
Maximum a Posteriori Tree
Augmented Naive Bayes

Classifiers

INSTITUT D’INVESTIGACIÓ EN

INTEL.LIGÈNCIA ARTIFICIAL

CSIC

TECHNICAL REPORT TR-2003-10

http://www.iiia.csic.es/∼mantaras/ReportIIIA-TR-2003-10.pdf

Jesús Cerquides

Ramon López de Màntaras

October 2003

Abstract

Bayesian classifiers such as Naive Bayes or Tree Augmented Naive
Bayes (TAN) have shown excellent performance given their simplicity and
heavy underlying independence assumptions. In this paper we prove that
under suitable conditions it is possible to calculate efficiently the maxi-
mum a posterior TAN model. Furthermore, we prove that it is also pos-
sible to calculate a weighted set with the k maximum a posteriori TAN
models. This allows efficient TAN ensemble learning and accounting for
model uncertainty. These results can be used to construct two classifiers.
Both classifiers have the advantage of allowing the introduction of prior
knowledge about structure or parameters into the learning process. Em-
pirical results show that both classifiers lead to an improvement in error
rate and accuracy of the predicted class probabilities over established TAN
based classifiers with equivalent complexity.

Keywords: Bayesian networks, Bayesian network classifiers, Naive
Bayes, decomposable distributions, Bayesian model averaging.

1

1 Introduction

Bayesian classifiers as Naive Bayes [11] or Tree Augmented Naive Bayes (TAN)
[7] have shown excellent performance in spite of their simplicity and heavy
underlying independence assumptions.

In our opinion, the TAN classifier, as presented in [7], has two weak points:
not taking into account model uncertainty and lacking a theoretically well
founded explanation for the use of softening of the induced model parameters
(see section 2.2).

In [3] an alternative classifier based on empirical local Bayesian model av-
eraging was proposed as a possible improvement for the first weak point. Fur-
thermore, in [4] the fact that decomposable distributions over TANs allow the
tractable calculation of the model averaging integral was used to construct sstb-

matan, a classifier that takes into account model uncertainty in a theoretically
well founded way and that provides improved classification accuracy.

In [3] an alternative softening is proposed with a theoretically more appealing
derivation based on multinomial sampling.

In this paper both weak points are addressed. A computationally more
efficient alternative to the first weak point is introduced and a well founded
softening alternative is proposed that solves the second weak point. More con-
cretely, we show that under the assumption of decomposable distributions over
TANs, we can efficiently compute the TAN model with a maximum a posteriori
(MAP) probability. This result allows the construction of maptan, a classifier
that provides a well founded alternative to the softening proposed in [7] and
improves its error rate and the accuracy of the predicted class probabilities.
Furthermore, we will also prove that under this assumption we can efficiently
compute the k most probable TAN models and their relative probabilities. This
result allows the construction of maptan+bma, a classifier that takes into con-
sideration model uncertainty to some extent and improves in time complexity
and accuracy over its equivalent presented in [3]. Furthermore, established TAN
classifiers do not easily allow the introduction of prior knowledge into the learn-
ing process. Being able to compute MAP TAN structures means that we can
easily do that, whenever our prior knowledge can be represented as a decom-
posable distribution over TANs.

These results point out the relevance of decomposable distribution over
TANs, which are conjugate to TAN models, for the construction of classifiers
based on the TAN model.

The paper is structured as follows. In section 2 Tree Augmented Naive Bayes
is presented and the notation to be used in the rest of the paper is introduced.
In section 3 we present decomposable distributions over TANs. In section 4
we give the main results for finding MAP TAN structures. In section 5 we
construct maptan and maptan+bma, using the previously stated results. In
section 6 we provide the empirical results showing that our classifiers improve
over established TAN classifiers. We end up with some conclusions and future
work in section 7.

2

2 Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TAN) appears as a natural extension to the Naive
Bayes classifier [10, 11, 6]. TAN models are a restricted family of Bayesian
networks in which the class variable has no parents and each attribute has as
parents the class variable and at most one other attribute. An example of TAN
model can be seen in Figure 1(c).

In this section we start introducing the notation to be used in the rest of the
paper. After that we discuss the TAN induction algorithm presented in [7].

2.1 Formalization and Notation

The notation used in the paper is an effort to put together the different notations
used in [3, 8, 7, 13] and some conventions in the machine learning literature.

2.1.1 The Discrete Classification Problem

A discrete attribute is a finite set, for example we can define attribute Pressure
as Pressure = {Low, Medium, High}. A discrete domain is a finite set of
discrete attributes. We will note Ω = {X1, . . . , Xm} for a discrete domain,
where X1, . . . , Xm are the attributes in the domain. A classified discrete domain
is a discrete domain where one of the attributes is distinguished as “class”. We
will use ΩC = {A1, . . . , An, C} for a classified discrete domain. In the rest of
the paper we will refer to an attribute either as Xi (when it is considered part
of a discrete domain), Ai (when it is considered part of a classified discrete
domain and it is not the class) and C (when it is the class of a classified discrete
domain). We will note as V = {A1, . . . , An} the set of attributes in a classified
discrete domain that are not the class.

Given an attribute A, we will note #A as the number of different values of

A. We define #Ω =
m∏

i=1

#Xi and #ΩC = #C
n∏

i=1

#Ai.

An observation x in a classified discrete domain ΩC is an ordered tuple
x = (x1, . . . , xn, xC) ∈ A1 × . . . ×An × C. An unclassified observation S in ΩC

is an ordered tuple S = (s1, . . . , sn) ∈ A1 × . . . × An. To be homogeneous we
will abuse this notation a bit noting sC for a possible value of the class for S. A
dataset D in ΩC is a multiset of classified observations in ΩC .

We will note N for the number of observations in the dataset. We will also
note Ni(xi) for the number of observations in D where the value for Ai is xi,
Ni,j(xi, xj) the number of observations in D where the value for Ai is xi and
the value for Aj is xj and similarly for Ni,j,k(xi, xj , xk) and so on. We note
similarly fi(xi), fi,j(xi, xj), . . . the frequencies in D. It is worth noticing that f
defines a probability distribution over A1 × . . . × An × C.

