used to compute the essential ma-
trix. Indoor localization differs from outdoor localiza-
tion in that, typically, distances to objects and walls is
much shorter, and therefore the appearance of objects
changes faster if one moves away from a reference point.
Furthermore, indoor locations tend to have few texture
and repetitive structure that complicates the data asso-
ciation problem, but they are positively less affected by
environmental changes (e.g., time of the day; seasons).

(Cummins and Newman, 2008) proposed an approach
that uses a probabilistic bail-out condition based on
concentration inequalities. They have applied the bail-
out test to accelerate an appearance-only SLAM sys-
tem. Their work has been extensively tested in outdoor
environments. Furthermore, the work presented by An-
geli et al (2008) describes a new approach for global lo-
calization and loop detection based on the bag of words
method.

3 Affine Covariant Region Detectors

An essential part of our approach is the extraction of
discriminative information from a panoramic image so
it can be recognized later under different viewing condi-
tions. This information is extracted from the panoramic
image using affine covariant region detectors. These de-
tectors find regions in the image that can be identified
even under severe changes in the point of view, illumi-
nation, and/or noise.

Recently (Mikolajczyk et al, 2005) reviewed the state
of the art of affine covariant region detectors individ-
ually. In this review they concluded that using several
region detectors at the same time could increase the
number of matches and thus improve the results. Hence,
based on their results, we have used all the combina-
tions of the following three complementary affine co-
variant region detectors: (1) Harris-Affine, (2) Hessian-
Affine, and (3) MSER (Maximally Stable Extremal Re-

gions), so as to increase the number of detected features
and thus of potential matches. Examples of detected re-
gions for the three region detectors can be seen in Fig.
1. These three region detectors have a good repeatabil-
ity rate, a reasonable computational cost and they are
briefly detailed below.

1. The Harris-Affine detector is an improvement of the
widely used Harris corner detector. It first detects
Harris corners in the scale-space with automatic scale
selection using the approach proposed by Lindeberg
(1998), and then estimates an elliptical affine covari-
ant region around the detected Harris corners. The
Harris corner detector finds corners in the image us-
ing the description of the gradient distribution in a
local neighborhood provided by the second moment
matrix:

M =
[
I2
x(x, σ) IxIy(x, σ)

IxIy(x, σ) I2
y (x, σ)

]
, (1)

where I(x, σ) is the derivative at position x of the
image smoothed with a Gaussian kernel of scale σ.
From this matrix, the cornerness of a point can be
computed using the following equation:

R = Det(M) − kTr(M)2, (2)

where k is a parameter usually set to 0.4. Local max-
ima of this function are found across the scales, and
the approach proposed by Lindeberg is used to se-
lect the characteristic scales.
Next, the parameters of an elliptical region are esti-
mated minimizing the difference between the eigen-
values of the second order moment matrix of the
selected region. This iterative procedure finds an
isotropic region, which is covariant under affine trans-
formations. The isotropy of the region is measured
using the eigenvalue ratio of the second moment ma-
trix:

Q =
λmin(µ)
λmax(µ)

(3)

where Q varies from 1 for a perfect isotropic struc-
ture to 0, and λmin(µ) and λmax(µ) are the two
eigenvalues of the second moment matrix of the se-
lected region at the appropriate scale. For a detailed
description of this algorithm, the interested reader
is referred to (Mikolajczyk and Schmid, 2004).

2. The Hessian-Affine detector is similar to the Harris-
Affine, but the detected regions are blobs instead
of corners. The base points are detected in scale-
space as the local maxima of the determinant of the
Hessian matrix:

H =
[
Ixx(x, σ) Ixy(x, σ)
Ixy(x, σ) Iyy(x, σ)

]
, (4)
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Fig. 1 Example of regions for the three affine covariant region

detectors, from left to right: Harris-Affine, Hessian-Affine and
MSER.

where Ixx is the second derivative at position x of
the image smoothed with a Gaussian kernel of scale
σ. The remainder of the procedure is the same as the
Harris-Affine: base points are selected at their char-
acteristic scales with the method proposed by Lin-
deberg and the affine shape of the region is found.

3. The Maximally Stable Extremal Regions (MSER)
detector proposed by Matas et al. (Matas et al,
2002) detects connected components where the in-
tensity of the pixels is several levels higher or lower
than the intensity of all the neighboring pixels of the
region. Regions selected with this procedure may
have an irregular shape, so the detected regions are
approximated by an ellipse.

