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Abstract. Object recognition has been widely researched for several decades and
in the recent years new methods capable of general object classification have ap-
peared. However very few work has been done to adapt these methods to the chal-
lenges raised by mobile robotics. In this article we discuss the data sources (ap-
pearence information, temporal context, etc.) that such methods could use and we
review several state of the art object recognition methods that build in one or more
of these sources. Finally we run an object based robot localization experiment us-
ing an state of the art object recognition method and we show that good results are
obtained even with a naïve place descriptor.
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Introduction

Object recognition2 is one of the most promising topics of Computer Vision. Having the
ability to learn and detect hundreds of arbitrary objects in images from uncontrolled en-
vironments would be a major breakthrough for many artificial intelligence applications.
One of the areas of research that would benefit the most of that innovation is intelligent
robotics. The capacity to perceive and understand the environment is an important limi-
tation for designing robots suitable for being deployed in houses to perform in domestic
tasks or help the disabled. Also, being able to communicate at human-level semantics
with its owners would make this robots much easier to control for a non-technical end
user. In this work we review some of the most relevant state-of-the-art object detection
and classification methods. Also, we discuss which sources of information can be ex-
ploited in order to have a fast and robust object recognition method, and which of the
existing techniques could be applied in such domain. An area of research that recently
started to profit from object recognition capabilities is topological localization. In [16]
an object-based robot navigation and place categorization method is proposed. To illus-
trate our interest for object recognition methods for topological localization, we perform
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an object-based localization experiment using a publicly available dataset of stitched
panoramic images acquired with a mobile robot. For this experiment, a custom imple-
mentation of the Lowe object recognition algorithm [3] has been used to learn and detect
the instances of forty different objects in the panoramic images.

The paper is divided as follows. In Section 1 the state of the art in visual object
recognition is reviewed, paying special attention to those methods and strategies that
adapt well to the domain of mobile robotics. In Section 2 the Lowe object recogniton
algorithm is explained. In Section 3 the experiments performed are described and the
results presented. Finally, in Section 4 the conclusions are drawn.

1. State of the Art

Recently significant work has been done in visual object classification, with many meth-
ods making analogies to document retrieval literature. Visual vocabularies have been ex-
tensively used to relate local feature regions to visual words by clustering its descriptors
with algorithms like k-means [14] or hierarchical k-means [8], among others. This re-
duces its dimensionality to a fixed number, so visual-word statistics can be used to clas-
sify the input image. Local features are widely used in computer vision due to its relation
with research in primate vision. Those features are regions in an image providing rele-
vant information used as building blocks of the models that caracterize an object. This
bottom-up approach to vision enables the models to be stable against background clutter
and occlusions, while properties of local descriptors account for illumination and view-
point invariance. Feature sampling strategies commonly used are based in interest region
detectors, which finds regions in a well-founded mathematical way that is stable to local
and global perturbations. Using this techniques texture-rich regions can be detected at
repeatable positions and scales.

In [14] the authors use k-means to cluster local feature descriptors into a vocabu-
lary of visual words and the TF-IDF (Term Frequency - Inverse Document Frequency)
scheme to priorize distinctive feature descriptors. Local features are detected in an image
with an affine-invariant adaptation of Harris corner detector [5] and MSER detector [4]
and a histogram is built from visual-word counts. Experiments are done in scene match-
ing - where query descriptor vectors are compared to the ones in database - and object
retrieval throughout a movie, where a user-specified query region is used to re-rank the
results using spatial consistency, accomplished by matching the region visual-words to
the retrieved frames. Similarly [8] uses the same TF-IDF scoring scheme but this time
the vocabulary is constructed with a hierarchical k-means applied to MSER features ex-
tracted from the set of training images. A tree with a branch factor of k, where at each
child node k-means is applied to the contents of the parent node. The step is repeated un-
til a desired depth is reached. This allows an efficient lookup of visual words in logarith-
mic time, enabling the use of larger vocabularies. The results show how well the system
scales to large databases of images in terms of search speed, and the larger vocabulary
describes much better the images so, in contrast with [14], geometric information is not
really needed to obtain good performance. The work of [9] proposes combining multi-
ple feature types in a single model making use of boosting to form each classifier. This
enables each category to choose the best features, regardless of its type, that describes
it. Local features used are both discontinuity and homogeneity regions. The former are
appearance features detected and described with various methods that capture local in-



tensity changes and the later are regions extracted with wavelets or segmentation that
contain repetitive textures or stable intensity distributions respectively. Results show that
different feature types perform much better in some classes than others, so combining
them in a single model greatly improves classification results.