A classifier in a classified discrete domain ΩC is a procedure that given a
dataset D in ΩC and an unclassified observation S in ΩC assigns a class to S.

3

2.1.2 Bayesian Networks for Discrete Classification

Bayesian networks offer a solution for the discrete classification problem. The
approach is to define a random variable for each attribute in Ω (the class is
included but not distinguished at this time). We will note U = {X1, . . . ,Xm}
where each Xi is a random variable over its corresponding attribute Xi. We
extend the meaning of this notation to Ai, C and V . A Bayesian network over
U is a pair B = 〈G, Θ〉. The first component, G, is a directed acyclic graph
whose vertices correspond to the random variables X1, . . . ,Xm and whose edges
represent direct dependencies between the variables. The graph G encodes inde-
pendence assumptions: each variable Xi is independent of its non-descendants
given its parents in G. The second component of the pair, namely Θ, repre-
sents the set of parameters that quantifies the network. It contains a parameter
θi|Πi

(xi, Πxi
) = PB(xi|Πxi

) for each xi ∈ Xi and Πxi
∈ ΠXi

, where ΠXi
denotes

the Cartesian product of every Xj such that Xj is a parent of Xi in G. Πi is
the list of parents of Xi in G. We will note Πi = U − {Xi} − Πi. A Bayesian
network defines a unique joint probability distribution over U given by

PB(x1, . . . , xm) =

m∏

i=1

PB(xi|Πxi
) =

m∏

i=1

θi|Πi
(xi|Πxi

) (1)

The application of Bayesian networks for classification can be very simple.
For example suppose we have an algorithm that given a classified discrete
domain ΩC and a dataset D over ΩC returns a Bayesian network B over
U = {A1, . . . ,An, C} where each Ai (resp. C) is a random variable over Ai

(resp. C). Then if we are given a new unclassified observation S we can easily
classify S into class argmax

sC∈C

(PB(s1, . . . , sn, sC)). This simple mechanism allows

us to see any Bayesian network learning algorithm as a classifier.

A
 1

A
 2

A
 3

A
 4

A
 5

C

(a) E

A
 1

A
 2

A
 3

A
 4

A
 5

C

(b) E

A
 1

A
 2

A
 3

A
 4

A
 5

C

(c) E
∗

Figure 1: Notation for learning with trees

4

2.1.3 Learning with Trees

Given a classified domain ΩC we will note E the set of undirected graphs E over
{A1, . . . ,An} such that E is a tree (has no cycles). We will use u, v ∈ E instead
of (Au,Av) ∈ E for simplicity. We will note as E a directed tree for E. Every E
uniquely determines the structure of a Tree Augmented Naive Bayes classifier,
because from E we can construct E

∗
= E ∪ {(C,Ai)|1 ≤ i ≤ n} as can be seen

in an example in Figure 1. We note the root of a directed tree E as ρE (i.e. in
Figure 1(b) we have that ρE = A1).

We will note as ΘE
∗ the set of parameters that quantify the Bayesian network

M = 〈E
∗
, ΘE

∗〉. More concretely:

ΘE
∗ = (θC , θρE |C , {θv|u,C |u, v ∈ E})

θC = {θC(c)|c ∈ C} where θC(c) = P (C = c|M)

θρ
E
|C = {θρ

E
|C(i, c)|i ∈ Aρ

E
, c ∈ C} where

θρE |C(i, c) = P (Aρ
E

= i|C = c, M)

For each u, v ∈ E:
θv|u,C = {θv|u,C(j, i, c)|j ∈ Av , i ∈ Au, c ∈ C} where
θv|u,C(j, i, c) = P (Av = j|Au = i, C = c, M).

2.2 Learning Maximum Likelihood TAN

One of the measures used to learn Bayesian networks is the log likelihood:

LL(B|D) =
∑

x∈D

log(PB(x)) (2)

An interesting property of the TAN family is that we have an efficient proce-
dure [7] for identifying the structure of the network which maximizes likelihood.
To learn the maximum likelihood TAN we should use the following equation to
compute the parameters.

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

)
(3)

where Ni,Πi
(xi, Πxi

) stands for the number of times in the dataset that attribute
i has value xi and its parents have values Πxi

. Equivalently, NΠi
(Πxi

is the
number of times in the dataset that the parents of attribute i have values Πxi

.
It has been shown [7] that equation 3 leads to “overfitting” the model. Also

in [7] Friedman et al. propose to use the parameters as given by

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

) + N0
i|Πi

+

+
N0

i|Πi

NΠi
(Πxi

) + N0
i|Πi

Ni(xi)

N
(4)

5

and suggest setting N0
i|Πi

= 5 based on empirical results. Using equation 4
to fix the parameters improves the accuracy of the classifier. In our opinion,
no well founded justification is given for the improvement. In the next section
we introduce decomposable distribution over TANs, a family of probability dis-
tributions over the space of TAN models that allow to derive a well founded
softening alternative.

3 Decomposable Distributions over TANs

Decomposable priors were introduced by Meila and Jaakola in [13] where it was
demonstrated for tree belief networks that if we assume a decomposable prior,
the posterior probability is also decomposable and can be completely determined
analytically in polynomial time.

In this section we introduce decomposable distributions over TANs, which
are probability distributions in the space M of TAN models and an adaptation
of decomposable priors, as they appear in [13], to the task of learning TAN.

Decomposable distributions are constructed in two steps. In the first step, a
distribution over the set of different undirected tree structures is defined. Every
directed tree structure is defined to have the same probability as its undirected
equivalent. In the second step, a distribution over the set of parameters is
defined so that it is also independent on the structure. In the rest of the paper we
will assume ξ implies a decomposable distribution over M with hyperparameters
β,N′ (these hyperparameters will be explained along the development). Under

this assumption, the probability for a model M = 〈E
∗
, ΘE

∗〉 (a TAN with fixed

tree structure E
∗

and fixed parameters ΘE
∗) is determined by:

P (M |ξ) = P (E
∗
, ΘE

∗ |ξ) = P (E
∗
|ξ)P (ΘE

∗ |E
∗
, ξ) (5)

In the following sections we specify the value of P (E
∗
|ξ) (decomposable

distribution over structures) and P (ΘE
∗ |E

∗
, ξ) (decomposable distribution over

parameters).

