
Should I trust my teammates? An experiment in Heuristic Multiagent
Reinforcement Learning∗

Reinaldo A. C. Bianchi
Centro Universitário da FEI,

Av. Humberto de A. C. Branco, 3972
São Bernardo do Campo, 09850-901, Brazil.

Phone: +55 11 4353 2910
rbianchi@fei.edu.br

Ramón López de Ḿantaras
Artificial Intelligence Research Institute (IIIA-CSIC),

Campus de la UAB, E-08193
Bellaterra, Catalonia (Spain)

Phone: +34 93 580 9570
mantaras@iiia.csic.es

Abstract
Trust and reputation are concepts that have been
traditionally studied in domains such as electronic
markets, e-commerce, game theory and bibliomet-
rics, among others. More recently, researchers
started to investigate the benefits of using these
concepts in multi-robot domains: when one robot
has to decide if it should cooperate with another one
to accomplish a task, should the trust in the other be
taken into account? This paper proposes the use of
a trust model to define when one agent can take an
action that depends on other agents of his team. To
implement this idea, a Heuristic Multiagent Rein-
forcement Learning algorithm is modified to take
into account the trust in the other agents, before se-
lecting an action that depends on them. Simulations
were made in a robot soccer domain, which extends
a very well known one proposed by Littman by ex-
panding its size, the number of agents and by us-
ing heterogeneous agents. Based on the results it
is possible to show the performance of a team of
agents can be improved even when using very sim-
ple trust models.

1 Introduction
Reinforcement Learning (RL) techniques are very attractive
in the context of Multiagent systems: they are easy to use,
have guarantee of convergence to equilibrium in the limit
(provided that some conditions are satisfied, such as a large
number of visits to every state-action pair [Watkins, 1989;
Mitchell, 1997]), are based on sound theoretical founda-
tions [Littman and Szepesvári, 1996; Szepesvári and Littman,
1996], and have been applied to solve a wide variety of con-
trol and planning problems when neither an analytical model
nor a sampling model is availablea priori [Kaelbling et al.,
1996; Munos and Bourgine, 1998].

Unfortunately, convergence of any RL algorithm may only
be achieved after extensive exploration of the state-action

∗This work has been partially funded by the 2005-SGR-00093
grant of the Generalitat de Catalunya, the MID-CBR project TIN
2006-15140-C03-01, and FEDER funds. Reinaldo Bianchi ac-
knowledge the support of the CNPq (Grant No. 201591/2007-3)
and FAPESP (Grant No. 2009/01610-1).

space, which can be very time consuming, a problem that is
worsened by the existence of multiple agents. Despite that,
Multiagent Reinforcement Learning (MRL) algorithms have
been proposed and successfully applied to some simple prob-
lems, such as the Minimax-Q [Littman, 1994], the Friend-
or-Foe Q-Learning [Littman, 2001] and the Nash Q-Learning
[Hu and Wellman, 2003].

An recently proposed way of increasing the convergence
rate of an RL algorithm is to use heuristic functions for select-
ing actions in order to guide the exploration of the state-action
space in an useful way [Bianchiet al., 2008]. In this pro-
posal, called heuristically Accelerated Reinforcement Learn-
ing (HARL), the heuristic function is associated with a pref-
erence policy that indicates that a certain action must be taken
instead of another. This proposal was also extended to deal
with Multiagent problems [Bianchiet al., 2007], but without
taking into account that different agents may not perform in
the way the heuristic action demands.

This paper investigates the use of a trust model to define
when one agent can take an action that depends on other
agents of his team. To implement this idea, a Heuristic Multi-
agent Reinforcement Learning algorithm called Heuristically
Accelerated Minimax-Q (HAMMQ) was modified to take
into account the trust one agent have in the other agents, be-
fore selecting an action that depends on them.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the Multiagent Reinforcement Learn-
ing problem and the Distributed Q–Learning algorithm, while
Section 3 describes the heuristic approach to RL. Section 4
shows how to incorporate a simple trust model in the Heuris-
tically Accelerated Minimax-Q algorithm. Section 5 presents
the experiments performed and shows the results obtained.
Finally, Section 6 provides our conclusions and outlines fu-
ture work.