Because affine covariant regions must be compared, a
common representation is necessary. Therefore all the
regions detected with any method are normalized by
mapping the detected elliptical area to a circle of a cer-
tain size. Once the affine covariant regions are detected
and normalized, to reduce even more the effects caused
by changes in the viewing conditions, these regions are
characterized using a local descriptor. In our work, we
have used Scale Invaraint Feature Transform (SIFT)
(Lowe, 2004) and Gradient Location-Orientation His-
togram (GLOH) (Mikolajczyk and Schmid, 2005). These
two descriptors were found to be the best in a compar-
ison of various state of the art local descriptors (Miko-
lajczyk and Schmid, 2005). The SIFT descriptor com-
putes a 128 dimensional descriptor vector with the gra-
dient orientations of a local region. In short, to con-
struct the descriptor vector, the SIFT procedure di-
vides the local region in 16 rectangular sub-regions and
then, for every sub-region, it builds a histogram of 8
bins with the gradient orientations weighted with the
gradient magnitude to suppress the flat areas with un-
stable orientations. The descriptor vector is obtained
by concatenating the histograms for every sub-region.

The GLOH descriptor is similar to SIFT, with two
main differences: the sub-regions are defined in a log-
polar way, and the resulting descriptor vector has 272
dimensions but it is later reduced to 128 with a PCA.

These two descriptors are based on the same princi-
ple but with slightly different approaches. As they have
no complementary properties, our objective in this com-

parision is to determine which one achieves the best
performance. Therefore we have not combined them.

4 Experimental Design

The objective of the present work is twofold: On the
one hand, we want to validate the proposed method
for indoor global localization and, on the other hand,
we target to experimentally determine if using different
region detectors simultaneously improves significantly
the localization results. Although successive images ac-
quired by the robot while moving in the room could be
used to incrementally refine the localization, in our ex-
periment, we wanted to evaluate if combining different
region detectors improves the robustness to viewpoint
change for the presented global localization method and
therefore, we have only considered the worst case sce-
nario, where only one image per room is available to
localize the robot.

4.1 Dataset description

The test-bed data used in this work consists of 17 se-
quences of panoramas from rooms in various buildings1.
Each sequence consists of several panoramas acquired
every 20 cm following a straight line predefined path.
This type of sequences are useful to check the maxi-
mum distance at which a correct localization can be
performed. In order to make the data set as general
as possible, rooms with a wide range of characteristics
have been selected (e.g., some sequences correspond to
long and narrow corridors, while others have been taken
in big hallways, large laboratories with repetitive pat-
terns and others in smaller rooms such as individual of-
fices). Panoramic images of the environment are shown
(Figure 8) in the Annex. A short description of each
sequence is given below:

– iiia01 consists of 11 panoramas, and the sequence
has been taken in a large robotics laboratory type
of space.

– iiia02 and iiia03 contain 14 panoramas each, and
have been taken at the conference room of the IIIA.
In our experiments only the map node of iiia02 is
used.

– iiia04 is 19 panoramas long, and has been acquired
in a long and narrow corridor.

– iiia05 and iiia06 have 25 and 21 panoramas, re-
spectively. They have been taken in the library of
the IIIA, the first one is from the library entrance

1 The data-set can be downloaded from http://www.iiia.

csic.es/~aramisa.
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Fig. 2 The camera and pan-tilt unit used to take the images.

and librarian desk, while the second is from a nar-
row corridor with book shelves. Both share the first
panorama of iiia05 as map node.

– iiia07 is 19 panoramas long. This represents an-
other section of the robotics laboratory, and corre-
sponds to a small cubicle.

– iiia08 is 10 panoramas long, and has been acquired
in a small machinery room.

– iiia09 has 21 panoramas that have been taken at the
back entrance hall. This sequence has been taken in
a tilted floor, which is a challange for the 4-point
algorithm, because of the flat world assumption.

– iiia10 is 19 panoramas long and has been taken in
the coffee room.

– iiia11 has 21 panoramas and has been acquired in
the entrance hall of the IIIA.

– cvc01 is 21 panoramas long and corresponds to a
long corridor of the CVC research center. As one
of the corridor walls is made out of glass, the view
field is wider than a normal corridor. However, di-
rect sunlight affects the white balance of the image.

– cvc02 is 21 panoramas long, and has been acquired
in a large office with many desks.

– cvc03 has 14 panoramas taken in a small office with
just one working desk.

– cvc04 has 22 panoramas and has been taken in a
wide corridor with posters.

