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Abstract— Gaussian Mixture Models have been widely used
in robotic control and in sensory anticipation applications. A
mixture model is learnt from demonstrations and later used
to infer the most likely control signals, or is also used as a
forward model to predict the change in sensory signals over
time. However, such models often are too big to be tractable in
real-time applications. In this paper we introduce the Context-
GMM, a method to learn sparse priors over the mixture
components. Such priors are stable over large amounts of time
and provide a way of selecting very small subsets of mixture
components without significant loss in accuracy and with huge
computational savings.

I. INTRODUCTION

In order to perform a variety of tasks in their environment,
robots must acquire a model of the consequences of its
actions. This is important specially in the developmental
robotics field, where the robot has no specific task but it
still needs to learn a forward model of its environment that
tells how state variables change over time depending on its
own actions [1].

As robots become more dexterous and their sensory capa-

bilities are enhanced, the acquired models become more and
more complex.
In a need of managing this overwhelming complexity, models
need to be compressed or partitioned, so the problem of
using them to solve a specific task becomes tractable. This is
very important in terms of interactivity of the robot with its
environment, as it needs to compute a response in a limited
amount of time or it may miss some important event.

Generative models enable the execution of complex be-

haviours by providing control signals obtained applying
probabilistic inference on the distribution extracted from
sensor and actuator data.
A Gaussian Mixture Model (GMM) is a kind of generative
model which can be viewed as a compressed version of a
dataset. In our case, this dataset is the sensorimotor history
of a robot or a set of demonstrations of a particular task.

If our GMM models the joint distribution of perception-
action tuples, we can use Gaussian Mixture Regression
(GMR) to infer the most likely control signal for a given
percept. This technique has proven very successful in learn-
ing by demonstration tasks [2][3][4][5].

However, as the space dimensionality grows, the resulting
model often contains an intractable number of components,
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so the model cannot be evaluated in real time. This is very
important in mobile robotics, where it is often the case that
embedded CPUs do not have much computational power.

In robotics, sensorimotor variables provide a stream of
data. This means that their values do not change abruptly
very often, as they are governed by internal and external
dynamics of both the robot and environment. Sensor data
will exhibit a certain pattern when the robot is executing a
behaviour like walking and another pattern when it is picking
up some object. This translates in the activation of different
parts of the model, usually very small, when a behaviour is
being performed.
This insight leads to the conceptualization of contexts as
the set of hidden factors that condition the activation of
a small region of the model. Those factors induce sparse
prior probabilities over the model components, that is, only
a small subset of the model is likely to be activated under
such conditions.

Sparse coding has been an active topic in the recent years.
It provides representations based in a set of basis features or
encoding units, where only a small amount of this units are
actually used to code a pattern, hence the term sparsity. An
interesting type of sparsity is group sparsity [6], where ones
assumes that units in the same group tend to be zero or non-
zero simultaneously. We observe that model units behave in
a similar way, as they can be grouped by their temporally-
correlated activation. We exploit this feature in our way to
obtain big gains in the computational resources needed for
the evaluation of our model.
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Fig. 1. Schematic view of different levels of abstraction. Different
behaviours give rise to different sensory signals, which activate different
parts of the model. This activity is summarised in the context level.



In this paper we propose the Context-GMM, a method
for applying general GMR to different environmental or be-
havioural conditions. Those conditions may come either from
internal or external variables, that is, self-generated actions
or environment hidden variables that affect the dynamics of
the robot.

By detecting changes in the activation pattern of mix-
ture components we can identify segments of temporally
congruent activations, which we call contexts, and extract
a prior distribution over component activations. Figure 1
depicts the different levels of abstraction in our system.
At behaviour level we have the actions as perceived by an
external human observer. At sensor level we have the raw
stream of sensor data that is feed into into the learning
system. In activation level we show the activation pattern
of mixture components. It can be observed that although
there are small differences in levels of activity, the patterns
change abruptly when behaviour changes. Lastly, in context
level we show the learnt context priors active at each time,
where we can see that capture the stationary distribution of
component activations. In our experiments we used a mobile
robot, which also exhibits high variability in sensory signals,
although the depiction of a humanoid is meant for illustration
purposes.