2 Multiagent Reinforcement Learning
Markov Games (MGs) – also known as Stochastic Games
(SGs) – are an extension of Markov Decision Processes
(MDPs) that uses elements from Game Theory and allows the
modeling of systems where multiple agents compete among
themselves to accomplish their tasks.

Formally, an MG is defined by [Littman, 1994]:

• S: a finite set of environment states.



Initialise Q̂t(s, a, o).
Repeat:

Visit states.
Select an actiona using theǫ−Greedy rule (eq. 4).
Executea, observe the opponent’s actiono.
Receive the reinforcementr(s, a, o)
Observe the next states′.
Update the values of̂Q(s, a, o) according to:

Q̂t+1(s, a, o)← Q̂t(s, a, o)+

α[r(s, a, o) + γVt(s
′)− Q̂t(s, a, o)].

s← s′.
Until some stopping criterion is reached.

Table 1: The Minimax-Q algorithm.

• A1 . . .Ak: a collection of setsAi with the possible ac-
tions of each agenti.

• T : S ×A1× . . .×Ak → Π(S): a state transition func-
tion that depends on the current state and on the actions
of each agent.

• Ri : S ×A1× . . .×Ak → ℜ: a set of reward functions
specifying the reward that each agenti receives.

Solving an MG consists in computing the policyπ : S ×
A1×. . .×Ak that maximizes the reward received by an agent
along time.

To solve a MG, Littman [1994] proposed the use of a sim-
ilar strategy to Minimax for choosing an action in the Q-
Learning algorithm, the Minimax-Q algorithm (see Table 1).
The action-value function of an actiona in a states when the
opponent takes an actiono is given by:

Q(s, a, o) = r(s, a, o) + γ
∑

s′∈S

T (s, a, o, s′)V (s′), (1)

and the value of a state can be computed using linear pro-
gramming [Strang, 1988] via the equation:

V (s) = max
π∈Π(A)

min
o∈O

∑

a∈A

Q(s, a, o)πa, (2)

where the agent’s policy is a probability distribution overac-
tions,π ∈ Π(A), andπa is the probability of taking the action
a against the opponent’s actiono.

An MG where players take their actions in consecutive
turns is called an Alternating Markov Game (AMG). In this
case, as the agent knows in advance the action taken by the
opponent, the policy becomes deterministic,π : S × A × O
and equation 2 can be simplified:

V (s) = max
a∈A

min
o∈O

Q(s, a, o). (3)

In this case, the optimal policy isπ∗ ≡

arg maxa mino Q∗(s, a, o). A possible action choice
rule to be used is the standardǫ−Greedy:

π(s) =

{

arg max
a

min
o

Q̂(s, a, o) if q ≤ p,

arandom otherwise,
(4)

whereq is a random value with uniform probability in [0,1]
and p (0 ≤ p ≤ 1) is a parameter that defines the explo-
ration/exploitation trade-off: the greater the value ofp, the
smaller is the probability of a random choice, andarandom is
a random action selected among the possible actions in state
s. For non-deterministic action policies, a general formu-
lation of Minimax-Q has been defined elsewhere [Littman,
1994; Banerjeeet al., 2001].

Finally, the Minimax-Q algorithm has been extended to
cover several domains where MGs are applied, such as
General-Sum Games [Crandall and Goodrich, 2005], Robotic
Soccer [Littman, 1994; Bowling and Veloso, 2001] and Econ-
omy [Tesauro, 2001].

3 Heuristically Accelerated Multiagent
Reinforcement Learning

Several algorithms that speed up Multiagent Reinforcement
Learning (MRL) have been proposed. One of them is the
Heuristically Accelerated Minimax Q (HAMMQ) algorithm
[Bianchiet al., 2007], which can be defined as a way of solv-
ing a ZSMG by making explicit use of a heuristic function
H : S×A×O → ℜ to influence the choice of actions during
the learning process.H(s, a, o) defines a heuristic that indi-
cates the desirability of performing actiona when the agent
is in states and the opponent executes actiono.