3.1 Decomposable Distribution over TAN Structures

One of the hyperparameters of a decomposable distribution is an n × n matrix
β = (βu,v) such that ∀u, v : 1 ≤ u, v ≤ n : βu,v = βv,u ≥ 0 ; βv,v = 0. We can
interpret βu,v as a measure of how possible is under ξ that the edge (Au,Av) is
contained in the TAN model underlying the data.

Given ξ, the probability of a TAN structure E
∗

is defined as:

P (E
∗
|ξ) =

1

Zβ

∏

u,v∈E

βu,v (6)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (7)

6

It is worth noting that P (E
∗
|ξ) depends only on the underlying undirected

tree structure E.

3.2 Decomposable Distribution over TAN Parameters

Applying equation 1 to the case of TAN we have that

P (ΘE
∗ |E

∗
, ξ) = P (θC |E

∗
, ξ)P (θρE |C |E

∗
, ξ)×

×
∏

u,v∈E

P (θv|u,C |E
∗
, ξ) (8)

A decomposable distribution has a hyperparameter set N′ = {N ′
v,u,C(j, i, c)|1 ≤

u 6= v ≤ n ; j ∈ Av ; i ∈ Au ; c ∈ C} with the constraint that exist N ′
u,C(i, c),

N ′
C(c), N ′ such that for every u,v:

N ′
u,C(i, c) =

∑

j∈Av

N ′
v,u,C(j, i, c) (9)

N ′
C(c) =

∑

i∈Au

N ′
u,C(i, c) (10)

N ′ =
∑

c∈C

N ′
C(c) (11)

Given ξ, a decomposable probability distribution over parameters with hy-
perparameter N′ is defined by equation 8 and the following set of Dirichlet
distributions:

P (θC |E, ξ) = D(θC(.); N ′
C(.)) (12)

P (θρE |C |E, ξ) =
∏

c∈C

D(θρE |C(., c); N ′
ρ

E
,C(., c)) (13)

P (θv|u,C |E, ξ) =
∏

c∈C

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c)) (14)

If the conditions in equations 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 hold, we
will say that P (M |ξ) follows a decomposable distribution with hyperparameters
β,N′.

3.3 Learning with Decomposable Distributions

Assume that the data is generated by a TAN model and that P (M |ξ) follows a
decomposable distribution with hyperparameters β, N′. Then, P (M |D, ξ), the
posterior probability distribution after observing a dataset D, is a decomposable
distribution with parameters β∗, N′∗ given by:

β∗
u,v = βu,vWu,v (15)

N ′∗
u,v,C(j, i, c) = N ′

u,v,C(j, i, c) + Nu,v,C(j, i, c) (16)

7

where

Wu,v =
∏

c∈C

∏

i∈Au

Γ(N ′
u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

∏

c∈C

∏

j∈Av

Γ(N ′
v,C(j, c))

Γ(N ′
v,C(j, c) + Nv,C(j, c))

∏

c∈C

∏

i∈Au

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))

(17)

The proof appears in [5].

3.4 Classifying with Decomposable Distributions given an

undirected structure

Assume that the data is generated by a TAN model and that P (M |ξ) follows a
decomposable distribution with hyperparameters β, N′. Then, P (C = sC |V =
S, E, ξ), the probability of a class sC given an unclassified instance S and an
undirected TAN structure E, fulfills

P (C = sC |V = S, E, ξ) ∝ hS,sC

0

∏

u,v∈E

hS,sC
u,v (18)

where

hS,sC

0 =
1

Zβ

1

N ′

∏

Au∈V

N ′
u,C(su, sC) (19)

hS,sC
u,v =

N ′
v,u,C(sv , su, sC)

N ′
u,C(su, sC)N ′

v,C(sv, sC)
(20)

The proof appears in [2].

4 Maximum a Posteriori results for decompos-

able distributions over TANs

In this section we show that if we assume a decomposable distribution over TANs
as prior over the set of models, the undirected tree structure underlying the MAP
TAN can be found in O((N + r3) · n2) time where r = max(max

i∈V
#Ai, #C).

Furthermore, we also show that we can find the k undirected tree structures
underlying the k MAP TAN models and their relative weights in O((N + r3 +

log(β(n2, n)) + k) · n2), where β(m, n) is defined to be min{i| log(i) n ≤ m/n}

and log(i) x denotes the log function iterated i times. For almost all practi-
cal considerations the time complexity of finding the k MAP TAN models is
equivalent to O((N + r3 + k) · n2)).

8

Both results are supported by the next result, that shows that computing the
most probable undirected tree structure under a decomposable distribution over
TANs with hyperparameters β,N′ can be reduced to calculating the maximum
weighted spanning tree (MWST) for the graph with adjacency matrix log(β).

4.1 Calculating the most probable undirected tree struc-

ture under a decomposable distribution over TANs

From the definition of decomposable distribution, concretely from equation 6,
it is easy to see that the most probable undirected tree given a decomposable
distribution over TANs with hyperparameters β,N′ is given by

MPT (β,N′) = argmax
E∈E

∏

u,v∈E

βu,v (21)

We can see that MPT (β,N′) does not depend on N′. Furthermore, assuming
that ∀u, v u 6= v; βu,v > 0, we can take the logarithm of the r.h.s. having

MPT (β,N′) = argmax
E∈E

∑

u,v∈E

log(βu,v) (22)

Considering the matrix log(β) as an adjacency matrix, MPT (β,N′) is the
MWST for the graph represented by that adjacency matrix. Hence, if we are
given a decomposable distribution over TANs with hyperparameter β, we can
find the most probable undirected tree by calculating the logarithm of every
element in the matrix and then running any algorithm for finding the MWST.
The complexity of the MWST algorithm for a complete graph is O(n2) [15].