II. RELATED WORK

Approaches based in statistical learning of behaviours have
become increasingly popular thanks to their capability of
dealing naturally with uncertainties in demonstrations.

Among different techniques, Gaussian Mixture Regres-
sion has been successfully applied in many imitation and
control problems. Dynamical systems researchers approach
the problem by learning a probabilistic model of the forces
or velocities that need to be applied in order to reproduce
or modulate the execution of a trajectory [3][7]. This has
been done by learning the distribution of joint velocities in
a latent space obtained by dimensionality reduction [3], or
by learning an acceleration model that is used to modulate
trajectories [7]. More recent work in the line of dynamical
systems has focused in optimization of GMM parameters to
obtain stable dynamical systems [2].

Another line of research is the use of local approaches
to perform regression. Some authors proposed to learn the
GMM on the fly by using search algorithms to query a set
of data samples close to the input one [4]. Another approach
is to learn different local models that are weighted using
Gaussian kernels. Each of this models can use a different
regression technique, such as local Gaussian Processes [8]
or regression in a projected space [9].

In the field of Reinforcement Learning (RL) there has been
much effort in recent years in breaking up a big model into
multiple local specialised ones. While some work assumes
that the number of environment conditions is known a priori
[10] [11], others approach the problem by incrementally
building new models as they detect changes in environment
dynamics, either from state transition or reward changes [12].
However, the difference with our work is that our goal is to

keep computational complexity very low without sacrificing
predictive accuracy, while theirs is to minimize the amount of
time spent in re-learning models when the context changes.

II1. METHODOLOGY

The data comes in a stream defined by the set of samples
st = (@, y,) up to a time T. We make a distinction between
the input part « and output part y of the data sample, as we
want to use the model for probabilistic regression, that is,
estimating:

J(z) = argmax P(Y = y|X = x) (1)
Y

We start by learning a GMM using a state-of-the-art
incremental method from [13]. In previous work [14] we
studied how this method can be applied to provide long-term
predictions of sensory consequences of actions and found
that the models need to be large if we want to cover most
of the environment and internal conditions.

The objective is to learn a forward model for the dy-
namical system that predicts the change in the optical flow
perceived by the robot as it moves through its environment.
The model is defined by the following ODE:

D8O _ F(s(1),a(t) @
t

where s(t) = (OF(t),V(t)) are the sensor variables, in
our case the optical flow and the robot velocities provided
by the wheel encoders. As our aim is to make long-term
predictions, i.e. anticipate the optical flow T time-steps in
the future, we learn this as a mapping, changing the time-
derivative of optical flow dOF() by the difference between

dt
the perceived optical flows at time ¢ and time ¢t + 1"

dOF (1)
dt

F(s(t),a(t)) turns to be the result of performing GMR
on our model, conditioned in observing (s(t), a(t)).

~ AOFl = OF(t +T) — OF(t) A3)

A GMM M has two kinds of parameters, the set of
likelihood functions p(s|m;),j = 1..N, where N is the
number of Gaussian components, and the mixing weights,
which can be viewed as a prior distribution over the mixture
components P(M). In that way, the GMM captures the
density:

N
P(s) = P(s|M)P(M) = 3 P(s|m;)P(m;) (&)
J

The context learning module works from a learnt GMM
and finds the latent contexts in the stream of data. In this
work we manually freeze the model before learning the
contexts, although we are working in making both process
interact with each other. Figure 2 shows a diagram of how
the system operates. Learning is performed in two steps,
IGMM learning and context learning. After that, both the
learnt GMM and context priors are used in the Context-
GMM module to make efficient predictions.