It can be said that the heuristic function defines a “Heuris-
tic Policy”, that is, a tentative policy used to accelerate the
learning process. The heuristic function can be derived di-
rectly from prior knowledge of the domain or from clues sug-
gested by the learning process itself and is used only during
the selection of the action to be performed by the agent, in the
action choice rule that defines which actiona should be exe-
cuted when the agent is in states. The action choice rule used
in HAMMQ is a modification of the standardǫ−Greedy rule
that includes the heuristic function:

π(s) =

{

arg max
a

min
o

[

Q̂(s, a, o) + ξHt(s, a, o)
]

if q ≤ p,

arandom otherwise,
(5)

whereH : S×A×O → ℜ is the heuristic function,q is a ran-
dom value uniformly distributed over[0, 1] and0 ≤ p ≤ 1 is
a parameter that defines the exploration/exploitation tradeoff.
The subscriptt indicates that it can be non-stationary andξ is
a real variable used to weight the influence of the heuristic.

As a general rule, the value ofHt(s, a, o) used in HAMMQ
should be higher than the variation among theQ̂(s, a, o) val-
ues for the sames ∈ S, o ∈ O, in such a way that it can
influence the choice of actions, and it should be as low as
possible in order to minimize the error. It can be defined as:

H(s, a, o) =

{

max
i

Q̂(s, i, o)− Q̂(s, a, o) + η if a = πH(s),

0 otherwise.
(6)

whereη is a small real value (usually 1) andπH(s) is the
action suggested by the heuristic policy.

As the heuristic function is used only in the choice of the
action to be taken, the proposed algorithm is different from
the original Minimax-Q in the way exploration is carried out.



Initialize Q̂t(s, a, o) andHt(s, a, o).
Repeat:

Visit states.
Select an actiona using the modifiedǫ−Greedy rule

(Equation 5).
Executea, observe the opponent’s actiono.
Receive the reinforcementr(s, a, o)
Observe the next states′.
Update the values ofHt(s, a, o).
Update the values of̂Q(s, a, o) according to:

Q̂t+1(s, a, o)← Q̂t(s, a, o)+

α[r(s, a, o) + γVt(s
′)− Q̂t(s, a, o)].

s← s′.
Until some stopping criterion is reached.

Table 2: The HAMMQ algorithm.

Since the RL algorithm operation is not modified (i.e., up-
dates of the functionQ are the same as in Minimax-Q), our
proposal allows that many of the theoretical conclusions ob-
tained for Minimax-Q remain valid for HAMMQ. Conver-
gence of this algorithm is presented by Bianchiet al. [2007],
together with the definition of an upper bound for the error.
The complete HAMMQ algorithm is presented in Table 2.

One important characteristic of the HARL algorithms is
that, as the heuristic function is explicit, the learning algo-
rithm is able to further refine it, quickly removing any error
that the heuristic may contain. Bianchiet al. [2008] studied
the case when an agent uses a heuristic that is is not com-
pletely adequate. The results is that, at the moment that the
heuristic starts being used, a worsening of performance oc-
curs (because of the inadequacy of the heuristic used), but
acceleration begins as soon as the agent learns to ignore the
heuristics in the states they are not effective.

Despite the fact that RL is a method that has been tradi-
tionally applied in the Robotic Soccer domain, only recently
HARL methods started being used in this domain. Bianchiet
al. [2007] investigated the use of the HAMMQ in a Multia-
gent domain, a simplified simulator for the robot soccer do-
main; Celibertoet al. [2007] studied the use of the HAMRL
algorithms to speed up learning in the RoboCup 2D Simula-
tion domain.

4 Combining Trust and MRL
One problem with the HAMMQ algorithm is that, in actions
that involve more than one agent, one is never sure if the
other agents will collaborate and perform as the heuristic de-
mands. Also, in the case where heterogeneous agents exists,
one agent cannot be sure that the other will be capable of
completing the task. One way to tackle this problem is to use
an explicit value that weights the influence of the heuristic,
deciding if it should be used or not.

