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Abstract—Object perception is a key feature in order to make
mobile robots able to perform high-level tasks. However, research
aimed at addressing the constraints and limitations encountered
in a mobile robotics scenario, like low image resolution, motion
blur or tight computational constraints, is still very scarce. In
order to facilitate future research in this direction, in this work
we present an object detection and recognition dataset acquired
using a mobile robotic platform. As a baseline for the dataset, we
evaluated the cascade of weak classifiers object detection method
from Viola and Jones.

I. INTRODUCTION

Currently there is a big push towards semantics and higher
level cognitive capabilities in robotics research. One central
requirement towards these capabilities is to be able to identify
higher level features like objects, doors, etc. For example,
in [1], the authors investigate underlying representations of
spatial cognition for autonomous robots. Although not specif-
ically addressed in that work, object perception is an essential
component that the authors reported to be the most limiting
factor.

Although different modalities of perception (e.g. laser
range-finder, color camera, haptics) can be used, in this work
we focus on passive vision, as it is interesting for several
reasons like an affordable cost, passive and low power con-
suming, compatibility with human environments or richness
of perceived information.

Recently several methods have been quite successful in par-
ticular instances of the problem, such as detecting frontal faces
or cars, or in datasets that concentrate on a particular issue
(e.g. classification in the Caltech-101 [2] dataset). However in
more challenging datasets like the detection competition of the
Pascal VOC 2007 [3] the methods presented achieved a lower
average precision. This low performance is not surprising,
since object recognition in real scenes is one of the most
challenging problems in computer vision [4]. The visual
appearance of objects can change enormously due to different
viewpoints, occlusions, illumination variations or sensor noise.
Furthermore, objects are not presented alone to the vision
system, but they are immersed in an environment with other
elements, which clutter the scene and make recognition more

complicated. In a mobile robotics scenario a new challenge
is added to the list: computational complexity. In a dynamic
world, information about the objects in the scene can become
obsolete even before it is ready to be used if the recognition
algorithm is not fast enough.

Despite the importance of the problem, we are not aware of
any publicly available dataset where the particular problems
of mobile robotics are well represented. To help improve this
situation, we have created the IIIA30 dataset, which contains
several sequences acquired navigating with a mobile robot, as
well as manually generated bounding box annotations of 29
different objects.

Moreover, the problems encountered in mobile robotics and
embodied in this dataset are very similar to those found in
mobile computing, a currently very relevant area of research
where low processing power, limited storage space and bad
image quality are the rule rather than the exception.

The rest of the paper is divided as follows. First, the IIIA30
dataset and the performance metrics we recommend for it are
described in Section II. Next, the dataset is evaluated using the
well known cascade of weak classifiers method from Viola and
Jones in Section III. Finally, in Section IV, the conclusions are
presented.

II. DATASET AND PERFORMANCE METRICS

We have created the IIIA30 dataset1, that consists of three
sequences (IIIA30-1 to IIIA30-3) of different length acquired
by our mobile robot while navigating at approximately 50 cm/s
in a laboratory type environment, and approximately twenty
good quality images for training taken with a standard digital
camera. The camera mounted in the robot is a Sony DFW-
VL500 and the image size is standard VGA resolution (i.e.
640 × 480 pixels). In Figure 1 the robotic platform used can
be seen. The environment has not been modified in any way
and the object instances in the test images are affected by
lightning changes, blur caused by the motion of the robot,
occlusion and large viewpoint and scale changes.

1http://www.iiia.csic.es/∼aramisa/iiia30.html
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Fig. 2. (a) Training images for the IIIA30 dataset. (b) Cropped instances of objects from the test images.



Since the objective was to deal with a non-trivial multiclass
problem, a total of 30 categories (29 objects and background)
that appear in the sequences have been considered. In order
to evaluate the influence of different training datasets, twenty
good quality training images and a video were taken with a
standard digital camera for each considered object category.
The objects have a large range of sizes, and cover a wide
range of appearance characteristics: some are textured and flat,
like the posters, while others are textureless and only defined
by its shape. Figure 2.a shows the training images for all the
object categories, and 2.b shows some cropped object instances
from the test images. Each occurrence of an object in the
video sequences has been manually annotated in each frame
to construct the ground truth, along with its particular image
characteristics (e.g. blurred, occluded...).

In order to evaluate the performance of the methods we
recommend several standard metrics that are briefly explained
in the following lines. Precision is defined as the ratio of
true positives among all the positively labeled examples, and
reflects how accurate our classifier is.

