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Abstract

Case-base reasoning (CBR) is an approach to problem solving that emphasizes the role of prior

experience during future problem solving: new problems are solved by reusing the solutions to

similar problems that have been solved in the past. To date CBR has enjoyed considerable
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success in a wide variety of problem solving tasks and domains. In this paper, following a brief

overview of the traditional problem-solving cycle in case-based reasoning, we examine the

cognitive science foundations of CBR and the relationship between CBR and analogical

reasoning. We then go on to review a representative selection of CBR research on aspects of

case retrieval, reuse/revise, and retention in the past couple of decades.

1   Introduction

In problem solving terms, the world is often and repetitive and regular place. Similar problems

tend to recur and similar problems tend to require similar solutions. Case-based reasoning

techniques (CBR) attempt to exploit this repetitiveness and regularity by leveraging past problem

solving experience – in the form of concrete problem solving cases – when it comes to solving

new problems. In short, a case-based reasoner solves new problems by adapting solutions that

were used to solve old problems (Riesbeck & Schank, 89)

Unlike the majority of AI techniques case-based reasoning is fundamentally memory-based. It

appeals to our intuitions about human problem solving –that when humans solve a problem they

often base their solution on one that worked for a similar problem remembered from the past –

and, indeed, has its origins in cognitive science research on human memory and analogical

reasoning. CBR involves the tasks of: obtaining a problem description, measuring the similarity

of the current problem description against stored problem descriptions, retrieving one or more

similar problems from memory along with their solutions, and attempting to reuse a solution -

possibly adapting it - to better fit the current problem. This solution, proposed by the system,

then gets evaluated, e.g. by being applied to the initial problem, assessed by a domain expert, or

tested by other means. The solution is revised, leading to an updated solution; the minimal update

being just a confirmation of the proposed solution. The solution can then be retained in memory,

for use during future problem solving, and in this sense the system is said to have learned to

solve a new problem. Part of the inspiration for the study of case-based reasoning arose from

cognitive science, but the resulting methodology has proven useful in an extensive set of

applications (e.g., Watson, 1997).

Figure 1   The CBR cycle (Aamodt & Plaza, 1994)
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This basic set of CBR tasks was characterized by Aamodt & Plaza (1994) as the CBR-cycle of

Figure 1. The individual tasks in the cycle are referred to as the “4 REs”, for retrieve, reuse,

revise, and retain. This characterization is still widely used by CBR researchers today, but has

itself been embellished as researchers have come to appreciated a broader perspective of case-

based reasoning.

Within the CBR-cycle, numerous researchers have concentrated on the retrieval task and the

task of measuring similarity, because of the pivotal role of this task in the completion of the

cycle. Leake (1996) expressed the role of similarity through the concepts of retrieval and

adaptation distances in a simple diagram, shown in Figure 2, which illustrates the relationship in

CBR between the problem description and solution description spaces. CBR is based on the

observation that similar problems have similar solutions (Leake & Wilson 1999). This

observation has been proven to hold in expectation for simple scenarios (Faltings 1997b), and is

empirically validated in many domains.

Figure 2  Relationship between problem and solution spaces in CBR (Leake, 1996)

In Figure 2, the retrieval distance R increases as the similarity between the input problem

description and a stored problem description decreases (i.e., high similarity means low R). This

reflects a common assumption in CBR that the retrieval distance R is commensurate with the

adaptation distance (or effort) A. According to this assumption, the validity of which we examine

in Section 3, it is easier to adapt the solution of a similar problem than the solution of a less

similar problem; although, as we will discuss in section 3, sometimes this assumption cannot be

relied upon to hold true, leading to the need for alternative retrieval strategies.

As will be apparent from the literature review that we present in this paper, aspects of reuse

and retention, and to a lesser extent revision, have also attracted considerable research interest in

CBR. In Section 2, we examine the cognitive science foundations of CBR and the relationship

between CBR and analogical reasoning. In Sections 3, 4, and 5, we review a representative

selection of CBR research on aspects of case retrieval, reuse, revision, and retention in the past
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couple of decades. Our conclusions are presented in Section 6.

2   CBR and cognitive science

The study of CBR has been strongly influenced by research in cognitive science. A major current

underlying early CBR research was the study of human story understanding (Schank & Abelson,

1977), especially as it led to investigations of the role of memory in understanding (Schank,

1982). Initial story understanding work examined the knowledge structures underlying

understanding and their role in providing expectations for the events in stories. These knowledge

structures also provide a causal structure that links the states and events in stories and explains

why the agents do what they do. Dynamic memory theory (Schank, 1982) focused on the

interplay of understanding, learning, and memory. Memory Organization Packets, or MOPs,

organize sequences of events, but individual MOPs may share structure and inherit information

from other MOPs. MOPs organize individual events which can be recalled as remindings. These

remindings can play many roles in interpretation and problem solving. For example, during

planning, a problem may prompt the reminding of a past plan that can be adapted to help solve a

new problem. This forms a basis for CBR. Reminding may sometimes occur across contexts,

enabling the lessons from one situation to be applied to a situation which is superficially quite

different.

When expectations fail during understanding, remindings of prior explanations may be useful

to help resolve the anomalies present in the input (Schank, 1986; Schank, Kass & Riesbeck,

1994). The SWALE system (Kass, Leake & Owens, 1986; Schank & Leake, 1989), which

models case-based explanation generation, uses MOP-based expectations to guide understanding

until it encounters an anomaly, and then retrieves prior explanations to adapt to the new situation.

The system’s namesake was a star race horse whose unexpected death with no warning after a

major race, shocked and intrigued the racing community. Experts were immediately reminded of

similar cases; one vet’s reaction to the news was “This sounds like an aneurysm. I’ve seen this

sort of thing before.” The death also prompted less routine remindings among students at the

Yale AI lab, such as the death of the rock star Janis Joplin due to an overdose of recreational

drugs. While recreational drug use was unlikely for Swale, adaptation to another type of drug use

more associated with racing---performance-enhancing drugs---led to a more plausible

explanation (though one not borne out by later investigation). SWALE modeled the role of CBR

in explanation-building and modeled creativity through methods to perform the flexible retrieval

and reuse processes needed to apply explanations in unusual ways.

A number of other studies have explored the role of CBR in human reasoning and learning,

giving rise, for example, to teaching systems shaped by lessons from CBR (Schank et al.,

1993/1994; Kolodner et al., 2003). A core part of medical diagnostic reasoning is also shown to

follow a type of “pattern matching” (Patil, 1986), which in essence is a case-based process of

reasoning from past patient experiences. This has given rise to a number of medical CBR systems

that support this type of decision making (Bichindaritz, 1995; Ozturk & Aamodt, 1998;  Schmidt

et al., 2001). More extensive discussions of CBR as a cognitive model are available in

(Kolodner, 1994) and (Leake, 1998).
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CBR and analogical reasoning

CBR is also fundamentally related to research in analogical reasoning, an active area of research

in cognitive science. Analogical reasoning research focuses on basic mechanisms such as

matching and retrieval, and how those mechanisms are used in other cognitive processes,

including reasoning and learning. Psychological studies have shed light on some basic properties

of human analogical reasoning. For example, there is ample evidence that, for people, retrieval is

heavily influenced by surface properties more than by deep similarities, unlike most CBR

systems, yet when given the analogues, they find the comparisons easy (cf. Gick & Holyoak,

1980; Keane, 1988; Gentner, Rattermann & Forbus, 1993). The centrality of relational

information in human similarity judgments is now reasonably well-established (cf. Gentner,

Holyoak & Kokinov, 2001; Markman & Gentner, 2001; Kokinov & French, 2003). This

reinforces the practice of using structured representations that was common in early CBR, but it

also suggests that many modern CBR and machine learning systems, which use feature-vectors,

are unlikely to be good models of human cognition.