The concepts of Trust and Reputation have been tradi-
tionally studied in domains such as electronic markets, e-
commerce, game theory and bibliometrics, among others
[Ramchurnet al., 2004]. Recently, researchers started to
investigate the benefits of using these concepts in problems

Ag

Ad

Aa

Ba

Bd

Bg

Figure 1: The “Expanded Littman’s Soccer” environment
proposed.

involving RL [Banerjee and Peng, 2003; Tran and Cohen,
2002], mobile agents [Derbaset al., 2004] and in multi-robot
domains [Fagioliniet al., 2008, 2007].

This paper proposes the use of a trust model to weight the
influence of the heuristic. Among several trust models and
definitions in the literature [Ramchurnet al., 2004; Huynh
et al., 2006], we choose to implement an observed individ-
ual model of trust, following the one defined in [Muiet al.,
2002]. In this work, the trust in an agentaj in the eyes ofai

is a real variable0 < Tij < 1 which is the number of suc-
cessful cooperation observed byai over the total number of
observations made byai of aj collaborations.Ti,j is only fac-
tored in actions that includes a collaboration between agents i
and j; actions that do not include a collaboration between two
agents haveTi,j = 1.

To implement this model, the action choice rule used in the
t-HAMMQ is a modification of the original one, where the
trust value is used to weight the influence of the heuristic:

π(s) =

{

arg max
a

min
o

[

Q̂(s, a, o) + Ti,jH(s, a, o)
]

if q ≤ p,

arandom otherwise.

5 Robotic Soccer using t-HAMMQ
A set of empirical evaluations of t-HAMMQ were carried out
in a proposed simulator for the robot soccer domain that ex-
tends the one proposed by Littman [1994]. In this domain,
two teams, A and B, of three players each compete in a 15 x
10 grid presented in figure 1. Each team is composed by the
goalie (g), the defender (d) and the attacker (a). Each cell can
be occupied by one of the players, which can take an action
at a turn. The actions that are allowed are: keep the agent
still, move – north, south, east and west – or pass the ball to
another agent. The action “pass the ball” from agentai to aj

is successful if there is no opponent in between them. If there
is an opponent, it will catch the ball and the action will fail.

Actions are taken in turns: all actions from one team’s
agents are executed at the same instant, and then the oppo-
nents’ actions are executed. The ball is always with one of
the players. When a player executes an action that would fin-
ish in a cell occupied by the opponent, it looses the ball and



-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  500  1000  1500  2000  2500  3000

G
oa

ls

Games

Minimax-Q
HAMMQ

t-HAMMQ

Figure 2: Goal balance for the Minimax-Q, the HAMMQ and
the t-HAMMQ algorithms against an agent using Minimax-Q
for Extended Littman’s Robotic Soccer (average of 30 train-
ing sections for each algorithm).

stays in the same cell. If an action taken by the agent leads it
out the board, the agent stands still. When a player with the
ball gets into the opponent’s goal, the move ends and its team
scores one point. At the beginning of each game, the agents
are positioned in a random position and the possession of the
ball is randomly determined, with the player that holds the
ball making the first move.

The agents in this extended simulator are heterogeneous in
the sense that they have different perception and execution
capabilities: some agents can perceive the whole field, while
others can perceive only a small grid around them; some
agents runs faster than others, and some agents are capable
of kicking the ball further.

In this experiment each team is composed by the goalie,
the defender and the attacker. The goalie only perceives a
5 x 5 grid around itself, while the other agents perceive the
whole field. The attacker runs at twice the speed of the other
agents, and the goalkeeper can only kick the ball as far as
the middle of the field. The reinforce the agents receive are:
the goalie receives−100 every time a goal is scored against
it; the defender receives+100 every time it gets the ball and
−100 every time it loses it; and the attacker receives+100 if
a goal is scored by his team. The difference in the rewards
they receive makes them learn different roles.

The heuristic policy used was defined using a simple rule:
pass the ball to the agent closest to the goal. Note that the
heuristic policy does not take into account the opponents po-
sition, leaving the task of how to avoid them to the learning
process. In this example, the trustTij in an agentaj in the
eyes ofai is the number of goal made byaj observed byai

over the total number of passesaj received. Tij starts the
game with the value of0.5.

Thirty training sessions were run for the Minimax-Q, the
HAMMQ and the t-HAMMQ, with each session consisting
of 3000 games of 10 trials. A trial finishes whenever a goal is
scored or when 500 moves are completed.