4.2 Calculating the MAP TAN structure given a prior

decomposable distribution over TANs

In section 3.3 we enunciated that if we assume a decomposable prior distribution
over TANs with hyperparameters β,N′ the posterior distribution after a dataset
D follows a decomposable distribution over TANs with hyperparameters given
by equations 15, 16 and 17. Since the posterior is a decomposable distribution
over trees, we can apply the former result for finding the most probable undi-
rected tree over it and we get the MAP tree. We can translate this result into
algorithm 1, that calculates the MAP undirected tree given a dataset D and
prior hyperparameters β,N′. Since the computation of MWST is O(n2), the
time complexity of MAPTreeStructure is bounded by CalcN’Posterior, which
has complexity O((N + r3) · n2).

4.3 Calculating the k MAP TAN structures and their rel-

ative probability weights given a prior decomposable

distribution over TANs

The problem of computing the k MWST in order is well known and can be
solved in O((log(β(n2, n)) + k) · n2) for a complete graph [9]. It is easy to see

9

procedure MAPTANStructure (Dataset D,Matrix β,CountingSet N′)

var

CountingSet N′;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

return MWST(lβ∗);

procedure CalcN’PosteriorTAN (Dataset D,CountingSet N′)

var

CountingSet N′∗;

begin

foreach attribute u

foreach attribute v < u

foreach value xu ∈ Au
foreach value xv ∈ Av

foreach value c ∈ C

N′∗
u,v,C

(xu, xv, c) = N′
u,v(xu, xv, c);

foreach attribute x ∈ D

foreach attribute u

foreach attribute v < u

N′∗
u,v,C

(xu, xv, xC) = N′∗
u,v,C

(xu, xv, xC) + 1;

return N′∗;

procedure CalcLogBetaPosteriorTAN (Matrix β,CountingSet N′, N′∗)

var

Matrix lβ∗;

begin

foreach attribute u

foreach attribute v < u

lβ∗
u,v = log βu,v + CalcLogWTAN(N′,N′∗,u,v);

return lβ∗;

procedure CalcLogWTAN (CountingSet N′, N′∗, int u, v)

begin

w = 0;

foreach value c ∈ C

foreach value xu ∈ Au
w = w + logΓ(N′

u,C
(xu, c)) - logΓ(N′∗

u,C
(xu, c));

foreach value xv ∈ Av
w = w + logΓ(N′

v,C
(xv, c)) - logΓ(N′∗

v,C
(xv, c));

foreach value xu ∈ Au
foreach value xv ∈ Av

w = w + logΓ(N′∗
u,v,C

(xu, xv, c))

- logΓ(N′
u,v,C

(xu, xv, c));

return w;

Algorithm 1: Computation of the MAP TAN

that if in the last step of MAPTreeStructure instead of calculating the MWST
we calculate the k MWST and their relative weights as shown in algorithm 2,
the algorithm will return the k MAP TANs and their relative probabilities. The
time complexity of the new algorithm is simply the addition of the complex-
ity of CalcN’Posterior with that of computing the k MAP trees and that of
computing the weights, giving O((N + r3 + log(β(n2, n)) + k) · n2) which, as
previously mentioned, can be understood as O((N +r3 +k) ·n2) for all practical
purposes.

10

5 Constructing the maptan and maptan+bma

classifiers

The previously introduced results allow us to efficiently compute MAP TAN
structures. We know from equation 18 that

P (C = sC |V = S, E, ξ) ∝ hS,SC

0

∏

u,v∈E

hS,SC
u,v (23)

In fact, given an undirected TAN structure E, it is easy to see that the prob-
ability distribution P (C = sC |V = S, E, ξ) can be represented as a TAN model

with structure E
∗
, such that its undirected version coincides with E and its

parameter set is given by

θu|v,C(su, sv, sC) =
N ′

u,v,C (su,sv,sC)

N ′
v,C

(sv ,sC)

θu|C(su, sC) =
N ′

u,C(su,sC)

N ′
C

(sC)

θC(sC) =
N ′

C(sC)
N ′

(24)

A similar result in the case of decomposable distribution over trees can also
be found in [14]. Given a decomposable prior we can calculate the decomposable
posterior using the result in section 3.3 and then apply the result we have
just enunciated to the posterior. The posterior probability distribution P (C =

sC |V = S, E,D, ξ) can be represented as a TAN model with structure E
∗
, such

that its undirected version coincides with E and its parameter set is given by

θu|v,C(su, sv, sC) =
N ′

u,v,C(su,sv ,sC)+Nu,v,C (su,sv ,sC)

N ′
v,C

(sv ,sC)+Nv,C(sv ,sC)

θu|C(su, sC) =
N ′

u,C(su,sC)+Nu,C(su,sC)

N ′
C

(sC)+NC(sC)

θC(sC) =
N ′

C(sC)+NC(sC)
N ′+N

(25)

Given this result and our previous results for determining the MAP TAN
structure and the k MAP TAN structures and their relative probability weights,
it is very easy to construct two new classifiers by simple composition. First of
all we have to fix a set of prior hyperparameters. In [4] we argued that

∀u, v ; 1 ≤ u 6= v ≤ n ; βu,v = 1 (26)

∀u, v; 1 ≤ u 6= v ≤ n; ∀j ∈ Av ; ∀i ∈ Au; ∀c ∈ C

N ′
v,u,C(j, i, c) = λ

#C#Au#Av

(27)

where λ is an equivalent sample size, provide a reasonable choice of the hyper-
parameters if no information from the domain is available.

11

5.1 maptan classifier

After fixing the prior hyperparameters, the learning step for maptan classifier
consists in:

1. Applying algorithm 1 to find the undirected tree E underlying the MAP
TAN structure given a dataset D.

2. Randomly choose a root, create a directed tree E and from it a directed
TAN structure E

∗
.

3. Use equation 25 to fix the TAN parameters.

For classifying an unclassified observation, we have to apply the TAN that has
been learned for each of the #C classes to construct a probability distribution
over the values of the class C and then choose the most probable class.