Psychological theories of analogical processes have led to computational models that can be

used for building CBR systems. For example, the Structure-Mapping Engine SME (Falkenhainer,

Forbus & Gentner, 1986; Forbus, Ferguson & Gentner, 1994) is based on Gentner’s (1983)

structure-mapping theory. SME has been used as a cognitive modeling tool to account for a

number of existing psychological findings, and several predictions made based on SME have

been subsequently confirmed in psychological experiments (Forbus, 2000). SME has also been

used in a variety of performance-oriented systems, ranging from a case-based tutor for

engineering thermodynamics (Forbus, 2000) to sketch understanding systems (Forbus, Usher &

Chapman, 2003). The IAM system (Keane & Brayshaw, 1988; Keane, Ledgeway & Duff, 1994)

was the first to explore incremental mapping of analogies, crucial for extended problem solving.

Some computational models have focused on how such computations can be implemented in

neural architectures, such as Hummel & Holyoak’s (1997) LISA model and Larkey & Love’s

(2003) CAB model. Other computational models are exploring how statistical association models

can be combined with structural models (cf. Ramscar & Yarlett, 2003).

One of the major differences in approach between CBR and analogy research is their focus on

generality. In analogy work, it is typically assumed that processes like matching and retrieval are

broadly general cognitive processes, operating universally (or nearly so) over people’s mental

representations. In CBR work, where the focus is often on creating a system to do a specific task

well on existing computing hardware, generality is often traded in for efficiency or performance,

with an emphasis on content theories reflecting the knowledge required for particular task

domains. Domain-specific matchers, retrieval systems, and even similarity metrics are fair game.

This can lead to controversies between the two communities. The dissociation between

similarity-based reminding and analogical inference noted above was at first greeted with great

skepticism and shock in the CBR community, since it directly contradicted a common

assumption that human memory retrieval relied on extensive indexing, using abstract principles.

Forbus & Gentner’s (1994) MAC/FAC model captures this dissociation by postulating a first

stage of retrieval that is non-structural, a cheap filter that generally lets highly similar items

through, followed by a much more constrained structural match stage using SME. If the

MAC/FAC model is correct, then CBR index-based retrieval schemes would best be viewed as
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good engineering tools, rather than as cognitive models. This is still an open question.

 CBR also differs from analogy research in its treatment of adaptation. Case adaptation is a

major issue for CBR, and must be addressed to develop practical CBR systems. Consequently, it

is possible that the experience of CBR in this area will suggest fruitful questions to consider in

the context of analogy. Studies focusing on the integration of adaptability concerns into other

parts of the CBR process include Smyth & Keane's (1998) adaptation-guided retrieval and Leake,

Kinley & Wilson’s (1995) use of adaptation cases to reuse prior adaptations and predict

adaptability.

Discussion

How closely should CBR systems mirror what people do? It can be argued that, for building

practical CBR systems, deliberately organizing them to operate differently to people in some

ways might make them more useful. Just as eyeglasses and cars help us see and move farther

than we can unaided, carefully designed CBR systems could help us retrieve more relevant

memories more often, and help us to work through problems that we could not unaided due to

working memory limitations. On the other hand, no CBR system comes within several orders of

magnitude of the amount of knowledge and experience that people accumulate, nor has one CBR

system ever operated over the breadth of kinds of problems that people can handle. The processes

of human cognition may well hold the secrets to creating such capabilities.

3   Retrieval in CBR

An important step in the CBR cycle shown in Figure 1 (Aamodt & Plaza, 1994) is the retrieval of

previous cases that can be used to solve the target problem. The so-called similarity assumption

tells us that when it comes to selecting such past cases, we should look to those that are most

similar to the target problem. As will be apparent from our review of selected papers from the

CBR literature on aspects of similarity-based retrieval, this assumption remains deeply ingrained

in CBR research.

The success of similarity-based retrieval approaches relies on an accurate assessment of case

similarity to the target problem. Consequently, considerable research has been devoted to

improving retrieval performance through the development of effective approaches to similarity

assessment. However, in recent times the similarity assumption has been brought into question in

a number of ways, leading to an improved understanding of the limitations of similarity-based

retrieval, especially in light of new application requirements. For instance, Smyth & McClave

(2001) point out that selecting cases by their similarity to the target problem may result in the

retrieval of a set of cases that provide relatively poor coverage of the problem space in the

vicinity of the target. Their observation that pure similarity-based retrieval often results in the

selection of cases that are lacking in diversity has prompted the development of a range of

alternative retrieval methods for selecting more representative sets of cases (e.g., Smyth &

McClave, 2001; McSherry, 2003c); se also section 3.3.

Similarly, different sources of retrieval knowledge have been proposed as a way to better

coordinate the retrieval and reuse stages of CBR. Sometimes, for example, the most similar case

to a target problem is not the easiest to adapt. At best this can reduce adaptation efficiency but it

may even lead to a reuse failure, if a retrieved case cannot be successfully adapted. In response to
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this researchers have considered the adaptability of cases as a guide for case retrieval (Smyth &

Keane, 1995a; 1998; Leake, Kinley & Wilson, 1997). Moreover, in interactive case-based

reasoners, where case adaptation may be less of an issue, but where the case-based reasoner must

be in a position to explain or justify the reasons behind a retrieval, it is appropriate to consider the

explanatory potential of cases. For instance, early work on case-based legal argumentation

(Ashley, 1989; 1991; Ashley & Aleven, 1997) broadens the notion of case similarity to include

other considerations (e.g., noteworthy distinctions among cases, the existence of

counterexamples) with a view to emphasizing the roles of explanation and argumentation in CBR

systems. Recent work by Doyle et al. (2004) further develops this theme by evaluating the

explanatory potential of cases as a retrieval constraint.

3.1   Similarity assessment

In some applications of CBR, it may be adequate to assess the similarity of the stored cases in

terms of their surface features. The surface features of a case are those that are provided as part

of its description and are typically represented using attribute-value pairs. In other applications, it

may be necessary to use derived features obtained from the case description by inference based

on domain knowledge. Note that although the following discussion will generally treat “surface

features” as relatively superficial, this is a simplification for convenience.  As Kolodner (1996)

observes, strictly speaking, whether a feature is predictive of a case’s relevance, or whether it is

superficial or deep, is orthogonal to whether the feature is readily available. In yet other

applications, cases are represented by complex structures (such as graphs or first-order terms)

and retrieval requires an assessment of their structural similarity. As might be expected, the

computation of deep features or use of structural similarity is computationally expensive;

however, the advantage is that more relevant cases may be retrieved.

One way to help assure useful retrievals, without the need for extensive computation, is to

develop carefully crafted indexing vocabularies to describe cases, so that the explicit description

of a case captures the features which determine its relevance. Thus, the focus of considerable

early CBR work concerned the development of such indexing vocabularies for a number of

domains (Schank et al., 1990; Domeshek, 1992; Leake, 1992) as a way to avoid the need for

computationally expensive structure mapping and case matching procedures.

Assessment of surface similarity

In approaches to retrieval based on surface features, the similarity of each case to the target

problem, typically represented as a real number in the range from 0 to 1, is computed according

to a given similarity measure. Usually the retrieved cases are the k cases that are most similar to

the target problem, an approach often referred to as “k nearest neighbor” retrieval or simply k-

NN. Alternatively, the retrieved cases may be those whose similarity to the target problem

exceeds a predefined threshold.