Although good results have been obtained using bag of words type methods, when
the object does not occupy the majority of the image or detection and pose estimation
is necessary, information on the relative position between object features is essential.
This is usually a requirement when dealing with real world images, and several methods
have been developed in order to take advantage of this positional information. Leibe et
al. present in [2] the Implicit Shape Model, an object detection method that combines de-
tection and segmentation in a probabilistic framework. First a codebook of local patches
around Harris corner points is built using agglomerative clustering For every resulting
cluster center, the Normalized Grey-scale Correlation distance is computed to all the
training patches and, for those that are over a certain threshold, the relative object center
position is stored. For detection a 2D Generalized Hough Transform (with continuous
space to avoid discretization) is used to cluster probabilistic votes for object centers. Fi-
nally, the image is segmented assigning to each pixel the most probable object class with
respect to the matched patches that include it. A Minimal Description Length procedure
is used to reject overlaping hypotheses based on segmentation results. Tests have been
done with the UIUC car database and with the individual frames of a walking cows video
database, reporting very good performance. However, results show that the method only
is able to deal with very small scale changes (10% to 15%). To avoid this, authors suggest
using scale-invariant interest point detectors or rescaled versions of the codebook.

In [10], Opelt et al. present the Boundary-Fragment Model (BFM). This strategy
is similar to the one of [2], but instead of local patches, it uses boundary fragments. A
codebook of fragments for detecting a particular class is built by first computing Canny
edges of the training images and finding edge segments that match well in a validation
set (and bad in the negative examples set) using an optimization procedure. Next the can-
didate edge segments are clustered using agglomerative clustering on medoids to reduce
redundacy, storing also the centroid of the object. Groups of two or three segments that
estimate well the centroid of the object are used as weak detectors in a boosting frame-
work. A strong detector is trained selecting weak detectors with good centroid predic-
tion capabilities in positive images and that do not fire in negative images. For detec-
tion, weak detectors are matched to image Canny edges, with each one voting for one
or various centroid positions in a 2D Hough voting space. Votes are accumulated on a
circular window around candidate points, taking those above a threshold as object in-
stances. Finally approximate segmentation can be obtained backprojecting the segments
that voted for a centroid back into the image. In order to make the method robust to scale
and in-plane rotation different scaled and rotated of the codebook are used simultane-
ously. The authors extended this method for multi-class object detection in [11] using
a shared codebook. The method can be trained both jointly or incrementally. In [17],
authors propose a shape-based method for object detection. The method builds on the
ISM and uses k-Adjacent Segments with k=3 (TAS) as shape-based feature detector. A
codebook of TAS is generated by first building a full connected graph of all the TAS in
the training set with distance in the edges between every pair of TAS and then apply-
ing Normalized Graph Cuts to obtain the cluster centers. Similarly to the ISM model,
probabilistic votes are casted in a 2D Hough Transform, and Parzen Windows are used



to find the most plausible object centers. Finally Gradient Vector Flow is used to find an
approximate segmentation of the objects. The proposed method is interesting and has a
similar performance to BFM in cows and motorbikes dataset used in [10] although using
simpler features, specially in the case of few training images and small codebooks ( 200
features).

In [3] the author proposes a single-view object recognition method along with the
well known SIFT features. First SIFT features of the training images are compared with
Euclidean distance to the set of descriptors from the test image using a K-D tree and
the Best Bin First algorithm to speed up the matching process. Matches in which the
distance ratio between first and second nearest neighbors is greater than 0.8 are rejected.
This eliminates 90% of the false matches while discarding less than 5% of the correct
matches. Matches remaining after this pruning stage are clustered using its geometrical
information in a 4D Generalized Hough Transformation with broad bin sizes, which
gives the initial set of object hypotheses. To avoid the problem of boundary effects in
bin assignment, each keypoint match votes for the 2 closest bins in each dimension.
Bins of the Hough Transform containing more than three matches constitute an object
location hypothesis. Finally a least-squares method (IRLS) is used to estimate the affine
transformation of the detected object.