A. Incremental GMM learning

The learning method used is an online formulation using
the Robbins-Monro recursive equations [15], modified to
deal with an unknown number of mixture components [13].
Although there are other existing methods, based in online
formulations of the EM algorithm [16] or Kalman filtering
[17], this method can be trained with very few exemplars
and gives good results.

At each time-step, a new data sample s is received and
reconstructed using the GMM, denoted as §.

If the normalized error is above the selected accuracy
threshold, |s — §|o > A"°¢, we create a new Gaussian com-
ponent with mean p = s and covariance ¥ = X;,,;. In our
experiments, we set the initial covariance to a proportional
value of the sensor measurement noise. A new component is
also added if the likelihood provided by the model is below
a minimum threshold £(s|M;) < Athoed,

B. Context-GMM

After executing different behaviours for some time, we
have learnt a GMM that captures the relevant information
from the sensorimotor experience of the robot. It can be used
for performing tasks by reconstructing the control signals,
but it can also be used as a forward model to predict how
sensory variables change when the robot executes an action.

The learning method, based in EM, assumes that the
dataset is composed from i.i.d. samples generated from a
stationary distribution. In robotics, this assumption is almost
never fulfilled, as the data comes in a stream while multiple
behaviours are executed. This has a strong effect in the
learnt prior over the components P(M), which reflects an
average distribution of mixture component activations.

At this point we introduce the concept of a context. It
can be thought of as a set of factors, which may not be
directly observed, that induce a stationary distribution over
mixture components. A context may be just a simple action
like looking up or a behaviour such as walking forward.

In that way, the learnt prior over the components obtained
from incremental GMM learning is a weighted average of the
priors induced by the different contexts present at different
times:

IC|
P(M) = X.P°(M) %)

Where C' is the set of contexts and A. are weights
proportional to the amount of time a context is active over
the whole sequence.

Another feature of this context-induced priors is that they
are sparse, that is, they have a few non-zero entries. This is
key in our approach, as the purpose of learning such priors
is that we can evaluate only the components that have some
probability of being active, resulting in huge computational
savings. In Section III-D we explain in detail how to use
those sparse priors. Figure 3 shows a sample of the learnt
priors for one of the datasets used in our experiments.

C. Incremental learning of context priors

Context learning is performed in a similar fashion as the
incremental GMM. Each context is represented as a prior
distribution over the model components P¢(M). We also
store the number of samples that have been used to compute
the context 7.. This count is used to weight the contribution
of new samples when updating a context.

A standard GMM would be a special case of a Context-
GMM, where there is only one context, corresponding to the
prior distribution obtained when learning the GMM. For this
reason, we initialise our context database with one context
corresponding to the prior obtained from the incremental
GMM learning step.

When a new sample s arrives we compute the likelihood
vector for all the components P(s|M). Figure 4(a) shows
the log-likelihood of some of the model components over a
period of time, where different behaviours are performed. It
can be appreciated that there are stable activity patterns while
a behaviour is executed. Then we use the active context c*
to compute the activations of each mixture component using
the corresponding prior P¢ (M).
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Fig. 2. Schematic view of different levels of abstraction.
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Fig. 3. Learnt prior distributions for the 6 most active context in second
dataset, over a total of 16 contexts. Horizontal axis indicates the model
component index, while vertical axis is the prior probability for a particular
model component. Notice how few components have more than zero
probability and, moreover, how increasing the threshold makes the resulting
prior even more sparse.
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(a) Activity of different model components.
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Fig. 4. Activities of a small subset of model components and its corresponding learnt context priors. Each row corresponds to a different model component
and time is plotted in horizontal axis. It can be observed how only a few components present some activity pattern while the others remain inactive. The
learnt priors capture the stationary distribution of component activity for each active context.