Pre =
TruePositives

FalsePositives+ TruePositives
(1)

Recall measures the percentage of true positives that our
classifier has been able to label as such. Namely,

Rec =
TruePositives

FalseNegatives+ TruePositives
(2)

When it is equally important to perform well in both metrics,
we also considered the f–Measure metric:

f −measure = 2 · Precision ·Recall
Precision+Recall

(3)

This measure assigns a single score to an operating point of our
classifier weighting equally precision and recall, and is also
known as f1–measure or balanced f–score. If the costs of a

Fig. 1. Robotic platform used in the experiments.
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Fig. 3. Diagram of the Viola and Jones Cascade of Weak Classifiers method,
with tests shown as purple boxes. Orange boxes refer to steps of the method
and green to input/output of the algorithm.

false positive and a false negative are asymetric, the general
f–measure can be used by adjusting the β parameter:

fg −measure =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(4)

In the object detection experiments, we have used the Pascal
VOC object detection criterion [3] to determine if a given
detection is a false or a true positive. In brief, to consider an
object as a true positive, the bounding boxes of the ground
truth and the detected instance must have a ratio of overlap
equal or greater than 50% according to the following equation:

BBgt ∩BBdetected

BBgt ∪BBdetected
≥ 0.5 (5)

where BBgt and BBdetected stand for the ground truth and
detected object bounding box respectively. For objects marked
as occluded only the visible part has been annotated in the
ground truth. Since the type of annotation is not compatible
with the output of algorithms the estimate the pose of the
whole object from the visible part (like the SIFT object
recognition method [11]), for the case of objects marked as
occluded, we have modified the above formula in the following
way:

BBgt ∩BBdetected

BBgt
≥ 0.5 (6)

As can be seen in the previous equation, it is only required
that the detected object bounding box overlaps 50% of the
ground truth bounding box. Another option to deal with
the occluded objects problem could be modifying the object
detection algorithm to restrict the predicted bounding box to
the part of the object that is believed to be visible, although
that would arise other theoretical and technical difficulties.



III. BASELINE RESULTS

The cascade of weak classifiers proposed by Viola and
Jones [5] is a commonly used object recognition method
because of its good performance and low computational cost.
A diagram of the steps of the method and the tests conducted
can be seen in Figure 3. This method constructs a cascade of
simple classifiers (i.e. simple Haar-like features in a certain
position inside a bounding box) using a learning algorithm
based on AdaBoost. Speed was of primary importance to the
authors of [5], and therefore every step of the algorithm was
designed with efficiency in mind. The method uses rectangular
Haar-like features as input from the image computed using
Integral Images, which makes it a constant time operation
regardless of the scale or type of feature. Then, a learning
process that selects the most discriminative features constructs
a cascade where each node is a filter that evaluates the presence
of a single Haar-like feature with a given scale at a certain
position in the selected region. The most discriminative filters
are selected to be in the first stages of the cascade to discard
windows not having the object of interest as soon as possible.
At classification time, the image is explored using sliding
windows. However, thanks to the cascade structure of the
classifier it is only at interesting areas where processor time
is really spent.

Notwithstanding its well known advantages, this approach
suffers from significant limitations. The most important one
being the amount of data required to train a competent
classifier for a given class. Usually hundreds of positive and
negative examples are required (e.g. in [6] 5000 positive
examples, derived using random transformations from 1000
original training images, and 3000 negative examples where
used for the task of frontal face recognition). Another known
drawback is that a fixed aspect ratio of the objects is assumed
with this method, that may not be constant for certain classes
of objects (e.g. cars). Another drawback is the difficulty of
generalizing the approach above 10 objects at a time [7].
Finally, the tolerance of the method to changes in the point of
view is limited to about 20◦. In spite of these limitations, the
Viola and Jones object detector has had remarkable success
and is widely used, especially for the tasks of car and frontal
face detection.

Since the publication of the original work by Viola and
Jones, many improvements to the method have appeared,
for example to address the case of multi-view object recog-
nition [8], [9]. In this work the original method has been
evaluated using a publicly available implementation2.