There are many ways of measuring similarity and different approaches are appropriate for

different case representations. For example, it is common in practice for each case to be

represented as a simple feature vector (or set of attribute-value pairs). With this representation, it

is usual to define a local similarity measure for each attribute. A global similarity measure

aggregates the degrees of similarity that are computed by the local measures. This is most easily
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done when the degrees of local similarity are represented by real numbers normalized to some

fixed interval such as [0,1]. Then, global similarity can be computed as a weighted average of the

local similarities. The weights allow different attributes to have different importance; they may

be assigned by a domain expert or a user, or as discussed in Section 3.2, they may be determined

by an adaptive learning process.

A CBR system can guarantee that it retrieves the k cases that are maximally similar to the

target problem by computing the similarity of the target problem to every case in memory.

However, this process has complexity O(n) where n is the number of cases in memory, which

may be an unacceptable overhead if n is very large. One approach to reducing retrieval time, as

exemplified by the pioneering work of Stanfill & Waltz (1986), involves the use of massively

parallel computers. While the requirement for expensive hardware is an obvious drawback, the

approach still guarantees to find the maximally similar cases by performing an exhaustive

memory search. Stanfill & Waltz describe the implementation of a memory-based reasoning

algorithm on a fine-grained SIMD parallel machine. Their Connection Machine performs a

highly parallel search for similar cases and has been applied to the problem of pronouncing

English words using a case memory containing thousands of examples of words that are correctly

pronounced.

Another approach to reducing retrieval time relies on the organization of cases in memory. For

example, Wess, Althoff & Derwand (1993) propose an approach to retrieval in which the

organization of the case memory is based on similarities between cases. A binary tree called a k-d

tree is used to split the case base into groups of cases in such a way that each group contains

cases that are similar to each other according to a given similarity measure. To ensure that the

most similar cases are retrieved, the retrieval algorithm computes similarity bounds to determine

which groups of cases should be considered first.

Smyth & McKenna (1999a; 2001b) propose an alternative model of case retrieval that is

informed by the availability of an explicit model of case-base competence (Smyth & McKenna,

1998; 2001a). The so-called footprint-based retrieval algorithm is a two-stage retrieval approach

that searches two distinct populations of cases. First, it involves the search of a small subset of

so-called footprint cases, which have been identified as providing a covering set for the case base

as a whole. That is, the footprint cases are predicted to be able to solve the same set of problems

as the case base as a whole. They are drawn from the key competence groups that exist within the

case base as made available by the competence model.  The first stage of retrieval identifies the

footprint case that is most similar to the target problem as the reference case, and the second

stage of retrieval then searches another small subset of cases that are related to this reference

case. This related set is chosen because its cases either cover (solve) the reference case or

because they can be covered by a reference case. The final case chosen for retrieval is the related

set case that is most similar to the target problem. The approach has been shown to offer

significant retrieval efficiency benefits, by searching only a small fraction of the cases in the case

base, while at the same time guaranteeing the selection of near optimal cases. Footprint-based

retrieval is somewhat related to the “Fish-and-Shrink” strategy (Schaaf, 1996) in which cases are

linked according to specific aspect similarities. The latter approach relies on the assumption that

if a case does not fit a query then this will reduce the likely usefulness of its neighbors. This

allows for the efficient elimination of many cases during retrieval.
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Simoudis & Miller (1990) argue that retrieval based only on surface similarity may not be

sufficiently discriminating when applied to large case memories, and needs to be combined with

other techniques in order to reduce the number of cases to be considered for adaptation. They

present an approach called validated retrieval that is capable of dramatically reducing the

number of potentially relevant cases. Retrieval based on surface similarity is combined in the

approach with validation of the retrieved cases to determine if they are applicable to the target

problem. Associated with each case in memory is a validation procedure consisting of a set of

domain-specific tests and their results for that case. In order to validate a retrieved case, the tests

associated with the case are applied to the target problem. The retrieved case is considered to be

relevant to the target problem only if all the tests give the same results for the target problem as

they do for the retrieved case.

The validation phase that follows the initial retrieval of cases in validated retrieval resembles

the justification phase in CASEY, a CBR system for medical diagnosis (Koton, 1988). The goal

of CASEY’s justification component is to determine whether the causal explanation of a

retrieved case applies to the target problem. Often this enables CASEY to avoid invoking its

causal model when creating an explanation for the target problem. Other systems that combine

retrieval based on surface similarity with an additional filter to improve retrieval performance

include CHEF (Hammond, 1986), SWALE (Kass, Leake & Owens, 1986),  KRITIK (Goel &

Chandrasekaran, 1989), and PROTOS (Porter, Bareiss & Holte, 1990).

Assessment of structural similarity

Retrieval based on structural similarity is computationally expensive because it makes extensive

use of domain knowledge but, as previously mentioned, the advantage is that more relevant cases

may be retrieved. One way of mitigating the extra cost is to use a two-stage retrieval algorithm.

Forbus, Gentner & Law (1994) present a computational model called MAC/FAC in which

surface and structural similarity are combined in a two-stage process. The first stage uses a

surface matcher to filter out a set of potentially relevant items from long-term memory (those that

are most similar to the target problem). The selected candidates are processed in the second stage

by a structure-mapping engine that computes structural matches between them and the target

problem and selects one or more of the best matches. Experiments based on human assessment of

similarities and analogies have confirmed that both surface and structural similarity assessment

are necessary for sound retrieval (Forbus et al., 1994). Inspired by previous work by Gentner &

Forbus (1991), Börner (1993) proposes an approach to retrieval in which fast retrieval of

candidate cases based on their surface similarity to the target problem is followed by a more

expensive assessment of their structural similarity. She defines structural similarity as the most

specific graph structure that the target problem has in common with a stored case, and a set of

transformation rules, given as background knowledge, needed to determine this common

structure.

Object-oriented case representations generalize simple attribute-value representations. Cases

are represented by sets of objects. Objects belong to classes, which are organized in a class

hierarchy. An object’s class determines the attributes it may have. Attributes may be relational,

which means that their values will themselves be further objects. It seems obvious that the class

hierarchy must contain useful similarity knowledge. For example, objects that are close to each
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other in the hierarchy are likely to be more similar than objects that are far apart. However,

Bergmann & Stahl (1998) suggest that because there is no clear view about how the similarity

between objects of different classes should be determined, the assessment of similarity is often

restricted to objects of the same class. To address this issue, they present a new framework for

computing object similarities for object-oriented case representations that enables objects of

different classes to be compared and takes account of the knowledge that is implicit in the class

hierarchy.

In the Creek system (Aamodt, 1994; 2004) an object-oriented, frame-based representation

system is used to capture both cases and general domain knowledge, which together can be

viewed as one single, multi-relational semantic network. Similarity assessment is once again a

two-step process in which the use of direct indexes to retrieve a set of potentially similar cases is

followed by a closer examination of the cases in which general domain knowledge is utilized to

generate explanations for feature-to-feature matches. A method inspired by Cohen’s (1985) work

on endorsement theory and plausible inference constitutes a core part of the inference machinery

underlying the generation and evaluation of explanatory structures.

Spreading activation methods (eg., Brown, 1994) represent case memory as an interconnected

network of nodes capturing case attribute-value combinations. Activation spreads from target

attribute-value nodes across the network to cause the activation of case nodes representing

similar cases to the target. The approaches are efficient and flexible enough to handle incomplete

case descriptions, but there can be a significant knowledge-engineering cost associated with

constructing the activation network. Furthermore the spreading-activation algorithm requires

specific knowledge to guide the spread of activation throughout the network. Related network-

based retrieval methods are proposed by Wolverton & Hayes-Roth (1994) and Lenz (1996).