P(s|mi)P°* (m;)

PO )= S Pl P o)

(6)

We also compute a confidence value for the current
context, based on the likelihood that it generated the data:

N
erres = —log(z P(s|m;) P (m;) +¢)

J

)

where ¢ is used to establish an upper bound on err,-.

Context selection is greedy in a sense that if the error is
below a minimum level, we assume that we are still in the
same context. If it is above that threshold, it means that the
current context is not applicable to the current situation, so
we must find whether there is another context that explains
the situation or we need to create a new context. We denote
this threshold as 6.,,, which we use to control the amount
of context that will be created and also has an impact in
the sparseness of the resulting contexts. At this point, we
evaluate all the contexts in the database and pick the one
with less error as the active context:

®)

¢* = argminerr,
(&

If the best applicable context still has an error above the
threshold, we create a new context and set it as the new
active context. Its prior is set to:

P(s|m;)P(m;)
P(m;|s) =
) Y P(s|m;)P(m;)

If we could identify an active context from our database, we
update incrementally its corresponding prior from time ¢ — 1

9

to:

. . . P(slmy)
P (mi) = Py (mi) + .t ==
> Plslm;)

There are situations in which a context is learnt and never
used again. We filter those spurious contexts if they have not
been trained with minimum number of data samples, keeping
only the stable ones. In our experiments, we set this amount
to 10, which we found to work well empirically.

(10)

D. Use of sparse priors for GMR

Once context learning is finished, we can use the resulting

set of sparse priors to perform GMR in a computationally
efficient way.
In a similar way as we did for learning, we use the active
context to compute the error score and check if we are still
in the same context, changing to a more suitable one in case
it is needed.

The components used in a context c are given by the set:

C¢={i| P°(¢;) >€},i=1.N (11)
In our experiments we show that |C°| < N,Ve = 1..|C],
where [V is the total number of mixture components.

The likelihood involved in the computation of err - is
weighted by P¢ (M), so the fact that we only evaluate a
small subset of the model does not change significantly the
error score.

Given that the contexts are used in a greedy fashion, we are
only forced to compute the likelihoods for the whole model
when we detect a change.



IV. EXPERIMENTAL RESULTS

We are interested in anticipating the changes in sensory
variables when we perform an action in a given situation. In
our case, we want to anticipate long-term changes in optical
flow signals. Optical flow is defined as the pattern of apparent
motion of objects in scene, caused by their relative motion
with the observer. It is represented as a dense vector field,
with one 2-D vector in each pixel representing where that
pixel was in the previous image of the video sequence.

We want to model the density p(AOF!, OF;,V,, Ay),
which represents how likely is the change AOF in optical
flow OF; if we perform an action A; while moving at a
velocity V;. It has to be noted that AOF! = (OF,,7—OF}),
where T is the prediction horizon, in time-steps.

Our experiments are done using a Pioneer Peoplebot with
a mounted Kinect camera. We have attached a laptop with a
Core 2 Duo 1.8Ghz processor, 2GB of RAM and an NVIDIA
Quadro 570M GPU where the optical flow is computed for
320x240 images. No special arrangement of furniture or
objects in the lab was done, with the aim of situating the
robot in a realistic environment.

The robot is controlled using a joystick, so all the actions
are performed by a human. We decided not to use any
action decision algorithm because we are concerned with
the learning capacity of our system, so we can drive it
to challenging situations as required in order to stress its
acquired knowledge.

The action space of the robot consists of its linear and
angular velocities. In the experiments reported here, we
limited the linear velocity to 0.3m/s for linear velocity and
the angular velocity to 0.6rad/s.

We captured three different sequences containing different
behaviours with increasing levels of difficulty. The first one
applies maximum speed commands and either linear or
angular, but not both at the same time. The second one has
more different combinations of control commands, mixing
linear and angular velocity commands at different speeds.
The third one is similar to the second one, but the robot
approaches obstacles, so the optical flow signal presents
different patterns and its predictive distribution is multi-
modal.