– etse01 is the main hall of the engineering building
and is 20 panoramas long.

– etse02 has 21 panoramas and has been taken in a
very wide corridor of the engineering building.

4.2 Panorama Construction

Instead of using an omnidirectional camera, the panora-
mas have been constructed by stitching together mul-
tiple views taken from a Sony DFW-VL500 camera
mounted on a Directed Perception PTU-46-70 pan-tilt

unit. The camera and pan-tilt unit can be seen in Fig.
2. In order to build a panorama using a rotating cam-
era, we had to take into consideration the following:
the image sequence employed to build the panorama
must have a fixed optical center. Translations of the
optical center would introduce motion parallax, making
the image sequence inconsistent to build a panorama.
However, if the objects in the scene are sufficiently far
from the camera, small translations could be tolerated.
The steps to stitch all the images in a panorama are
the following:

1. The first step consists of projecting all the images of
the sequence to a cylindrical surface. The points are
mapped using the transformation from Cartesian to
cylindrical coordinates:

θ = tan−1(
x

f
), v =

y√
x2 + f2

(5)

where x and y are the position of the pixel, f is
the focal distance measured in pixels and θ and v

are respectively the angular position and the height
of the point in the cylinder. The cylinder radius is
the focal length of the camera used to acquire the
images, in this way the aspect ratio of the image
is optimized (Shum and Szeliski, 1997). Taking this
into account, the size of the panoramas is 5058x500.

2. Once all the images have been projected to cylindri-
cal coordinates, the rotation between each pair of
images must be estimated. In principle, only pan-
ning angles need to be recovered but, in practice,
to correct vertical misalignment and camera twist,
small vertical translations are allowed. Therefore,
a displacement vector ∆t = (tx, ty) is estimated
for every pair of input images. The implemented
method to compute ∆t distinguishes between three
situations:
i If sufficient feature points are found in the shared

part of the images, ∆t is computed by means
of matches between pairs of feature points. To
find the translation with most support among
matches, and to exclude false matches and out-
liers, RANSAC is used.

ii In those cases where there is not enough tex-
ture in the images to extract sufficient feature
points, ∆t is computed looking for a peak in the
normalized correlation between the Canny edges
(Canny, 1986) of the two images. This method
has the advantage over other correlation-based
approaches of being independent of the illumina-
tion conditions and the vignetting effect (inten-
sity decreases towards the edge of the image). In
addition, as all the image is used, even with small
amounts of texture a reliable translation can be
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Fig. 3 Intensity jumps between successive images caused by au-
tomatic camera gain. Applying linear blending solves the prob-

lem.

estimated. However, this technique is computa-
tionally more expensive than feature matching
and is not invariant to rotations or other defor-
mations in the image.

iii If no texture exists at all and the above pro-
cedure fails, the only remaining solution is to
compute the expected translation if the angular
displacement ϕ (in radians) between the images
is known: tx = fϕ and ty = 0

3. Due to automatic camera gain, vignetting or ra-
dial distortion, an intensity jump may appear be-
tween two images as can be seen in Figure 3. In
this work we the most straightforward solution is
taken, that consists in blending linearly every two
consecutive images. This method produces results
good enough for visualization purposes and is suit-
able for static scenes. However techniques such as
multi-band blending and deghosting can be used
(Shum and Szeliski, 1997; Brown and Lowe, 2003;
Szeliski and Shum, 1997; Uyttendaele et al, 2001)
to improve the result by eliminating stitching arti-
facts and dynamic objects that created ghosts in the
panorama.

Although the panoramic images were constructed for
validation purposes, the constellations of feature region
descriptors were not extracted from them. Instead, the
features from the original images projected to cylin-
drical coordinates where used. The reason for this is
to avoid false regions introduced by possible new arti-
facts created during the stitching process. The panora-
mas built with the stitching method where all correctly
constructed, even in the case of changes in lightning,
reflections, multiple instances of objects or lack of tex-

ture. The sequences have been acquired in uncontrolled
environments.

4.3 Panorama Matching

The region detectors and descriptors provided by Miko-
lajczyk et al (2005)2 were used to extract the affine-
covariant regions from the images and compute the
SIFT descriptor vectors.