Table 3: Average of goals at the end of 3000 games playing
against a Minimax-Q opponent (average and standard devia-
tion of 30 training sections for each algorithm).

Algorithm Goals made× goals conceded
Minimax-Q (12382± 77)× (12413± 85)
HAMMQ (14704± 104)× (11345± 84)

t-HAMMQ (16633± 302)× (13366± 278)

Table 4: Average number of games won at the end of 3000
games playing against a Minimax-Q opponent (average and
standard deviation of 30 training sections for each algorithm).

Algorithm Games won× games lost
Minimax-Q (1218± 29)× (1226± 23)
HAMMQ (1714± 28)× (829± 21)

t-HAMMQ (1813± 75)× (649± 67)

Figure 2 presents the learning curves (the difference of
goals made at the end of a game) for the three algorithms
when learning while playing against a learning opponent us-
ing Minimax-Q. It can be seen that t-HAMMQ is better at the
beginning of the learning process. Student’st–test [Spiegel,
1998] was used to verify the hypothesis that the use of heuris-
tics speeds up the learning process. The result is that the t-
HAMMQ is better than Minimax-Q until the 1500th game,
with a level of confidence greater than 5%. After the 1500th

game the results are comparable, since both converge to equi-
librium. (Tests were made until the 10.000th game to ver-
ify if the algorithms had reached their equilibrium). The
same comparison, between the t-HAMMQ and the HAMMQ,
shows that the first is better than the latter until the 500th

game.
Finally, table 3 shows the average number of goals and ta-

ble 4 presents the average number of games won at the end of
3000 games. It can be seen that when Minimax-Q agents are
playing against other Minimax-Q agents, the number of goals
made and games won are approximately the same, while
when t-HAMMQ agents played against Minimax-Q ones, t-
HAMMQ team made more goals and won more games.

The parameters used in the experiments were the same for
all the algorithms. The learning rate isα = 0, 9, the ex-
ploration/ exploitation rate was defined as being equal to 0.2
and the discount factorγ = 0.9 (these parameters are sim-
ilar to those used by Littman [1994]). The value ofη was
set to 1. Values in the Q table were randomly initiated, with
0 ≤ Q(st, at, ot) ≤ 1. The experiments were programmed in
C++ (GNU g++ compiler) and executed in a MacBook Pro,
with 4GB of RAM in a Mac OS X platform.

6 Conclusion
This paper used a trust model to define when one agent can
take an action that depends on other agents of his team, and
tested it using a Heuristic Multiagent Reinforcement Learn-
ing algorithm, the HAMMQ, in an expanded robotic soccer
simulation domain.

The experimental results obtained in the domain of robotic
soccer games showed that the team of agents using trust val-



ues t-HAMMQ algorithm performed better than the team us-
ing the Minimax-Q or the HAMMQ algorithms, scoring more
goals and winning more games than both of them.

This approach can also be incorporated into other well
known Multiagent RL algorithms, such as Minimax-SARSA,
Minimax-Q(λ), Minimax-QS and Nash-Q. Future works also
include working on obtaining results in more complex do-
mains, such as RoboCup 2D and 3D Simulation and Small
Size League robots.

References
Bikramjit Banerjee and Jing Peng. Countering deception in

multiagent reinforcement learning. InIn Proceedings of
the Sixth International Workshop on Trust, Privacy, De-
ception, and Fraud in Agent Societies, pages 1–5, 2003.

Bikramjit Banerjee, Sandip Sen, and Jing Peng. Fast concur-
rent reinforcement learners. InProceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’01), pages 825–832, 2001.

Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna He-
lena Reali Costa. Heuristic selection of actions in multia-
gent reinforcement learning. In Manuela M. Veloso, editor,
IJCAI, pages 690–695, 2007.

Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. R.
Costa. Accelerating autonomous learning by using heuris-
tic selection of actions.Journal of Heuristics, 14(2):135–
168, 2008.

Michael H. Bowling and Manuela M. Veloso. Rational and
convergent learning in stochastic games. InProceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI’01), pages 1021–1026, 2001.