The reconstruction error of the IGMM algorithm A"¢¢ was
set to 5% of the range of the variables. The initial covariance
matrix for new components ;,; is also set to 5% of the
range of the variables. This choice was motivated by in an
estimation of the amount of sensor noise present in data.

Context learning is analysed in terms of error threshold to
detect context changes 6.,.. and the sparsity threshold €. The
sensitivity to context changes influences how many contexts
are created and their sparsity.

We provide prediction results in two different measure-
ments. One is the mean reconstruction error of the sequence.
The second one is a normalised error measure defined as
errnorm = 1 — ;::f:% where erri ;viqr 18 the error of
a trivial predictor that always predicts that nothing will
change, which in terms of our model means AOF! = 0

TABLE I
NRMSE RESULTS FOR THE DIFFERENT DATASETS USED IN
EXPERIMENTS.

Dataset nRMSE trivial | nRMSE GMM | Error decrease
Sequence 1 0.088 0.048 45.7%
Sequence 2 0.081 0.048 40.6%
Sequence 3 0.060 0.036 38.5%

or OFy;p = OF;. It can be viewed as how much using our
GMM improves the trivial prediction.

In Table I we show the error of the trivial predictor to
compare with the full GMM before context learning is
applied. The relative error is also included to show how much
the GMM decreases the trivial predictor errors.

Figure 5 shows the error reduction respect the trivial
predictor for different number of contexts and increasing
value of sparsity threshold e. It can be seen that error
is very stable across as we increase the minimum prior
probability that a model component needs to have in order
to be used (P¢(m;) > e¢). Furthermore, before the error
degrades due to the use of too few components, there is an
increase of performance, attributed to using the best model
components for prediction in a particular context, or in other
words, because we get rid of spurious model components
that perturb predictions.

The sparsity results, as can be seen in Figure 5, represent
the portion of the model, regarded as sparsity index, that
is evaluated during the whole sequence. We can observe
three different behaviours depending on the value of e. The
first part corresponds to thresholds nearly zero, where only
non-zero probability components are used. We see that, in
average, only 20% of the model needs to be evaluated to
have almost the same accuracy than evaluating the whole
model at every time-step.

After a certain point (¢ ~ 107%), increasing the threshold
steadily decreases the portion of model that is evaluated,
meaning that it is using more sparse priors.

However, we can observe an increasing pattern in the sparsity
index. This is explained by the fact that we rely in too
few components, so a lot of context change detections are
triggered. Those context changes force the system to re-
evaluate the whole model to find the new active context,
thus loosing the benefits of using only a few components.

Looking at this results, it is desirable to set the threshold
e before the error starts dropping suddenly, as we can obtain
very good accuracy while evaluating only 10% of the model.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper we proposed a method to reduce the com-
putational demand when performing GMR for anticipating
changes in sensor variables of a robot. After learning a
predictive model based in an incremental GMM, our initial
observation was that the execution of behaviours over a
significant amount of time, i.e. a few seconds at least,
activated only a small region of the internal predictive model.
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model too often.

This motivated the learning of sparse priors induced by
different behaviours being executed by the robot. The spar-
sity enabled us to select only a subset of model components
that have some probability of being active while maintaining
the same performance level.

Depending on how many contexts were learnt, we showed
that the system achieved good results using less than 10%
of the model.

The models obtained by applying the learnt context priors
are more compact and fit better the data, while sharing the
same basis components. Another feature of contexts is that
their mean duration is high enough to benefit from a greedy
selection mechanism.

B. Future Works

We plan to interleave the process of learning the un-
derlying GMM and the contexts concurrently. If we take
advantage of the computational savings that our method
provides, then the underlying model can scale up almost
independently of the current prediction, as the working part
of the model will be very small.

Contexts provide a high-level representation of the current
situation, so we can build more complex models on top of it,
like Hidden Markov Models, to further restrict the regions of
the model that need to be evaluated when a context change
is signalled.
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