This classification algorithm runs in O((N +r3)·n2) learning time and O(nr)
classification time.

procedure k-MAPTANs (Dataset D,Matrix β,CountingSet N′, int k)

var

CountingSet N′;

WeightedTreeSet W T S;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

W T S = k-MWST(lβ∗,k);

CalcTreeWeights(W T S,lβ∗);

return W T S;

Algorithm 2: Computation of the k MAP TANs

5.2 maptan+bma classifier

After fixing the prior hyperparameters, the learning stage for maptan+bma

classifier consists in:

1. Applying algorithm 2 to find the k undirected trees underlying the k MAP
TAN structures and their relative probability weights given a dataset D.

2. Generate a TAN model for each of the undirected tree structures as we
did in maptan.

3. Assign to each TAN model the weight of its corresponding undirected tree.

The resulting probabilistic model will be a mixture of TANs. For classifying an
unclassified observation, we have to apply the k TAN models for the #C classes
and calculate the weighted average to construct a probability distribution over
the values of the class C and then choose the most probable class.

This classification algorithm runs in O((N + r3 + log(β(n2, n)) + k) · n2)
learning time and O(nrk) classification time.

12

5.3 Relevant characteristics of maptan and maptan+bma

We have shown that decomposable distributions over TANs can be used to
construct two well founded classifiers: maptan and maptan+bma. In the in-
troduction we highlighted two possible ways in which the TAN classifier, as
presented in [7], could be improved: by taking into account model uncertainty
and by providing a theoretically well founded explanation for the use of soften-
ing.

We have seen that maptan+bma provides a theoretically well founded way
of dealing with model uncertainty. Its learning time complexity regarding N
almost equivalent to that of stan, and it grows polynomially on k. This is
much more efficient than the algorithm for learning k TAN models proposed
in [3]. maptan+bma has a classification time complexity, O(nrk) reasonably
higher than that of stan. Furthermore, we can use k as an effort knob, in the
sense of [16], hence providing a useful feature for data mining users that allows
them to decide how much computational power they want to spend in the task.
In our opinion, maptan+bma provides a good complexity tradeoff to deal with
model uncertainty when learning TAN.

Both maptan and maptan+bma can be interpreted as using softening in
both the structure search and the parameter fixing. This softening appears, in
a natural way, as the result of assuming a decomposable distribution over TANs
as the prior over the set of models. In our opinion maptan is theoretically more
appealing than stan.

Both maptan and maptan+bma, share with sstbmatano the relevant
characteristic of allowing the use of some form of prior information if such is
available, specially structure related information. For example, if we have ex-
pert knowledge that tell us that one of the edges of the tree is much more (equiv.
much less) likely than the others it is very easy to incorporate this knowledge
when fixing the prior hyperparameter matrix β. Evidently, as was pointed out
in [12], decomposable distributions do not allow the expression of some types of
prior information such as “if edge (u, v) exists then edge (w, z) is very likely to
exist”.

6 Empirical results

We tested four algorithms over 17 datasets from the Irvine repository [1]. To
discretize continuous attributes we used equal frequency discretization with 5 in-
tervals. For each dataset and algorithm we tested both error rate and LogScore.
LogScore is calculated by adding the minus logarithm of the probability as-
signed by the classifier to the correct class and gives an idea of how well the
classifier is estimating probabilities (the smaller the score the better the result).

13

If we name the test set D′ we have

LogScore(M,D′) =

=
∑

(S,sC)∈D′

− log(P (C = sC |V = S, M)) (28)

For the evaluation of both error rate and LogScore we used 10 fold cross vali-
dation. We tested the algorithm with the 10%, 50% and 100% of the learning
data for each fold, in order to get an idea of the influence of the amount of data
in the behaviors of both error rate and LogScore for the algorithm.

The error rates appear in Tables 1, 2 and 3 with the best method for each
dataset boldfaced. LogScore’s appear in Tables 4, 5 and 6. The columns of the
tables are the induction methods and the rows are the datasets. The meaning
of the column headers are:

• stan is the softened TAN induction algorithm as presented in [7].

• stan+bma is the classifier resulting from applying local Bayesian model
averaging (see [3]) to stan.

• maptan, is the classifier based on the MAP TAN model described in
section 5.

• maptan+bma is the classifier based on the weighted average of the k
MAP TAN models described also in section 5.

6.1 Interpretation of the results

Summarizing the empirical results in the tables, we can conclude that:

• maptan improves stan error rate for most datasets and has a similar
LogScore.

• maptan+bma improves maptan’s LogScore for most datasets. When
little data is available, it also improves its error rate.

• maptan+bma improves stan+bma error rate and LogScore for many
datasets.

In the rest of the section we discuss and justify these assertions into more detail.

14

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 17.18 ± 0.68 17.19 ± 0.71 17.60 ± 0.82 17.60 ± 0.80

australian 19.91 ± 1.14 19.62 ± 1.13 25.39 ± 1.18 24.96 ± 1.13

breast 17.23 ± 1.21 16.89 ± 1.28 8.73 ± 0.87 7.73 ± 0.93

car 17.19 ± 1.04 16.50 ± 0.84 19.38 ± 0.95 17.60 ± 0.77

chess 9.55 ± 0.80 9.48 ± 0.86 10.89 ± 0.56 10.91 ± 0.53

cleve 28.12 ± 1.68 28.14 ± 1.59 32.37 ± 1.00 31.89 ± 1.27

crx 19.77 ± 0.91 19.16 ± 1.00 25.14 ± 0.87 24.18 ± 0.98

flare 23.50 ± 1.09 23.16 ± 1.09 19.94 ± 0.85 19.92 ± 0.88

glass 47.02 ± 1.66 45.72 ± 1.59 59.19 ± 1.78 58.54 ± 1.83

glass2 33.69 ± 1.74 32.87 ± 1.82 37.75 ± 1.39 36.63 ± 1.37

iris 28.67 ± 2.33 26.27 ± 2.30 25.87 ± 3.07 24.80 ± 2.96

letter 30.22 ± 0.96 30.19 ± 0.97 36.11 ± 1.39 34.68 ± 1.37

liver 45.52 ± 1.26 44.96 ± 1.06 42.39 ± 0.94 41.24 ± 1.37

nursery 7.87 ± 1.03 7.57 ± 1.04 8.88 ± 1.12 8.50 ± 1.12

primary-tumor 74.52 ± 1.73 74.28 ± 1.66 71.67 ± 1.54 71.73 ± 1.44

soybean 26.53 ± 1.30 26.51 ± 1.33 30.79 ± 1.28 30.82 ± 1.33

votes 9.61 ± 0.94 9.67 ± 0.99 14.14 ± 0.93 14.13 ± 0.71

Table 1: Averages and standard deviations of error rate using 10% of the learn-
ing data