Another way of dealing with relations between attributes is based on the concept of

generalized cases (Bergmann et al., 1999). A generalized case covers a subspace of the problem-

solution space, providing solutions to a set of closely-related problems, rather than just a single

problem (Mougouie & Bergmann, 2002). Dependencies between attributes are explicitly

represented in a way that supports the extension of similarity measures. For example, Bergmann

(2002) defines the similarity between a query and a generalized case as the similarity between the

query and the most similar case contained in the generalized case. Mougouie & Bergmann (2002)

formulate the similarity assessment problem for generalized cases, described by continuous

attributes, as a nonlinear programming problem and introduce an optimization-based retrieval

method. Tartakovski et al. (2004) extend the case representation to support mixed, discrete, and

continuous attributes. They also formulate similarity assessment as a special case of a mixed

integer nonlinear optimization problem, and propose an optimization-based retrieval method

operating on a given index structure.

Bunke & Messmer (1993) propose one of a number of structural similarity measures for

domains in which cases are represented as graph structures. Their proposed measure is based on

graph editing operations (inserting, deleting, and substituting nodes and edges in the graph). To

improve the practical efficiency of the approach, they introduce a subgraph matching algorithm

that works on a compactification of the case memory in which subgraphs which are common to

multiple cases may be stored only once. In a similar vein, Champin & Solnon (2003) propose a

similarity measure, based on graph editing operations within a modification of Tversky’s (1977)
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contrast model, to compare cases represented by labeled graphs where vertices and edges can

have more than one label. To deal with the intractability of this representation, a heuristic greedy

algorithm is proposed.

Arcos & López de Mántaras (1997) describe a retrieval mechanism called Perspectives for

structured case representations. Cases and degrees of similarity are represented as feature terms,

which are equivalent to first-order terms and can also be viewed as directed acyclic graphs

labeled by features and values (Plaza, 1995). Their knowledge-intensive approach to retrieval

uses a subsumption mechanism between the feature terms to obtain an order relation between

case descriptions on the basis of a set of user-defined relevant aspects of the target problem. The

system is implemented in an object-oriented language (Arcos, 1997) based on feature terms and

has been applied to the problem of synthesizing expressive music (Arcos & López de Mántaras,

2001; López de Mántaras & Arcos, 2002).

Emde & Wettschereck (1996) propose an alternative way of measuring the similarity of first-

order terms. They also present a generalization of a propositional instance-based learner

(distance-weighted k-NN) to first-order representations. Issues addressed in the approach, which

the authors refer to as relational instance-based learning (RIBL), include the generation of cases

from the knowledge base, assessment of similarity between arbitrarily complex cases, and

estimation of the relevance of predicates and attributes. Empirical results are presented which

suggest that RIBL is capable of achieving high levels of classification accuracy in a variety of

domains.

Similarity frameworks

With so many ways of measuring similarity, it is unsurprising that some researchers have looked

at similarity in a general way, independent of any specific algorithm. For example, Richter

(1992) discusses the notion of similarity in the context of a formal mathematical framework. He

describes approaches to modeling similarities with increasing complexity and informativeness.

These range from simple predicates (least informative) to relations and functions (most

informative) and general forms of distance functions and similarity measures are discussed,

including a generalization of Tversky’s (1977) contrast model. The contrast model is based on a

set-theoretic approach that expresses the similarity between objects as a linear combination of

their numbers of matching and mismatching features. One limitation of Tversky’s model is that

all features are assumed to be equally important, whereas Richter’s generalization allows

different weights to be assigned to features. However, Richter emphasizes that to allow for

changes in the problem-solving environment, the parameters of a similarity measure should be

the result of an adaptive learning process, an idea we explore further in Section 3.2.

Osborne & Bridge (1996) present another general framework distinguishing, in particular,

between ordinal and cardinal similarity measures. Ordinal measures use a description of the

target problem to induce a partial ordering over the cases in the case memory. No information

about the degree of similarity is given; the cases are merely ordered, with the implication that

cases higher in the ordering should be retrieved prior to any that are lower in the ordering.

Cardinal measures, on the other hand, are functions that score the cases, returning real numbers

to denote degrees of similarity. Osborne & Bridge present a set of operators that allows the

flexible and systematic construction of both ordinal and cardinal similarity measures. In later
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work (e.g., Osborne & Bridge, 1997), the framework is generalized further to accommodate not

only similarity measures in which the degree of similarity is denoted numerically (which is most

common) but also similarity measures in which the degree of similarity is instead denoted by any

value drawn from an ordered set. With this extension, the framework accounts for similarity

measures in which the degree of similarity is denoted by common subgraphs (Börner, 1993) or

feature terms (e.g., Jantke, 1994; Plaza, 1995).

3.2   Improving and evaluating retrieval performance

Several techniques for improving the speed of retrieval were mentioned in our discussion of

similarity assessment in Section 3.1. Another important aspect of retrieval performance is its

impact on solution quality. Measures used to evaluate retrieval performance in terms of solution

quality are likely to depend on the type of problem-solving task (e.g., classification,

recommendation, planning) for which the system is designed. For example, evaluation in terms

of classification accuracy is possible only if the outcome classes to be predicted in the test set are

represented in the training set. This is not the case in domains such as product recommendation

in which each outcome class (a unique product or service) is represented by a single case in the

case memory (McSherry, 2001a). Evaluation of retrieval performance in terms of classification

accuracy is similarly compromised in conversational CBR (Aha et al., 2001), where it is typical

for most cases to have unique solutions. Appropriate measures of retrieval performance for

datasets of this type include precision, recall, and the average length of problem-solving

dialogues (Aha et al. 2001; McSherry, 2001a; 2001b; 2003b; McGinty and Smyth, 2003).

Problems likely to affect retrieval performance in terms of solution quality include the use of

inadequate similarity measures, missing values in cases, unknown values in the description of the

target problem, and the so-called heterogeneity problem that arises when different attributes are

used to describe different cases (Aha et al., 2001; McSherry, 2001b; 2003c; Stahl & Gabel, 2003;

Bogaerts & Leake, 2004). Bogaerts & Leake (2004) propose and evaluate a variety of possible

strategies for handling missing information in similarity assessment. Retrieval based on

incomplete information is an important challenge in conversational CBR, where a description of

the target problem is incrementally (and often incompletely) elicited in an interactive dialogue

with the user.  Aha et al. (2001) evaluate an approach to incremental query elicitation that takes

account of the heterogeneity that is typically found in domains such as fault diagnosis. McSherry

(2003b) proposes a conversational CBR approach to product recommendation that includes a

mechanism for ensuring that the dialogue is terminated only when it is certain that a more similar

case will not be found if the dialogue is allowed to continue.

Retrieval performance can often be improved by making the similarity measure the subject of

an adaptive learning process. Focusing on variants of k-NN that automatically learn the weights

assigned to features, Wettschereck & Aha (1995) propose a multi-dimensional framework for the

categorization and comparison of feature weighting methods in CBR. The proposed framework

can be used to categorize new methods, thus facilitating their comparison with existing methods.

However, it cannot be applied to k-NN methods that incorporate domain-specific knowledge and

complex representations. Noting that most feature weighting methods are designed to optimize

classification accuracy, Wilke & Bergmann (1996) argue that decision costs should also be

considered in many applications. Experimental results are presented which support the
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hypothesis that classification based on weights learned using cost optimization leads to lower

decision costs than classification based on weights learned by accuracy optimization.

Improving the adaptability of retrieved cases can also be the subject of an adaptive learning

process. In case-based planning, for example, Muñoz-Avila & Hüllen (1996) extend the foot-

printed similarity metric used in PRODIGY/ANALOGY (Veloso, 1992) by incorporating feature

weights in a new metric which counts the weights of relevant features that match features in the

target problem. A feature is considered relevant to a planning goal with respect to a solution if it

contributes to achieving the goal in the solution. The authors also present an algorithm for

analyzing the performance of retrieved cases to identify features whose weights need to be

recomputed. The algorithm provides a bridge between the new similarity metric and a feature

weighting model based on incremental optimizers. Experimental results are presented which

show that integration of the proposed similarity metric and analysis algorithm in the feature

weighting model improves the adaptability of the retrieved cases by convergence to best weights

over a period of multiple problem-solving episodes.