Training Set Size and Image Quality: As previously
mentioned, one of the most important limitations of the
Viola and Jones object recognition method is the amount and
quality of the training data. In this work we have evaluated
three different training sets. The first one consists of images
extracted from the ground truth bounding boxes from test
sequences IIIA30-2 and IIIA30-3. The second one consists of

2We have used the implementation that comes with the OpenCV library:
http://opencv.willowgarage.com/wiki/

Object Recall Prec Object Recall Prec
Grey battery 0.0 0.0 Monitor 2 0.14 0.14
Red battery 0.28 0.02 Monitor 3 0.03 0.01

Bicycle 0.46 0.07 Orbit box 0.03 0.01
Ponce book 0.0 0.0 Dentifrice 0.0 0.0

Hartley book 0.03 0.01 Poster CMPI 0.17 0.15
Calendar 0.19 0.01 Phone 0.0 0.0

Chair 1 0.11 0.22 Poster Mystrands 0.36 0.27
Chair 2 0.71 0.05 Poster spices 0.46 0.06
Chair 3 0.0 0.0 Rack 0.0 0.0
Charger 0.0 0.0 Red cup 0.0 0.0
Cube 1 0.0 0.0 Stapler 0.03 0.01
Cube 2 0.0 0.0 Umbrella 0.03 0.02
Cube 3 0.0 0.0 Window 0.36 0.2

Extinguisher 0.0 0.0 Wine bottle 0.0 0.0
Monitor 1 0.0 0.0

TABLE I
RECALL AND PRECISION VALUES OBTAINED TRAINING THE VIOLA &

JONES OBJECT DETECTOR USING IMAGES EXTRACTED FROM THE
IIIA30-3 SEQUENCE AND EVALUATING IN SEQUENCES IIIA30-1 AND

IIIA30-2.

Object Recall Prec Object Recall Prec
Grey battery 0.01 0.02 Monitor 2 0.41 0.20
Red battery 0.08 0.04 Monitor 3 0.40 0.18

Bicycle 0.01 0.10 Orbit box 0.10 0.16
Ponce book 0.08 0.31 Dentifrice 0.01 0.03

Hartley book 0.04 0.08 Poster CMPI 0.10 0.05
Calendar 0.11 0.27 Phone 0.07 0.08

Chair 1 0.02 0.30 Poster Mystrands 0.71 0.12
Chair 2 0.01 0.34 Poster spices 0.05 0.05
Chair 3 0.02 0.05 Rack 0.06 0.55
Charger 0.0 0.08 Red cup 0.01 0.05
Cube 1 0.06 0.21 Stapler 0.02 0.20
Cube 2 0.0 0.56 Umbrella 0.05 0.58
Cube 3 0.03 0.24 Window 0.10 0.08

Extinguisher 0.09 0.13 Wine bottle 0.03 0.32
Monitor 1 0.02 0.01

TABLE II
RECALL AND PRECISION VALUES FOR EACH OBJECT CATEGORY FOR THE
VIOLA AND JONES OBJECT DETECTOR WHEN USING A TRAINING SET OF

SEVERAL GOOD QUALITY IMAGES PER OBJECT AND WITH
SYNTHETICALLY GENERATED IMAGES.

20 good quality training images per object type, and additional
synthetic views automatically generated from these images.
Finally, the third training set is a mix between good quality
images extracted from videos recorded with a digital camera
(for 21 objects, between 700 and 1200 manually segmented
images per object), and a single training image plus 1000 new
synthetic views (for 8 objects).

The dataset used for the first test only had a few images
for each type of object: 50 to 70 images per class. In Table I
the results obtained for sequences IIIA30-1 and IIIA30-2 are
shown. With so few training data, the Viola and Jones classifier
is able to find only some instances for objects of 11 out of the
29 categories. This performance is expected due to the limited
amount of training data.

Table II shows the results obtained with twenty good quality
training images, but further enhancing the set by synthetically
generating a hundred extra images for each training sample.
As it can be seen, the usage of high quality images and the
synthetic views significantly improved the results.

Finally, Table III shows the results obtained using the third
training set, which consisted of hundreds of good quality im-



All Non-Occluded Occluded
Object Recall Prec Recall Prec Recall Prec

Grey battery 0.36 0.24 0.41 0.24 0.0 0.0
Red battery 0.37 0.82 0.44 0.82 0.0 0.0

Bicycle 0.0 0.0 0.0 0.0 0.0 0.0
Ponce book 0.81 0.88 0.86 0.86 0.25 0.02

Hartley book 0.66 0.94 0.70 0.94 0.0 0.0
Calendar* 0.33 0.08 0.38 0.08 0.0 0.0

Chair 1 0.0 0.0 0.0 0.0 0.0 0.0
Chair 2* 0.0 0.0 0.0 0.0 0.0 0.0
Chair 3 0.0 0.0 0.0 0.0 0.0 0.0
Charger 0.12 0.08 0.12 0.08 0.0 0.0
Cube 1 0.22 0.43 0.23 0.29 0.2 0.15
Cube 2 0.23 0.11 0.20 0.09 0.34 0.03
Cube 3 0.28 0.53 0.37 0.48 0.09 0.06