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 16.26 ± 0.75 16.28 ± 0.77 16.46 ± 0.78 16.45 ± 0.83

australian 15.36 ± 0.94 15.13 ± 1.09 18.14 ± 0.91 17.74 ± 0.80

breast 5.92 ± 0.74 5.84 ± 0.78 5.26 ± 0.84 4.75 ± 0.72

car 7.62 ± 0.75 7.55 ± 0.76 8.68 ± 0.68 8.09 ± 0.58

chess 7.87 ± 0.44 7.90 ± 0.44 8.25 ± 0.49 8.15 ± 0.49

cleve 19.82 ± 1.30 20.27 ± 1.27 24.01 ± 1.31 23.57 ± 1.28

crx 15.47 ± 1.01 15.30 ± 1.02 18.12 ± 0.92 17.68 ± 0.85

flare 19.83 ± 0.72 19.81 ± 0.65 18.55 ± 0.62 18.54 ± 0.72

glass 24.02 ± 1.22 23.31 ± 1.48 33.79 ± 1.14 33.86 ± 0.97

glass2 23.69 ± 1.62 22.81 ± 1.61 22.38 ± 1.53 23.40 ± 1.54

iris 11.60 ± 1.22 11.07 ± 1.08 8.40 ± 1.00 8.27 ± 0.82

letter 14.79 ± 0.78 14.79 ± 0.78 15.62 ± 0.91 15.31 ± 0.83

liver 37.33 ± 1.16 36.90 ± 1.15 36.73 ± 1.60 35.17 ± 1.34

nursery 6.39 ± 0.92 6.37 ± 0.89 7.09 ± 0.80 6.03 ± 0.97

primary-tumor 59.15 ± 1.67 59.09 ± 1.63 60.23 ± 1.17 59.87 ± 1.33

soybean 6.64 ± 0.77 6.50 ± 0.85 7.88 ± 0.71 7.80 ± 0.82

votes 6.22 ± 0.83 6.25 ± 0.84 7.63 ± 0.93 7.76 ± 0.93

Table 2: Averages and standard deviations of error rate using 50% of the learn-
ing data

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 16.35 ± 0.73 16.35 ± 0.73 16.46 ± 0.68 16.42 ± 0.72

australian 13.68 ± 0.75 13.65 ± 0.74 16.49 ± 0.65 16.43 ± 0.72

breast 4.75 ± 0.53 4.63 ± 0.48 4.29 ± 0.66 3.72 ± 0.45

car 5.76 ± 0.52 5.78 ± 0.45 6.23 ± 0.55 6.16 ± 0.53

chess 7.71 ± 0.25 7.67 ± 0.21 7.89 ± 0.38 7.68 ± 0.44

cleve 18.74 ± 1.15 18.53 ± 1.18 19.99 ± 1.26 19.73 ± 1.18

crx 13.67 ± 0.53 13.53 ± 0.58 15.71 ± 0.66 15.79 ± 0.74

flare 19.71 ± 0.49 19.71 ± 0.55 18.46 ± 0.30 18.31 ± 0.24

glass 18.46 ± 1.20 18.74 ± 1.29 26.58 ± 1.22 25.99 ± 1.28

glass2 19.81 ± 0.85 20.25 ± 1.39 19.61 ± 1.42 18.06 ± 1.43

iris 7.73 ± 1.70 7.47 ± 1.66 8.13 ± 1.44 7.20 ± 1.43

letter 11.49 ± 0.74 11.49 ± 0.74 12.69 ± 0.77 12.48 ± 0.83

liver 34.35 ± 0.86 33.99 ± 0.77 33.36 ± 0.98 33.19 ± 1.10

nursery 6.33 ± 0.89 6.26 ± 0.91 6.62 ± 0.75 4.81 ± 0.76

primary-tumor 55.09 ± 1.24 54.68 ± 1.02 56.74 ± 1.09 56.32 ± 0.93

soybean 5.47 ± 0.62 5.27 ± 0.62 5.97 ± 0.50 5.94 ± 0.49

votes 5.89 ± 0.74 5.89 ± 0.72 6.26 ± 0.81 6.34 ± 0.56

Table 3: Averages and standard deviations of error rate using 100% of the
learning data

15

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 562.25 ± 3.75 561.39 ± 3.71 567.09 ± 3.92 567.64 ± 4.00

australian 18.54 ± 0.95 17.68 ± 0.96 17.85 ± 0.64 17.06 ± 0.60

breast 23.59 ± 1.67 18.24 ± 1.56 8.12 ± 0.69 7.56 ± 0.65

car 34.89 ± 1.02 32.79 ± 0.98 38.55 ± 0.91 36.52 ± 0.86

chess 32.50 ± 0.89 32.25 ± 0.91 35.39 ± 0.58 35.40 ± 0.59

cleve 11.15 ± 1.06 10.09 ± 0.96 8.49 ± 0.74 8.23 ± 0.76

crx 19.44 ± 1.06 18.30 ± 1.00 17.84 ± 1.05 16.89 ± 1.00

flare 51.12 ± 1.17 49.48 ± 1.15 24332.38 ± 56.59 24332.03 ± 56.59

glass 20.49 ± 1.45 17.14 ± 1.40 11713.24 ± 72.91 11713.00 ± 72.91

glass2 6.45 ± 0.79 5.49 ± 0.64 4.68 ± 0.57 4.57 ± 0.54

iris 4.58 ± 0.68 4.06 ± 0.69 4.04 ± 0.67 3.96 ± 0.70

letter 3535.93 ± 12.92 3495.14 ± 13.52 1385.73 ± 8.95 1300.23 ± 8.38

liver 18.71 ± 0.95 15.87 ± 0.92 12.62 ± 0.79 11.71 ± 0.65

nursery 112.72 ± 2.47 111.95 ± 2.47 3126.39 ± 77.45 3123.62 ± 77.45

primary-tumor 71.74 ± 2.08 69.08 ± 2.05 75927.03 ± 123.39 75926.94 ± 123.39

soybean 68.52 ± 1.77 65.29 ± 1.55 41125.59 ± 108.25 41125.46 ± 108.25

votes 5.66 ± 0.66 5.17 ± 0.60 6.09 ± 0.50 6.03 ± 0.48

Table 4: Averages and standard deviations of LogScore using 10% of the learn-
ing data