Many CBR applications rely on domain knowledge encoded in the similarity measures used

by the system to guide the retrieval of relevant cases. Such a knowledge-intensive approach to

similarity assessment typically relies on knowledge acquired from a domain expert. In a recent

series of papers, Stahl & Gabel investigate the use of machine learning techniques to reduce the

knowledge-acquisition overheads associated with the construction and maintenance of domain-

specific similarity measures (Stahl & Gabel, 2003; Gabel & Stahl, 2004). A distinctive feature of

their approach is the use of feedback about the quality of retrieval results provided by a domain

expert to guide the automatic refinement of similarity measures.

3.3   Alternatives to similarity-based retrieval

Much of the research on which we comment in this section has been motivated by an increased

awareness of the limitations of retrieval based purely on similarity. While continuing to play a

prominent role in retrieval, similarity is increasingly being combined with other criteria to guide

the retrieval process, such as how effectively the solution space is covered by the retrieved cases

(McSherry, 2003c), how easily their solutions can be adapted to solve the target problem (Smyth

& Keane, 1998), or how easily the proposed solution can be explained (Doyle et al., 2004).

Adaptation-guided retrieval

While many factors may contribute to the performance of the retrieval component of a CBR

system, in many applications what matters the most is whether the retrieved cases can be used to

solve the target problem. The issue is not finding cases that are similar per se; it is a question of

finding cases that are usefully similar. This view is perhaps most formally expressed by

Bergmann et al. (2001), who explicitly state that problem similarity is used as a proxy for

solution utility – the similarity assumption rephrased. But the problem remains that similarity

may be inadequate as a proxy for solution utility and this raises the question of how best to

handle such an eventuality. The solution, as it turns out, is based on the idea that there are forms

of knowledge other than case similarity that can, and should, be brought to bear on the retrieval

task.
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For example, Smyth & Keane (1994; 1995a; 1996; 1998) question the core similarity

assumption  according to which the most similar case is the one that is easiest to adapt. They

argue that sometimes the most similar case may be impossible to adapt, for example if adaptation

knowledge is incomplete, as is often the case in weak-theory domains that are commonly

targeted by CBR. To address this issue, they introduce the notion of adaptation-guided retrieval

in which the adaptation requirements of cases are explicitly assessed during retrieval by means of

domain-specific adaptation knowledge. In contrast to traditional approaches that relied on

heuristics to predict the ease with which a given case could be adapted, adaptation-guided

retrieval combines explicit local and global measures of adaptability to ensure that the most

adaptable case is always selected. In this way adaptation-guided retrieval bridges the gap

between retrieval (and its similarity knowledge) and reuse (and its adaptation knowledge).

Empirical results demonstrate how the approach can lead to a significant reduction in adaptation

failures as well as a concomitant decrease in adaptation costs by performing preliminary

adaptation work during retrieval. Leake, Kinley & Wilson (1997) propose a case-based approach

to this problem, predicting adaptation effort based on prior adaptation experiences.

Diversity-conscious retrieval

Recently there has been considerable interest in interactive case-based reasoners, which avoid the

problems associated with automating reuse by leaving adaptation to the user. They focus instead

on the retrieval of high-quality cases. A good example is provided by CBR approaches to product

recommendation, in which the role of the CBR system is to select cases for recommendation

based on a query describing the user’s requirements. If there is no case that exactly matches the

user’s requirements, she can be shown the cases that are most similar to her query. A limitation

of similarity-based retrieval, especially in a recommendation context, is that the most similar

cases are often very similar to each other (Smyth & McClave, 2001). In other words, the top

cases often lack diversity and offer the user a very limited choice of alternatives. Recently there

has been considerable research interest in algorithms that combine measures of similarity and

diversity in the retrieval process to achieve a better balance between these often conflicting

characteristics (e.g., Smyth & McClave, 2001; McSherry, 2002; McGinty & Smyth, 2003). For

example, Smyth & McClave (2001) propose an approach to retrieval that incrementally selects a

set of diverse cases from a larger set of similarity-ordered cases. Experimental results have

shown that major gains in diversity can often be achieved at the expense of relatively small

reductions in similarity. As a consequence, users receive suggestions that better cover the

relevant region of the target product space, increasing the likelihood that they will be

recommended a satisfactory product.

Compromise-driven retrieval

McSherry (2003c) proposes a compromise-driven approach to retrieval in recommender systems

inspired by the observation that the cases that are most similar to the user’s query are often not

sufficiently representative of compromises (or unsatisfied requirements) that the user may be

prepared to accept. An underlying assumption of similarity-based retrieval (or k-NN) is that a

given case (or product) is more acceptable than another if it is more similar to the user’s query.

Compromise-driven retrieval is based on the weaker assumption that a given case is more
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acceptable than another if it is more similar to the user’s query and it involves a subset of the

compromises that the other case involves. As well as being less likely to be contradicted by user

behavior, this weaker assumption provides the basis of a more principled approach to deciding

which cases are included in the retrieval set than arbitrarily limiting the number of retrieved cases

as in k-NN. For example, no case is included in the retrieval set if there is a more similar case

that involves a subset of the compromises it involves.

Though not relying on an explicit measure of diversity in the retrieval process, compromise-

driven retrieval shares with other approaches to enhancing recommendation diversity (Smyth &

McClave, 2001; McSherry, 2002) the aim of offering users a better choice of alternatives.

Another important benefit of the approach is that the retrieval set is guaranteed to provide full

coverage of the available cases in the sense that for any case that is not included in the retrieval

set, one of the recommended cases is at least as good in terms of its similarity to the user’s query

and the compromises it involves.

Order-based retrieval

Order-based retrieval is another new approach with particular application to recommender

systems (Bridge & Ferguson, 2002a). Rather than scoring the cases, order-based retrieval offers

an expressive query language for defining and combining ordering relations; the result of query

evaluation is to partially order the cases in the case base. The claims made for the approach

include: it is more expressive than similarity-based retrieval because it allows queries that

naturally combine not just the user's preferred value (one for which similar values are sought) but

also dispreferred values, minimum values, maximum values, and so on; and it returns inherently

diverse result sets (Bridge & Ferguson, 2002b).

Explanation-oriented retrieval

It is often important for CBR systems to be able to explain their reasoning (e.g., Rissland, et al.

1984; Ashley & Aleven, 1992; Leake, 1996; McSherry, 2001d; Cunningham et al., 2003; Doyle

et al., 2004; McSherry, 2004a) and to justify their suggestions or solutions. Explanations serve

many different goals, such as teaching the user about the domain or explaining the relevance of a

question the user is asked (Leake, 1991; 1992; Sørmo & Cassens, 2004; Sørmo, Cassens &

Aamodt, 2005/2006). For example, McSherry (2003b; 2004b) proposes a conversational CBR

approach to product recommendation in which the system can explain why a question is being

asked in terms of its ability to discriminate between competing cases. Explaining the retrieval

failures that occur when no case exactly matches the user’s query is another potential role of

explanation in CBR recommender systems (e.g., McSherry, 2003a). 