Context has been argued to provide very relevant information in computer vision.
In [9], weak classifiers are selected with a boosting method to form the final classifiers;
it was found in the experimental results that a high percentage of weak classifiers with
higher weights selected local features corresponding to background. This can be inter-
preted as that context in some classes is more discriminative than foreground parts, al-
though it greatly depends on the training set used. Also, context can be introduced in an
ontology-based manner between objects as it is done in [12], where object co-ocurrence
probability is computed by extracting related terms to each class from Google Sets or
directly computing it from the ground truth. The system first segments query images into
regions, which are in turn classified in a Bag-of-Words fashion and results obtained are
re-ranked based in object co-ocurrences. In [15] context is provided using global fea-
tures. These are computed from local features extracted with a collection of steerable
filters applied over the image, then taking the average magnitude of the responses over
a coarse spatial grid in order to obtain a global descriptor of 384 dimensions, which is
finally projected to its 80 PCs. Knowing that video frames captured in the same place
have a strong correlation, the authors use a Hidden Markov Model to compute the prob-
abilities of being in a specific place given global features from some frames ago. Place
recognition results are also proven to provide a strong prior for object detection.

We are aware of few works that consider the case of general object recognition in
the domain of mobile robots. In [1] the authors integrate object recognition and SLAM.
The proposed object recognition method works with few training images, and consists
of two stages (Hypotheses generation and verification) that use active vision to focus
on interesting parts of the image. The first stage uses Receptive Field Coocurrence His-
tograms (RFCH) and, in the verification stage, an area of interest that contains a maximal
number of hypotheses is zoomed in using the optical zoom of the camera. Again RFCH
are used to verify each hypothesis and finally SIFT features are extracted and matched
to the model image. No further geometrical constraints are aplied to discard outliers, and
if an object dependent number of SIFT features are matched the object is considered
detected. Background substraction is used during the training stage to precisely segment



the objects. In [7] the authors present a system that learns and recognizes objects in a
semi-autonomous fashion. Their system acquires learning samples of new objects by an-
alyzing a video sequence of a teacher showing the object in a variety of poses and scales.
Then it automatically segments and builds an internal representation with a shared vo-
cabulary of visual features. The vocabulary is made using k-means over features based
on Gabor-jets and hue-saturation values extracted at Harris corner points. Each visual
word stores the relative position of the objects where it appears. Recognition is done by
accumulating votes on a Hough Transform in a similar way as in [2]. In the experiments,
the system runs at about 1-2Hz, recognizing objects from a 100 object database with 78%
of mean accuracy Additionally, the database included difficult objects, like untextured,
flexible and very similar objects (wires, cans, water bottles). Pose and scale invariance is
obtained by superimposing multiple learning samples, so it is only invariant in the range
that the object was learned.

2. Object Recognition in Panoramas

The method used for object recognition is the one proposed by Lowe [3] with some im-
provements (Figure 1 shows an outline of the method) in order to obtain better results
given that we use panoramic images from our mobile robot (see Figure 2). We use one
training image per object in the library, storing its descriptors along with their object
ID in a descriptor database. All training images are taken from a 1Mpx digital camera.
Testing images are panoramas built from 36 images acquired with the pan-tilt camera
mounted on top of our mobile robot, storing the set of SIFT descriptors extracted from
image regions used to construct the panorama. The position of each descriptor is relative
to the total panorama size, not to the individual images. The panoramic image is used
only to show recognition results, as the internal representation used is the descriptor set.
Our implementation of the Lowe SIFT object recognition method differs from the origi-
nal in the keypoint matching method, where instead of one single K-D tree and the BBF
algorithm we use the improved method proposed in [6]. This method gives an improve-
ment in search time of two orders of magnitude with respect to linear search and retrieves
90% of true nearest neighbors. Hough clustering stage is very tolerant to outliers, but
only provides a similarity transform as a starting point for the more accurate affine trans-
form estimation. Given that IRLS is very sensitive to outliers, we evaluate the impact
of adding an intermediate RANSAC (RANdom SAmple Consensus) stage that provides
a good initialization of affine parameters and is also tolerant to outliers. Furthermore,
given our mobile robot setup, we can discard hypotheses with some heuristics applied to
the affine solution bounding box related to the panorama size.

• A box that spans more than 90◦ of field-of-view (25% the width of panorama) is
rejected: this would correspond to an object being in touch with the robot, thus
not recognizable by its huge scale and viewing conditions.

• A box that is not at least 10% inside of view is rejected because there cannot
be sufficient distinguishable features to estimate the affine transform between the
object and panorama.

• A box in which the ratio of minor to major axis is less than 0.05 is rejected, corre-
sponding to objects in viewing conditions that are proven not to be recognizable
with this method.