Extinguisher 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 1* 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 2* 0.23 0.57 0.39 0.57 0.0 0.0
Monitor 3* 0.04 0.13 0.05 0.13 0.0 0.0
Orbit box* 0.15 0.03 0.17 0.03 0.0 0.0
Dentifrice 0.0 0.0 0.0 0.0 0.0 0.0

Poster CMPI 0.11 0.34 0.19 0.34 0.0 0.0
Phone 0.05 0.09 0.0 0.0 0.3 0.09

Poster Mystrands 0.0 0.0 0.0 0.0 0.0 0.0
Poster spices 0.04 0.38 0.12 0.38 0.0 0.0

Rack 0.0 0.0 0.0 0.0 0.0 0.0
Red cup 0.89 0.89 0.89 0.89 0.0 0.0

Stapler 0.24 0.21 0.24 0.21 0.0 0.0
Umbrella 0.0 0.0 0.0 0.0 0.0 0.0
Window 0.03 0.40 0.10 0.40 0.0 0.0

Wine bottle* 0.10 0.06 0.10 0.06 0.0 0.0

TABLE III
RECALL AND PRECISION VALUES FOR EACH OBJECT CATEGORY USING

THE VIOLA & JONES OBJECT DETECTOR AND THE THIRD TRAINING SET
DESCRIBED . WHEN WE DECOMPOSE THE PRECISION-RECALL VALUES

FOR OCCLUDED AND NON-OCCLUDED OBJECTS, RESULTS SHOWS A
PERFORMANCE DROP FOR OCCLUDED OBJECTS. THE ASTERISK MARK

DENOTES OBJECTS TRAINED FROM SYNTHETIC IMAGES.

ages extracted from video recordings done with a conventional
camera.

A conclusion that can be quickly inferred from the table
is the decrease in performance caused by occlusions. Even
objects that achieve a good recall and precision with good
viewing conditions, fail in the case of occlusions. In contrast,
blurring and illumination variations did not affect performance
significantly. Regarding the object types, (textured, untextured
and repetitively textured) textured objects obtained an overall
recall of 26% and precision of 33%, similar to that of
repetitively textured objects (24% recall and 36% precision).
Finally, untextured objects obtained 14% of recall and 19%
precision.

The performance on the posters is surprisingly low, as they
are usually considered “easy” objects. The most probable
explanation is the large changes in point of view that the
posters suffer through the video sequences. The time necessary
to apply the classifiers for all the classes to one test image is
728 ms on average.

IV. CONCLUSIONS

We have presented a publicly available and hard object
detection dataset acquired with a mobile robot, that faithfully
represents the typical problems encountered in mobile robotics
and mobile computing in general (i.e. low resolution, motion
blur, etc.). The dataset contains three sequences of varying

length, with bounding box annotations for 29 challenging
object types, as well as good quality training images.

In order to set a baseline for future evaluations, we have
run the Viola and Jones Cascade of classifiers object detector
on the three sequences. This study is part of a larger work
evaluating three state of the art object detectors suitable for
mobile robotics [10]: the SIFT object recognition system [11],
the Vocabulary Tree method [12] and the Viola and Jones
Cascade of Classifiers method [5].

Despite the use of very simple image features, the Viola and
Jones Cascade of classifiers attains a good level of recall for
several objects in a very low runtime. Its main drawbacks are
the large (in comparison with other techniques) training dataset
required to obtain a good level of performance, and the limited
robustness to changes in the point of view and occlusions of
the method, as well as a significant number of false positives
that have to be filtered out in later stages. Furthermore, some
theoretically “easy” objects, such as the posters, proved to be
troublesome to the Viola and Jones method. This is probably
due to overfitting to some particular view, or to too much
variability of the very rich Haar feature distribution when
changing the point of view, where the method was unable
to find any recognizable regular pattern.

Nevertheless, the idea of a boosted cascade of weak classi-
fiers is not limited to the very fast but simple Haar features,
but any kind of classifier can be used for that matter. A
very interesting alternative is using linear SVMs as weak
classifiers, since it allows to add a non-linear layer to an
already efficient linear classifier. Such idea has been already
successfully applied in a few cases [13], [14], and we believe
it is a very interesting line to investigate.
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