More commonly, the goal is to explain how the system reached its conclusions. In

applications such as classification and diagnosis, an attractive feature of CBR is the ability to

explain the predicted outcome by showing the user one or more of the target problem’s nearest

neighbors. As noted by Leake (1996), “... the results of CBR systems are based on actual prior

cases that can be presented to the user to provide compelling support for the system's

conclusions”. Such explanations are known as precedent-based explanations and have long been

a feature of case-based models of legal argumentation (e.g., Ashley, 1991; Branting, 1991;

Rissland & Skalak, 1991). An empirical study by Cunningham et al. (2003) has shown that they
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are often more compelling than alternative forms of explanation. However, a number of authors

have recently questioned the effectiveness of precedent-based explanations in which the user is

simply shown the case that is most similar to the target problem.

For example, McSherry (2004a) argues that such explanations are often less informative than

might be expected, and should ideally be supported by an analysis of the pros and cons of the

proposed solution. Doyle et al. (2004) have found that the most compelling explanation case may

not necessarily be the one that is most similar to the target problem. In particular, they

demonstrate how cases that lie between the target problem and the decision boundary can often

be more useful for explanation. This has motivated the development of explanation-oriented

retrieval. This approach remains precedent-based, but once once a classification or diagnosis has

been reached on the basis of the nearest neighbors, the system performs an additional retrieval

step, using an explanation utility metric, to obtain the explanation case. Doyle et al. (2004) also

report the results of an empirical study that show their explanation cases to be generally more

compelling than the nearest neighbor.

Other important aspects of case-based explanations that have been explored in work on case-

based legal argument (Ashley, 1989, 1991; Ashley & Aleven, 1992; 1997; Aleven, 2003) include

explaining and distinguishing relevant cases’ strengths and weaknesses, providing examples to

resolve conflicts, presenting counterexamples to proposed solutions, making ceteris paribus

comparisons, and posing hypothetical variations of problems to illustrate their effects on the

analyses.

4   Reuse and revision in CBR

The reuse process in the CBR cycle is responsible for proposing a solution for a new problem

from the solutions in the retrieved cases. In Aamodt & Plaza’s (1994) “four REs” cycle (Figure

1), ReUse appears second, after ReTrieve, and is followed by ReVise and ReTain. Reusing a

retrieved case can be as easy as simply returning the retrieved solution, unchanged, as the

proposed solution for the new problem. This is often appropriate for classification problems such

as interpretation, diagnosis, monitoring and prediction. For classification tasks, each solution

(class) is likely to be represented frequently in the case base, and therefore the most similar

retrieved case is likely to contain an appropriate solution. But reuse becomes more difficult if

there are significant differences between the new problem and the retrieved case. In these

circumstances the retrieved solution may need to be adapted to take account of these important

differences. Medical decision making is one domain in which adaptation is commonly required.

Adaptation becomes particularly relevant when CBR is used for constructive problem-solving

tasks such as design, configuration, planning. For such tasks it is unlikely that each solution

(design, configuration, or plan) will be represented in the case base. Thus the retrieved solution is

simply an initial solution and any differences between the new problem (specification) and the

retrieved case are likely to alter the retrieved solution in some way.

Adaptation methods differ in complexity with respect to two dimensions: what is changed in

the retrieved solution, and how the change is achieved. Substitution methods simply reinstantiate

some part(s) of the retrieved solution, whereas Transformation methods alter the structure of the

solution (Kolodner, 1993). Adaptation is commonly achieved by altering the retrieved solution

directly, but the more complex Generative Adaptation replays the method of deriving the
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retrieved solution on the new problem. These three types of adaptation methods will be used to

structure this section. The contributions discussed in this section describe different approaches to

adaptation for reuse; i.e. adaptation during solution formulation. Adaptation can also be used

when feedback about a proposed solution indicates that a repair is needed; this is part of the

ReVise stage in the CBR cycle.

Hammond (1990) describes the reuse of recipes in CHEF, a menu-planning system.

Substitution Adaptation is used to substitute ingredients in the retrieved recipe to match the menu

requirements; e.g., when a recipe containing beef and broccoli is retrieved for a meal requiring

chicken and snow peas, then the meat component is replaced by chicken and the vegetable

component is substituted by snow peas. Transformational adaptation may also be needed to

amend the proposed recipe further by adding or removing steps in the recipe that result from any

ingredient substitutions; e.g., for chicken, rather than beef, a new skinning step should be added.

Further transformations may occur at the ReVise stage where critics analyze the failure of a

recipe and repair strategies are applied to the proposed recipe to add or remove steps in the failed

recipe. CHEF’s learning of critics introduced the topic of case-based planning and many of its

themes; e.g., indexing, use of cases in memory, failure-driven learning.

SWALE (Schank & Leake, 1989) is a case-based explanation system for story understanding

which reuses old explanations by applying substitution adaptation to amend the actor, their role

or the action in the retrieved explanation (Kass, 1989). Again transformational adaptation may be

needed to add or remove components in the current explanation resulting from these

substitutions.

Déjà Vu (Smyth & Keane, 1995a; 1998) is a CBR system for the automated design of plant-

control software that builds on some of the ideas proposed in CHEF (Hammond, 1990) by

utilizing transformational adaptation knowledge in the form of general adaptation strategies and

more specialized adaptation specialists. An important and novel contribution of Déjà Vu is its

representation of complex plat-control software designs as hierarchies of related cases and its

adoption of a hierarchical model of case retrieval and reuse. For example, complex target

problems lead to the retrieval and adaptation of the solutions to abstract cases, the elements of

which in turn lead to the retrieval and adaptation of more detailed sub-cases. In this way, the

challenge of solution transformation is answered by a combination of problem decomposition,

sub-case adaptation, and solution re-integration. Moreover, a unique feature of Déjà Vu, as

discussed in Section 3.2, concerns its ability to leverage existing adaptation knowledge during

retrieval in order to evaluate the adaptability of cases. This further helps to alleviate some of the

adaptation problems by at least helping to guarantee the retrieval of cases that can be adapted

easily.

Model-based adaptation is a popular approach to transformational adaptation in which causal

reasoning is integrated with CBR. Koton’s (1988) CASEY is an early example of model-based

adaptation, in a medical diagnosis CBR system that utilizes domain independent repair strategies

to adapt the retrieved explanation to take account of differences between the symptoms of new

and retrieved patients. KRITIK (Goel & Chandrasekaran, 1989) relies on model-based

transformation adaptation to reuse designs for physical devices. Model-based reasoning creates a

causal explanation for the new design by transforming that of the retrieved one. Faltings’ (1997a)

CADRE also applies model-based reasoning in case-based design. Reuse involves the



18 R.  LÓPEZ DE MÁNTARAS  ET AL.

combination of retrieved design cases and the transformation adaptation of the retrieved design.

This work is evaluated in two design prototypes: CADRE for architectural design and FAMING

(Faltings & Sun, 1996) for mechanism design.

Evolutionary methods have also been explored for adaptation, in the context of architectural

design (Gómez de Silva Garza & Maher, 2000). The retrieved designs become the initial

population for a Genetic Algorithm and mutation and crossover operators are used to generate

new designs for the population. Mutation is a substitution adaptation that randomly alters parts of

one design to produce a new design. Crossover is a transformation adaptation that can alter the

structure of the design. It generates two new designs from two parent designs by interchanging

parts of the design in each parent. The genetic algorithm’s fitness function evaluates the designs

by calculating how well they match the design requirements. The design with the highest match

to the requirements is the new design. Purvis & Pu (1995) present adaptation as a Constraint

Satisfaction Problem. The design cases are represented as constraint satisfaction problems, where

the design requirements are the constraints and the design is the solution. The retrieved designs

are adapted by applying a minimum conflicts heuristic to guide the repair of the design to match

the new design requirements.