In this work, the procedure to compare two panora-
mas is relatively straightforward. First, matches are es-
tablished as nearest neighbors between the feature de-
scriptors of both panoramas using the Euclidean dis-
tance as similarity measure. Potentially false matches
are rejected comparing the distance of the first and the
second nearest neighbor in the same way as proposed by
Lowe (2004). Additionally, reciprocal matching is used
to filter even more false matches: if feature fa from
the first panorama matches feature fb of the second
panorama, but feature fb does not match feature fa,
the match is discarded.

Next, the epipolar constraint between the panora-
mas is enforced by computing the essential matrix. The
most straightforward way to automatically compute the
essential matrix is using the normalized 8-point algo-
rithm (Hartley and Zisserman, 2004). However, assum-
ing that the robot will only move through flat surfaces,
it is possible to use a simplified version where only 4
correspondences are necessary.

E =

 0 e12 0
e21 0 e23
0 e32 0

 (6)

Therefore, with a set of at least four correspondences
of points of the form

p = [x, y, z] = [sin(2πx̃), ỹ, cos(2πx̃)] (7)

where x̃ and ỹ are the normalized point coordinates in
the planar panorama image, the following equations can
be written: y
′
1x1 x′1y1 z′1y1 y′1z1
...

...
...

...
y′nxn x

′
nyn z

′
nyn y

′
nzn



e12
e21
e23
e32

 = 0 (8)

where (xi, yi, zi) and (x′i, y
′
i, z
′
i) is the ith pair of corre-

sponding points. As outliers may still be present among
the matches, RANSAC is used to automatically com-
pute the essential matrix with most support. Finally,
the set of inlier feature matches that agree with the
epipolar constraint is used as the evidence of the rela-
tion between the two panoramas.

2 http://www.robots.ox.ac.uk/~vgg/research/affine/
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Given the high dimensionality of the feature descrip-
tors, matching is expensive in terms of computational
cost even for a small set of nodes. An alternative to ex-
haustive matching is to use a global similarity measure
to re-rank the map nodes and estimate the essential
matrix only for the k top map nodes or, taking an any-
time algorithm approach, until a node with a certain
ratio of inliers is met. The global similarity measure
should be fast to compute and exploit the differences
between the map nodes to improve the re-ranking. We
have applied the Vocabulary Tree proposed in Nister
and Stewenius (2006) for object categorization to re-
rank the map nodes for a new query image as it fulfilled
both requirements. In short, this method constructs a
visual vocabulary tree of feature descriptors applying
hierarchical k -means on a training dataset. Next, im-
ages are described as a normalized histogram of visual
word counts. To give more emphasis to discriminative
visual words, they are weighted using a term frequency-
inverse document frequency (tf-idf) approach. Finally,
training set images can be re-ranked according to its
Euclidean distance to the new image signature.

Although the presented method has a very good per-
formance in our experiments, it is time-consuming to
acquire a panorama rotating a pan-tilt unit every time
a localization has to be performed. Instead, we evaluate
the decrease in performance using uniquely a normal
planar perspective of 45◦ field of view to localize the
robot.

The simplest way to decide the corresponding node
is by the maximum number of matches after comput-
ing the essential matrix (Valgren and Lilienthal, 2008;
Ramisa et al, 2008). Alternatively, the ratio between the
number of matches and the lowest number of keypoints
of the two images(Booij et al, 2007). Experimentally, we
did not find much difference between both approaches
and therefore we have retained the first one.

5 Experiments

In order to achieve our two objectives, we tested all pos-
sible combinations of the three selected region detectors
with two different descriptors. Table 1, shows the av-
erage percentage of correctly classified test panoramas
for each combination. Results are provided using the
8-point algorithm, the 4-point algorithm and also the
later with reciprocal matches. From the results illus-
trated in Table 1 for the 4 point algorithm with recipro-
cal matches, it can be seen that by reducing the number
of false matches with this technique, the performance
is substantially improved. Therefore from now on, we
only show the results obtained with this last technique.

Table 1 Average percentage of correctly localized panoramas

(acl) across all sequences and standard deviation (std). For con-

venience we have labeled M: MSER, HA: Harris-Affine, HE:
Hessian-Affine, S: SIFT, G: GLOH.