Although this heuristics come from human knowledge of the method limitations or the
robotic setup used, they can be supported with detector experiments or inferred from lo-
calization results and incorporated in a probabilistic model, which is left for further re-
search. We use this method to build a signature for a panorama consisting in the presence
or absence of database objects.

Figure 1. Block diagram of the Lowe ob-
ject recognition method

Figure 2. Mobile robot platform used for
the experiments.

3. Experimental Results

In this section we explain the experimental setup used for this paper and the results ob-
tained in tests. Training images are close-ups of forty objects appearing in some panora-
mas, taken with a digital camera at a resolution of 1 megapixel. There is one training
image per object, corresponding to its frontal view, except in some cases where the ob-
ject can be found in two different views, i.e. fire extinguisher. This later case is treated
as having two different objects. Descriptor vectors are extracted from training images
and stored as a pre-processing step. The testing dataset consists of five sequences of 11-
22 panoramas taken with our mobile robot in our facilities. Panoramic images have a
size about 6000x500 pixels. Figure 3 shows panoramas used to test our approach with
the detected objects. Four experiments are done in order to test the importance of using

(a) Panorama from lab02 sequence

(b) Panorama from actes03 sequence

Figure 3. Final results obtained by our method in random panoramas of sequences. Only hypotheses consistent
with ground truth are shown. Ground truth is shown in red.

RANSAC as hypothesis outlier filtering stage prior to IRLS, and also to test the perfor-
mance loss and speedup of using aproximate nearest neighbour over exhaustive search in



ACC PRE REC
RANSAC, no ANN 0,81 0,37 0,53
no RANSAC, no ANN 0,81 0,37 0,53
RANSAC, ANN 0,81 0,36 0,53
no RANSAC, ANN 0,81 0,35 0,52

Table 1. Object recognition results.

Sequence Hit Miss Rate (%)
lab02 10 1 91
actes03 13 1 93
actes04 11 3 79
lab08 18 1 95
passadis04 19 3 86

Table 2. Place recognition results.

matching stage. We also provide timing results of matching, Hough clustering and affine
estimation stages. As can be observed in Table 1, RANSAC provides no improvement
over precision or recall. It provides better affine parameters initialization than the sim-
ilarity transform obtained from Hough clustering step, so IRLS converges quicker than
if RANSAC is not used. Although it has to be noted that neither performance nor speed
are altered in a significant way, usually RANSAC filters more outliers than IRLS, result-
ing in more accurate pose estimation. The processing time for each panorama, ignoring
panorama acquisition time and feature extraction step, is about 1 second for matching
using FLANN library set at 90% of retrieval precision, 5 ms for Hough Transform and
1-2 ms for the affine stage (RANSAC+IRLS or IRLS alone), so the processing can go
near real-time. Tests have been done in a 3 Ghz Pentium IV with 1 Gb of RAM. In or-
der to test the applicability of object recognition in place classification task we set up
the following test. Mean vectors are computed for each panorama sequence, except in
the sequence we are testing, where one panorama is used to test and the rest are used to
compute the mean vector, resulting in a leave-on-out evaluation strategy and a minimum
distance classifier. The results of this test are shown in Table 2. As can be seen, localiza-
tion rate is good despite that object recognition only recalls 50% of objects and there is
a significant amount of false positives.

4. Conclusions

In this work we have reviewed the different data sources that can be exploited for the ob-
ject recognition task in the context of mobile robotics. Also, we tested a state-of-the-art
method in images taken with a mobile robot to show one of the applications of object
recognition in the robotics field. Although we have used a simple classification method
for place recognition, it has produced good results despite the modest performance of
the object recognition method. Furthermore, object recognition as a middle stage be-
tween image data and place recognition helps to reduce the complexity of the place de-
scriptor while increasing its robustness. It also can help to reduce irrelevant information
and noise from the background that could confuse other approaches to localization. For
example in [13] the authors report false matches between individual features to be the
most significant problem of the method. In this approach we only take into account nat-
ural landmarks formed with groups of localy coherent features, filtering potential false
matches arising from spurious features. A possible extension to our approach would be
incorporating position information to the detected objects along with a degree of mobil-
ity (for example a window would have mobility zero, while a chair would have a higher
value). It has to be noted that not all object recognition methods are suitable for mobile
robotics environment, as robots need to take decisions in a relatively short time and imag-



ing conditions and hardware used to take the pictures decrease the quality of input data.
In future work we plan to review the main state-of-the-art object recognition methods to
find insight to develop a robust object recognition method that can be applied in mobile
robotics.
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