Luiz A. Celiberto, Carlos H. C. Ribeiro, Anna Helena Reali
Costa, and Reinaldo A. C. Bianchi. Heuristic reinforce-
ment learning applied to robocup simulation agents. In
Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank
Dellaert, editors,RoboCup, volume 5001 ofLecture Notes
in Computer Science, pages 220–227. Springer, 2007.

Jacob W. Crandall and Michael A. Goodrich. Learning to
compete, compromise, and cooperate in repeated general-
sum games. InICML ’05: Proceedings of the 22nd inter-
national conference on Machine learning, pages 161–168,
New York, NY, USA, 2005. ACM.

Ghada Derbas, Ayman Kayssi, Hassan Artail, and Ali
Chehab. Trummar - a trust model for mobile agent sys-
tems based on reputation. InICPS ’04: Proceedings of the
The IEEE/ACS International Conference on Pervasive Ser-
vices, pages 113–120, Washington, DC, USA, 2004. IEEE
Computer Society.

Adriano Fagiolini, Gianni Valenti, L. Pallottino, Gianluca
Dini, and Antonio Bicchi. Decentralized intrusion detec-
tion for secure cooperative multi-agent systems. InProc.
IEEE Int. Conf. on Decision and Control, pages 1553–
1558, 2007.

Adriano Fagiolini, Marco Pellinacci, Gianni Valenti, Gian-
luca Dini, and Antonio Bicchi. Consensus-based dis-

tributed intrusion detection for multi-robot systems. In
ICRA, pages 120–127. IEEE, 2008.

Junling Hu and Michael P. Wellman. Nash q-learning for
general-sum stochastic games.Journal of Machine Learn-
ing Research, 4:1039–1069, 2003.

Trung Dong Huynh, Nicholas R. Jennings, and Nigel R.
Shadbolt. An integrated trust and reputation model for
open multi-agent systems.Autonomous Agents and Multi-
Agent Systems, 13(2):119–154, 2006.

Leslie P. Kaelbling, Michael L. Littman, and Andrew W.
Moore. Reinforcement learning: A survey.Journal of Ar-
tificial Intelligence Research, 4:237–285, 1996.

Michael L. Littman and Csaba Szepesvári. A generalized
reinforcement learning model: convergence and applica-
tions. InProceedings of the 13th International Conference
on Machine Learning (ICML’96), pages 310–318, 1996.

Michael L. Littman. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of
the 11th International Conference on Machine Learning
(ICML’94), pages 157–163, 1994.

Michael L. Littman. Friend-or-foe Q-learning in general-
sum games. InProceedings of the 18th International Con-
ference on Machine Learning (ICML’01), pages 322–328,
2001.

Tom Mitchell. Machine Learning. McGraw Hill, New York,
1997.

Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. Notions
of reputation in multi-agents systems: a review. InAAMAS
’02: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 280–
287, New York, NY, USA, 2002. ACM.

Rémi Munos and Paul Bourgine. Reinforcement learning for
continuous stochastic control problems. InNIPS ’97: Pro-
ceedings of the 1997 conference on Advances in neural in-
formation processing systems 10, pages 1029–1035, Cam-
bridge, MA, USA, 1998. MIT Press.

Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jen-
nings. Trust in multi-agent systems.The Knowledge Engi-
neering Review, 19:2004, 2004.

Murray R. Spiegel.Statistics. McGraw-Hill, 1998.

Gilbert Strang.Linear algebra and its applications. Harcourt,
Brace, Jovanovich, San Diego, 3 edition, 1988.

Csaba Szepesvári and Michael L. Littman. General-
ized markov decision processes: Dynamic-programming
and reinforcement-learning algorithms. Technical report,
Brown University, 1996. CS-96-11.

Gerald Tesauro. Pricing in agent economies using neural net-
works and multi-agent q-learning.Lecture Notes in Com-
puter Science, 1828:288–307, 2001.

Thomas Tran and Robin Cohen. A reputation-oriented rein-
forcement learning strategy for agents in electronic market-
places.Computational Intelligence, 18(4):550–565, 2002.

Christopher J. C. H. Watkins.Learning from Delayed Re-
wards. PhD thesis, University of Cambridge, 1989.