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 507.82 ± 3.82 507.52 ± 3.81 520.03 ± 3.93 518.82 ± 3.91

australian 12.86 ± 0.82 12.57 ± 0.84 14.79 ± 0.76 14.41 ± 0.59

breast 10.95 ± 0.67 9.20 ± 0.69 5.17 ± 0.64 4.40 ± 0.62

car 15.96 ± 0.44 15.90 ± 0.40 20.44 ± 0.51 19.73 ± 0.48

chess 26.70 ± 0.66 26.66 ± 0.68 27.32 ± 0.73 27.12 ± 0.79

cleve 6.83 ± 0.69 6.70 ± 0.66 7.38 ± 0.66 7.15 ± 0.63

crx 13.28 ± 0.89 12.93 ± 0.85 15.62 ± 1.11 15.21 ± 1.07

flare 39.81 ± 1.16 39.45 ± 1.15 4233.42 ± 41.82 4233.31 ± 41.82

glass 11.05 ± 0.73 9.37 ± 0.84 309.52 ± 24.49 309.25 ± 24.49

glass2 5.06 ± 0.73 4.64 ± 0.64 3.86 ± 0.53 3.68 ± 0.51

iris 1.87 ± 0.35 1.77 ± 0.34 1.52 ± 0.37 1.48 ± 0.34

letter 1030.65 ± 9.50 1030.65 ± 9.50 574.47 ± 6.13 559.56 ± 6.17

liver 13.03 ± 0.89 12.21 ± 0.77 10.78 ± 0.74 10.39 ± 0.71

nursery 96.60 ± 2.40 96.52 ± 2.42 1596.96 ± 67.06 1594.32 ± 67.06

primary-tumor 44.24 ± 1.25 43.00 ± 1.23 12028.93 ± 51.79 12028.74 ± 51.79

soybean 6.79 ± 0.83 6.47 ± 0.74 907.34 ± 42.43 907.27 ± 42.43

votes 3.66 ± 0.58 3.54 ± 0.52 5.04 ± 0.80 4.50 ± 0.69

Table 5: Averages and standard deviations of LogScore using 50% of the learn-
ing data

6.1.1 maptan vs stan

maptan improves stan error rate in a statistically significant way for most
datasets and has a similar LogScore. After performing a 5% statistical signifi-
cance t-test, we have that maptan error rate is significantly better than stan

for 12, 11 and 7 datasets with 10%, 50% and 100% of the learning data respec-
tively, whilst stan error rate is better than maptan in a statistically significant
way only for 4, 2 and 2 datasets. LogScore results favor maptan slightly. map-

tan LogScore is significantly better than stan for 6, 9 and 9 datasets with
10%, 50% and 100% of the learning data respectively, whilst stan LogScore
is better than maptan in a statistically significant way for 7, 5 and 6 datasets
respectively.

16

Dataset MAPTAN MAPTAN+BMA sTAN sTAN+BMA

adult 495.88 ± 3.68 495.70 ± 3.67 508.10 ± 3.07 508.01 ± 3.07

australian 10.65 ± 0.46 10.47 ± 0.44 12.90 ± 0.65 12.66 ± 0.61

breast 8.96 ± 0.87 7.89 ± 0.61 4.85 ± 0.50 4.28 ± 0.54

car 14.11 ± 0.40 14.12 ± 0.40 16.29 ± 0.39 16.31 ± 0.41

chess 26.12 ± 0.40 26.09 ± 0.32 26.46 ± 0.46 26.22 ± 0.36

cleve 6.10 ± 0.43 6.05 ± 0.38 6.51 ± 0.44 6.29 ± 0.51

crx 11.34 ± 0.62 11.05 ± 0.60 13.97 ± 0.68 13.76 ± 0.58

flare 35.82 ± 0.92 35.61 ± 0.90 1532.39 ± 0.62 1532.22 ± 0.65

glass 8.53 ± 1.05 7.50 ± 1.03 7.40 ± 0.59 7.12 ± 0.52

glass2 4.20 ± 0.56 3.91 ± 0.54 3.20 ± 0.39 3.08 ± 0.37

iris 1.29 ± 0.53 1.22 ± 0.53 1.18 ± 0.44 1.16 ± 0.44

letter 612.99 ± 7.71 612.99 ± 7.71 441.94 ± 5.61 433.37 ± 5.84

liver 10.79 ± 0.63 10.61 ± 0.66 9.59 ± 0.44 9.72 ± 0.60

nursery 94.59 ± 2.45 94.57 ± 2.43 91.52 ± 2.41 89.41 ± 2.30

primary-tumor 35.28 ± 0.99 34.64 ± 0.94 6327.87 ± 38.33 6327.64 ± 38.33

soybean 3.45 ± 0.50 3.38 ± 0.49 4.49 ± 0.51 4.45 ± 0.48

votes 3.74 ± 0.59 3.57 ± 0.58 3.96 ± 0.55 3.76 ± 0.46

Table 6: Averages and standard deviations of LogScore using 100% of the
learning data

6.1.2 maptan+bma vs maptan

maptan+bma improves maptan LogScore in a statistically significant way for
most datasets. When little data is available, this improvement translates in
an improvement in error rate. After performing a 5% statistical significance
t-test, we have that maptan+bma error rate is significantly better than map-

tan’s for 6, 0 and 2 datasets with 10%, 50% and 100% of the learning data
respectively, whilst maptan error rate is never better than maptan+bma’s
in a statistically significant way. LogScore results favor maptan+bma more
clearly. maptan+bma LogScore is significantly better than maptan for 16,
13 and 12 datasets with 10%, 50% and 100% of the learning data respectively,
whilst maptan LogScore never improves sstbmatan’s in a statistically signif-
icant way.