The work discussed so far in this section has been devoted to substitution and transformation

adaptation. Based on studies of several CBR systems that use adaptation, Fuchs & Mille (1999)

have proposed a knowledge-level task model for substitution and transformation adaptation

processes. The ReUse task is composed of Copy and Adapt tasks. The Adapt task comprises

selecting a problem difference, Modifying the solution, and finally verifying the solution. The

Modify task can remove or substitute/add part of the solution, and finally the substitute/add task

searches for a suitable replacement by using further cases, applying a heuristic, or accessing

domain knowledge such as explanations, abstractions or specializations.

Generative Adaptation differs from substitution and transformation adaptation in that it does

not adapt the retrieved solution directly, but instead derives the new solution by replaying the

method used to derive the retrieved solution. Generative adaptation may result in a reinstantiation

of parts of the retrieved solution, like substitution, or in a transformation that alters the structure

of the solution. PRODIGY (Veloso & Carbonell, 1994), a general purpose planning system,

applies Derivational Replay to recompute a replacement for a faulty element of the retrieved

solution by recalling how the element was computed and replaying the computation for the new

problem. Derivational Replay is a variant of Derivational Analogy (Carbonell, 1986) in which

the complete solution is recomputed. In this work an analogy between the new and retrieved

problems is used to adapt the method of deriving the solution.

Although CBR systems avoid reasoning from first principles by remembering and reusing past

solutions, substitution and transformation adaptation of retrieved solutions is often achieved by

reasoning about how the problem differences should be reflected in the adaptation to the

proposed solution. Therefore the acquisition of adaptation knowledge can require a substantial

knowledge engineering effort. The difficulty of acquiring adaptation knowledge was identified in

early CBR research but, until recently, relatively little effort has been devoted to automating the

acquisition of adaptation knowledge. Leake, Kinley & Wilson’s (1995) DIAL system for disaster

response planning builds up its adaptation knowledge as it applies case-based planning. The

adaptation knowledge it learns is a set of adaptation cases that capture the steps in successful
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manual plan adaptations. DIAL applies a mixed-initiative adaptation process: if an adaptation

case matches the current adaptation need it is reused by a CBR process, otherwise DIAL attempts

to apply a general rule to revise the plan (e.g., add or remove a step), but as a final option it

resorts to manual adaptation. This last option offers the opportunity to acquire a new adaptation

case when the manual adaptation generates a successful plan.

Several systems exploit the knowledge already captured in the cases as a source of adaptation

knowledge. McSherry (1998) reuses pairs of cases from the case base that contain the same

differences as those found between the new problem and the retrieved case. The solution

difference from the pair of cases is replayed on the retrieved case. Rather than reusing differences

directly from the cases, Hanney & Keane (1997) use the case-base as a source of case pairs that

are used as training data to learn rule-based adaptation knowledge that generalizes the

adaptations represented in the case pairs. Wilke, Vollrath, Althoff & Bergmann (1997) present a

framework for knowledge-light learning of adaptation knowledge as in these approaches, where

knowledge contained elsewhere in the CBR system, like the case base, is used to learn or

improve the adaptation knowledge. The final paper discussed in this section (Jarmulak, Craw &

Rowe, 2001) creates adaptation case knowledge compiled from the original case-base, and uses it

as the knowledge source of a case-based adaptation system. Further work has applied different

learning methods to assemble an ensemble of adaptation rule-based adaptation experts learned

from these adaptation cases (Wiratunga, Craw & Rowe, 2002).

5   Retention in CBR

In the classic review paper by Aamodt & Plaza (1994), retention is presented as the final step in

the CBR cycle, in which the product of the most recent problem-solving episode is incorporated

into the system’s knowledge. To a great extent this has traditionally translated into a variety of

approaches for recording the product of problem solving as a new case that can be added to the

case-base. Of course, there are various issues concerning how best to learn a new case and

different systems record different types of information in their cases. Most, for example, simply

record the target problem specification and the final solution, with the implicit assumption that

the outcome was successful.  For example, when CBR is integrated with a generative problem-

solving system for speed-up learning, the success of the system’s solutions may be guaranteed

(e.g., Veloso 1992, Veloso & Carbonell 1994). When outcomes are less reliable or when the

criteria for success are more complex, case representations must include additional information

on the outcome of the solution, which may also include fine-grained information on how well the

solution addressed many dimensions of the system’s goals (e.g., Goel, Kolodner et al. 1991).

Another question is what to store concerning the solution itself. Many systems store only the

solution, but others seek to record a much deeper representation of the problem-solving process

that brought about the particular solution. In Veloso & Carbonell’s work, for example,

derivational traces are stored in cases. These rich knowledge structures describe precisely how a

given solution was derived, providing a trace of the decision-making processes that led to a

particular solution.

In general, the modern view of retention accommodates a much broader perspective of what it

means for a CBR system to learn from its problem solving experience, a view that is largely a

response to certain critical issues that have arisen during the practical application of CBR
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systems in complex problem solving scenarios. In this section we will review this body of work,

highlighting many of the critical issues associated with open-ended case learning policies and

how these issues have been resolved by novel approaches to case-base optimization. Moreover,

we will argue that these issues have served as an important catalyst for research in the area of

case-base maintenance and the maintenance of other aspects of a CBR system, which

accommodates a broader perspective on case learning and retention.

5.1   The utility problem in CBR

In the past the prevailing view of case learning in CBR was based in the assumption that learning

would occur as a by-product of every problem-solving episode. However, as CBR systems were

developed and deployed for real-world application scenarios, the potential pitfalls of long-term

case learning became apparent, especially in relation to the impact of case-base growth on

retrieval costs. This so-called utility problem for CBR parallels the well-known utility problem

identified in explanation-based learning research (e.g., Minton, 1990). The latter refers to the

performance degradation experienced by speed-up learners as a result of learning control

knowledge. In brief, Minton demonstrated how rules learned with a view to reducing problem

solving time, by directing the search more carefully, might ultimately come to degrade overall

system performance as the time spent considering the application of a speed-up rule eventually

overtook the time needed for from-scratch problem solving. For example, overly specific rules

that are seldom applicable, or rules with a high match cost, or rules that offer limited speed-up

were all found to contribute to a decline in problem solving efficiency.

At the heart of the utility problem is a natural trade-off between the benefits of speed-up

knowledge and the cost of its application and a similar trade-off also exists in CBR systems (e.g.,

Francis & Ram, 1994; Smyth & Keane, 1995b; Smyth & Cunningham, 1996). Cases correspond

to a form of speed-up knowledge, in the sense that retrieval and reuse of similar cases are

expected to provide more efficient problem solving than first-principles methods, with additional

cases increasing the range of problems that can be solved rapidly. However, this rather naive

view of case knowledge is fundamentally flawed by neglecting to consider retrieval costs. In

CBR systems the utility problem is caused by the conflict between: (1) the average saving in

adaptation effort due to the availability of a particular case, which tends to increase efficiency as

the case base grows, and (2) the average retrieval time associated with a given case-base size,

which tends to decrease efficiency. Smyth & Cunningham (1996) demonstrate the inevitability of

the utility problem in CBR, under reasonable general assumptions about the retrieval and reuse

characteristics of a CBR system. They show that as a result of case learning, retrieval efficiency

(mean retrieval time) tends to degrade while adaptation efficiency (mean adaptation time) is seen

to improve, but at an ever decreasing rate. Initially, as a case base grows each newly learned case

can have a significant impact on adaptation as it is more likely to improve overall case-base

coverage. However, as the case base grows new cases are more likely to overlap with existing

cases and so offer little in the way of new coverage and minimal adaptation savings. As new

cases are added retrieval costs become progressively greater but adaptation savings progressively

less. Eventually the increase in retrieval time as a result of a new case addition is greater than the

adaptation saving offered. At this critical case-base size, overall problem solving efficiency

begins to degrade.
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5.2   Harmful cases, competence models, and selective retention