8 points 4 points 4 points and

Combination algorithm algorithm recipr. match

acl std acl std acl std

HA+S 74% 23% 69% 23% 82% 22%

HA+G 70% 21% 73% 24% 81% 21%

HE+S 58% 24% 73% 26% 75% 25%

HE+G 63% 26% 65% 27% 74% 26%

M+S 62% 28% 78% 18% 76% 23%

M+G 61% 29% 69% 23% 74% 26%

HA+HE+S 64% 15% 78% 19% 86% 14%

HA+HE+G 67% 14% 79% 21% 87% 16%

M+HE+S 56% 23% 75% 23% 87% 15%

M+HE+G 60% 23% 78% 18% 88% 14%

M+HA+S 65% 21% 79% 19% 86% 14%

M+HA+G 70% 25% 79% 19% 88% 11%

M+HA+HE+S 62% 16% 82% 19% 89% 11%

M+HA+HE+G 64% 20% 82% 19% 90% 11%

Standard deviation is also provided in order to as-
sess the stability of combinations along the different
sequences. Not much difference is observed among the
descriptors GLOH and SIFT, which performed simi-
larly in all cases. Looking at the feature detectors in-
dividually, the best results have been obtained by Har-
ris Affine, while Hessian Affine and MSER had a simi-
lar performance. Overall, the combinations of detectors
outperformed the individual detectors. The best per-
formance in the localization test has been achieved by
the combination of the three detectors, which classi-
fied correctly 90% of the panoramas. This performance
is mainly due to their good complementarity. Further-
more, in Figure 4 the average performance of two se-
lected combinations is compared to the standalone de-
tectors as a function of the distance to the map node.
As can be seen, combinations cope better with changes
in point of view than individual detectors. Sequences
acquired in large rooms typically achieved a good per-
formance no matter the combination used. However,
small rooms and specially long and narrow corridors
seem to be more difficult environments, even if they
are well textured. This can be explained because the
distance between the robot and the perceived objects
is short and, therefore, the objects’ appearance changes
rapidly resulting in an unreliable matching in the lat-
eral regions of the panorama.

Some particularly difficult sequences have been cvc01,
iiia04, iiia06 and iiia09. Table 2 shows the results with
these sequences. As we can see, the performance is no-
tably increased by combining different detectors. On av-
erage, standalone detectors achieved around 55%, while
combinations increased to around 81% in these envi-
ronments. The sequence iiia04 is a specially long and
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Fig. 4 Percentage of incorrectly classified test panoramas as a

function of the distance to the map node. The exponential re-
gression of the data points is also provided for clarity.

Table 2 Average percentage of correctly localized panoramas for

some interesting sequences. The naming convention is the same
as in Table 1.

Combination cvc01 iiia04 iiia06 iiia09

HA+S 35% 42% 75% 75%

HA+G 35% 47% 70% 70%

HE+S 20% 47% 75% 45%

HE+G 20% 53% 80% 30%

M+S 85% 42% 30% 65%

M+G 95% 53% 35% 35%

HA+HE+S 80% 84% 70% 95%

HA+HE+G 45% 89% 75% 85%

M+HE+S 90% 84% 80% 65%

M+HE+G 90% 84% 90% 60%

M+HA+S 90% 79% 70% 85%

M+HA+G 90% 89% 65% 80%

M+HA+HE+S 80% 95% 75% 80%

M+HA+HE+G 75% 100% 90% 75%

narrow corridor with very few texture; it is interesting
to notice that in this case the combination of all fea-
ture types achieved 100% correct classification. Another
notable finding is the extremely good performance of
MSER on cvc01 when compared to the other detectors.

Most of the similar approaches to global localization
(e.g. Booij et al (2007)) use feature detectors only in-
variant to scale but not affine covariant, mainly because
of its more expensive computational cost. For compara-
bility, we have evaluated the performance of the Differ-
ence of Gaussians detector (Lowe, 2004). This method
uses as initial points the local maxima of the Differences
of Gaussians (DoG), defines a circular region around
these initial points and finally SIFT is used to describe
the selected regions. For our tests we used the imple-
mentation provided by Lowe3. On average, using points
detected with the DoG and SIFT, the average correct

3 http://www.cs.ubc.ca/~lowe/keypoints/

location was 72%. However, it had an irregular perfor-
mance depending on the environment type (27% stan-
dard deviation), with perfect results in large rooms, but
very poor results in narrow corridors and small rooms.
This was an expected outcome as this detector is less
resistant to viewpoint changes.

In terms of computational complexity, the most ex-
pensive step of the approach is clearly the bidirectional
descriptor matching as can be seen in Table 3. These
computational times have been obtained with a C++
implementation of the method running in a Linux Pen-
tium 4 at 3.0 GHz computer with 2Gb of RAM.

Table 3 Average feature matching and RANSAC time per map

node. It is important to notice the difference in time scale.