6.1.3 maptan+bma vs stan+bma

maptan+bma improves stan+bma error rate and LogScore in a statistically
significant way for many datasets. After performing a 5% statistical signifi-
cance t-test, we have that maptan+bma error rate is significantly better than
stan+bma for 10, 10 and 8 datasets with 10%, 50% and 100% of the learn-
ing data respectively, whilst stan+bma error rate is only better than map-

tan+bma in a statistically significant way for 5, 4 and 4 datasets . LogScore
results favor maptan+bma slightly. maptan+bma LogScore is significantly
better than stan+bma for 7, 9 and 7 datasets with 10%, 50% and 100% of
the learning data respectively, whilst stan+bma LogScore is only better map-

tan+bma in a statistically significant way for 5 datasets independently of the
amount of data.

17

7 Conclusions and future work

We have seen that under a decomposable distribution over TANs it is possible to
efficiently determine the MAP undirected TAN structure and the set of k MAP
TAN structures and their relative probability weights. We used these results to
construct two new classifiers: maptan and maptan+bma. We have provided
empirical results showing that both classifiers improve over established TAN
based classifiers with equivalent complexity. From a practical point of view, se-
lecting when to use sstbmatan,maptan+bma,maptan depends mainly on two
factors: the amount of uncertainty a posteriori in the models we expect to have
and the ratio between the value of accuracy and the value of efficiency for the
user. We can see a qualitative sketch of when to choose each classifier in figure 2.
For any value of the ratio, we will choose maptan when uncertainty a posteriori
in models is low, sstbmatan when it is high and maptan+bmainbetween. If
learning takes place in an environment where accuracy is much more important
than efficiency, then our threshold in uncertainty to use maptan+bma and
sstbmatan will be lower. If learning takes place in an environment where effi-
ciency is much more important than accuracy, then maptan will be our choice
most of the times unless uncertainty in models is very high.

Value ratio accuracy-efficiency

Uncertainty in models

MAPTAN

MAPTAN+BMA

SSTBMATAN

Figure 2: Selecting between sstbmatan, maptan+bma and maptan

7.1 Future work

Since the amount of uncertainty a posteriori in the models can be measured after
the learning step has been done, and the computational overload for finding the
k MAP TAN models is low, it is possible to construct a metaclassifier that is able
to make the selection between the three classifiers in figure 2 automatically. This
metaclassifier could receive a threshold in the amount of uncertainty in model

18

selection. From the k MAP weights the classifier can easily calculate a lower
bound on the amount of uncertainty in model selection using the k MAP models,
and the single MAP model and select the classifier to be used according this
bound. Furthermore, this evaluation can be performed periodically (each 1000
instances for example). Assuming the dataset is i.i.d., once the uncertainty in
a single MAP model is under the threshold, the learning algorithm can assume
that the structure has been learnt and from there on its learning time will be
O(n), instead of on the current O(n2). This means that we can use the results
in this paper to construct an almost linear TAN learning algorithm. Developing
these ideas remains as future work.

References

[1] C. Blake, E. Keogh, and C. J. Merz. UCI repository of machine learning
databases, 1998.

[2] Jesús Cerquides. Improving bayesian network classifiers. PhD thesis draft,
downloadable at http://www.maia.ub.es/∼cerquide/papers/PhD.pdf.

[3] Jesús Cerquides. Applying General Bayesian Techniques to Improve TAN
Induction. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, KDD99, 1999.

[4] Jesús Cerquides and Ramon López de Màntaras. Tractable bayesian learn-
ing of tree augmented naive bayes classifiers. In Proceedings of the Twen-
tieth International Conference on Machine Learning, 2003.

[5] Jesús Cerquides and Ramon López de Màntaras. Tractable bayesian learn-
ing of tree augmented naive bayes classifiers. long version. Technical Report
IIIA-2003-04, Institut d’Investigació en Intel.ligència Artificial, 2003.

[6] Pedro Domingos and Michael Pazzani. On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss. Machine Learning, 29:103–130,
1997.

[7] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network
classifiers. Machine Learning, 29:131–163, 1997.

[8] D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks:
The combination of knowledge and statistical data. Machine Learning,
20:197–243, 1995.

[9] Naoki Katoh, Toshihide Ibaraki, and H. Mine. An algorithm for finding k
minimum spanning trees. SIAM J. Comput., 10(2):247–255, 1981.

[10] Petri Kontkanen, Petri Myllymaki, Tomi Silander, and Henry Tirri. Bayes
Optimal Instance-Based Learning. In C. Nédellec and C. Rouveirol, editors,

19

Machine Learning: ECML-98, Proceedings of the 10th European Confer-
ence, volume 1398 of Lecture Notes in Artificial Intelligence, pages 77–88.
Springer-Verlag, 1998.

[11] Pat Langley, Wayne Iba, and Kevin Thompson. An Analysis of Bayesian
Classifiers. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 223–228. AAAI Press and MIT Press, 1992.

[12] M. Meila and T. Jaakkola. Tractable bayesian learning of tree belief net-
works. In Proc. of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, 2000.

[13] Marina Meila and Tommi Jaakkola. Tractable bayesian learning of tree
belief networks. Technical Report CMU-RI-TR-00-15, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, May 2000.

[14] Marina Meila and Michael I. Jordan. Learning with mixtures of trees.
Journal of Machine Learning Research, 1:1–48, 2000.

[15] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning
tree algorithm. Journal of the ACM (JACM), 49(1):16–34, 2002.

[16] Kurt Thearling. Some thoughts on the current state of data mining software
applications. In Keys to the Commercial Success of Data Mining, KDD’98
Workshop, 1998.

20