Combination Matching RANSAC
(seconds) (milliseconds)

HA+S 4,31 3,046

HA+G 4,29 2,597

HE+S 2,87 3,016

HE+G 2,88 2,631

M+S 1,24 2,920

M+G 1,24 2,310

HA+HE+S 7,16 6,625

HA+HE+G 7,16 5,401

M+HE+S 4,11 5,827

M+HE+G 4,11 5,361

M+HA+S 5,51 6,682

M+HA+G 5,51 5,382

M+HA+HE+S 8,44 1,3941

M+HA+HE+G 8,47 1,0815

5.1 Re-ranking of map nodes

As explained in Section 4.3, the global appearance based
image similarity measure from Nister and Stewenius has
been used to re-rank the map nodes and prioritize those
that appear more similar. We have build the vocabu-
lary tree with Harris Affine features. When used for
object classification, this type of approach requires at
least tens of training images in order to correctly deter-
mine the class of a novel object instance. However, we
only used the map nodes to train both the vocabulary
tree and the classifier. This gives only one training in-
stance for each class. Despite so limited training data,
the approach achieved the notable overall result of re-
ranking the correct node in the first position for 62%
of the query panoramas, and among the top five nodes
85% of times as can be seen in Figure 5. More detailed
results of this re-ranking experiment are in Figure 7,
where the performance is shown for each individual se-
quence.
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Fig. 5 Position of the correct map node after re-ranking using
the vocabulary tree.
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Fig. 6 Ratio of query images with the correct node re-ranked

at the top position against distance to first panorama of the se-
quence. The logarithmic regression curve is also shown.

As expected, the percentage of times the correct
map node is re-ranked at the top position decreases as
distance to the query panorama increases (see Figure
6).

5.2 Localization with 45◦ FOV images

Constructing a panoramic image with a rotating cam-
era on a pan-tilt unit is a time-consuming step that
requires the robot to stay in a fixed position during
the acquisition. In order to assess the decrease in per-
formance that would cause using just a single conven-
tional image to localize the robot we have done the fol-
lowing experiment: For every test panorama, a random
area that spans 45◦ and has at least 100 features is ex-
tracted and matched to the map nodes. This procedure
is repeated for every test panorama. After a 10 fold
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Fig. 7 Position of the correct map node after re-ranking using

the vocabulary tree per sequence.

experiment with all test panoramas, the average num-
ber of correct localizations was 73% using Harris Affine
combined with MSER and the GLOH descriptor. This
result is good considering how limited the field of view
is. In addition to the time saved in image acquisition,
the matching time is reduced almost one order of mag-
nitude on average.

6 Conclusions and Discussion

In this work we have proposed and evaluated a signa-
ture to characterize places that can be used for global
localization. This signature consists of a constellation of
feature descriptors, computed from affine-covariant re-
gions, extracted from a panoramic image, that has been
acquired in the place we want to add to the map. Later,
these signatures are compared to the constellation ex-
tracted from a new panoramic image using geometric
constraints, and the most similar signature is selected
as the current location. To compare the different sig-
natures, the 4-point algorithm with RANSAC to reject
false matches is used. Combinations of feature detec-
tors have been shown to perform best if combined with
adequate mechanisms, such as reciprocal matching or
distance to the second nearest neighbor, to reject incor-
rect pairings of features before computing the essential
matrix.

Regarding the validation of the global localization
schema, the results obtained show that by using the
combination of different feature detectors, a room can
be reliably recognized in indoor environments from a
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distance of up to 4 meters from the point where the ref-
erence panorama was obtained. The best results (90%
correct localizations) were achieved by combining all
three detectors.

Moreover, we have also compared the results of our
proposed affine-covariant region detectors approach with
the scale-invariant region detectors methodology pro-
posed in Lowe (2004), widely used in robot navigation,
and showed that the affine-covariant regions outper-
formed Lowe’s scale-invariant method.

In order to speed-up the otherwise very expensive
descriptor matching phase, a global similarity technique
usually employed for object recognition, the vocabulary
tree of Nister and Stewenius (2006), has been effectively
applied to re-rank the map nodes for a given query
panorama and save most of the computation time.

Furthermore, we tested how the performance de-
grades if only a conventional perspective image is used
instead of an omnidirectional image. Results of a 10 fold
experiment with random 45◦ sections (with a minimum
amount of texture) from all the test panoramas showed
a surprisingly good performance.
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Annex

Fig. 8 Panorama nodes in the same order as described in the

text.