Once the relevance of the utility problem to CBR became clear, researchers began to look to the

machine learning literature as a source of coping strategies. Several strategies have been

proposed to solve the utility problem in machine learning. Markovitch & Scott (1993) propose a

unifying framework for the systematic discussion of all of the various strategies for coping with

harmful knowledge in general, and the utility problem in particular. Their framework is based on

different types of filters for eliminating harmful knowledge at various stages in the problem

solving cycle. One approach that is especially relevant in CBR is to simply delete harmful cases

from the case base so that they cannot actively contribute to ongoing problem solving costs –

these deletion approaches correspond to selective retention filters in the Markovitch & Scott

framework. Surprisingly enough, in many speed-up learners even the apparently naive random

deletion of knowledge items (to maintain the knowledge base to some predefined size) works

quite well at optimizing efficiency. Even though random deletion removes both useful and

redundant items it can equal the success of more sophisticated methods (Markovitch & Scott,

1993). More sophisticated deletion policies have been developed and are guided by some

assessment of the utility of individual knowledge items. For example, Minton (1990) uses a

utility metric that takes into account the cost of including the item in the set of candidates to

consider (match cost) and the expected savings offered by the item (average savings multiplied

by its application frequency) to deliver even greater protection against the damaging effects of

the utility problem.

Unfortunately it soon became clear that the same type of coping strategies would not translate

directly over to case-based reasoners. The problem stems from the fact that many case-based

reasoners are not simply using case knowledge as a form of speed-up knowledge. Instead, cases

are often a primary source of problem-solving knowledge. Without cases, certain problems

cannot be solved and thus the act of deleting cases may irrevocably reduce the competence of the

system to solve new problems; CBR systems may not be able to reconstruct deleted cases from

an internal domain model. To address this problem, seminal work by Smyth & Keane (1995b)

proposed the need for a competence model as a way to better evaluate the contributions of

individual cases to problem-solving competence. In particular, they developed methods for

categorizing cases according to their competence characteristics with a view to guiding the

selection of cases for deletion. These categories facilitate the preservation of key cases (called

pivotal cases) that might otherwise be deleted, in favor of deleting less critical cases whose loss

is expected to least harm system competence. Competence-guided case deletion provides for a

safe way to eliminate cases from a growing case base, to stave off the harmful effects of the

utility problem while at the same time protecting against reductions in competence.

Later work brought the introduction of a more fine-grained model of case competence (Smyth

& McKenna, 1998) as a pre-cursor to a variety of related retention models and other forms of

case-base editing (e.g., McKenna & Smyth 2000a; 2000b; Smyth & McKenna, 2000a). For

example, as an alternative to case deletion, Smyth & McKenna (1999b) use their competence

model to develop a competence-guided case addition algorithm. Indeed, related work by Zhu &

Yang (1999) describes a case addition algorithm that has the added advantage of providing a

guaranteed lower bound on resulting competence. Leake & Wilson (2000) highlight the
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importance of considering both competence and performance during case-base optimization.

They argue the need for more fine-grained performance metrics with which to guide the

maintenance of a case base and show how one such metric can help to guide case-base editing in

a way that gives due consideration to competing factors such as case-base size, coverage,

adaptation performance etc.

Over the past few years there has been a broad range of research addressing these key issues

of case deletion, addition and case-based editing in general. Further discussion is beyond the

scope of this article but the interested reader is referred to work by Surma & Tyburcy (1998), Lei

et al (1999), Portinale & Torasso (2001), Yang & Zhu (2001), Salamó & Golobardes (2002),

Wiratunga et al. (2003), and Woon et al. (2003).

5.3   Case-base maintenance

As researchers began to recognize that there was more to case retention than simply which cases

to learn, and how they should be encoded, the importance of case-base maintenance quickly

came into focus (Smyth, 1998; Leake et al., 2001; Wilson & Leake, 2001). Maintenance issues

arise when designing and building CBR systems and support tools that monitor system state and

effectiveness in order to determine whether, when, and how to update CBR system knowledge to

better serve specific performance goals. Understanding the issues that underlie the maintenance

problem and using that understanding to develop good practical maintenance strategies is crucial

to sustaining and improving the efficiency and solution quality of CBR systems as their case

bases grow and as their tasks or environments change over long-term use. And today there is a

general recognition of the value of maintenance to the success of practical CBR systems.

To begin to appreciate the issues involved in developing maintenance strategies, as well as to

understand maintenance practice and identify opportunities for new research, it is useful to

understand the nature of the maintenance process and its relationship to the overall CBR process.

Wilson & Leake (2001) characterize case-base maintenance in terms of the components of

maintenance policies and the dimensions along which alternative maintenance policies may

differ, using this characterization to examine a range of concrete maintenance strategies and

proposals. Their framework categorizes case-base maintenance policies in terms of how they

gather data relevant to maintenance decisions, how they determine when to trigger maintenance

operations, the types of maintenance operations available, and how the selected maintenance

operations are executed. For example, data collection might be restricted to gathering information

on individual cases (e.g., the number of times a case has been used, or has been used and

produced an unsuccessful result) or about the case base as a whole (e.g., its current size, or its

growth trends over time). Maintenance policy triggering may be done periodically (e.g., at every

case addition), conditionally (e.g., when retrieval time increases to a pre-specified threshold), or

on an ad hoc basis (e.g., by unpredictable intervention by a human maintainer). The available

maintenance operations may target different knowledge containers (e.g., indices, the cases

themselves, or adaptation knowledge) and may be applied at different times or to varying

portions of the case base. They use this framework to characterize existing strategies according to

the framework’s dimensions, providing both a snapshot of the current state of the art in case-base

maintenance and suggestions of unexplored strategies.
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Of course, the success of maintenance depends not only on the maintenance policies

themselves, but also on how maintenance is integrated with the overall CBR process. Reinartz,

Roth-Berghofer & Iglezakis (2001) propose to extend the classic 4-stage CBR cycle shown in

Figure 1 to include two new steps, a review step, to monitor the quality of system knowledge, and

a restore step, which selects and applies maintenance operations. This revised model, shown in

Figure 3, emphasizes the important role of maintenance in modern CBR and indeed proposes that

the concept of maintenance encompass the retain, review and restore steps.

Figure 3   An extension of the classical 4-stage CBR model to emphasize the importance of maintenance in

overall system performance, illustrating the setup, initialization, application and maintenance phases of the

SIAM methodology for maintaining CBR systems  (Iglezakis, Reinartz & Roth-Berghofer, 2004).

A considerable body of maintenance research has obviously developed directly from earlier

work on how best to control the addition and deletion of cases in a CBR system (see Section 5.2),

but case addition/deletion is just one aspect of maintenance. For example, maintenance policies

can be applied to a variety of other knowledge sources beyond the case base. For instance,

Hammond (1989) uses explanations of case application failures to determine additional indices to

assign to a new case to focus future retrievals. Fox & Leake (1995; 2001) use introspective

learning techniques to examine the issue of index refinement triggered by retrieval failures.

Munoz-Avila (2001) looks at index revision (and case retention) policies in the context of a

derivational replay framework. Index revision is guided by a policy that is based on an analysis

of whether the results of retrievals can be extended for new problem scenarios without revising

the planning decisions suggested by the retrieved case. Craw, Jarmulak & Rowe (2001) examine

the use of a genetic algorithm for refining indexing features and matching weights; see also
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Wettschereck & Aha (1995) and Bonzano, Cunningham & Smyth (1997).  Maintenance can also

involve adaptation. Leake & Wilson (1999) propose adding adaptation rules as a “lazy” strategy

for updating the case base as future cases are retrieved, and Shui et al. (2001) generate new

adaptation rules while compressing the case base as a means to protect against knowledge loss.

In multi-agent scenarios, a CBR system’s own case retention process may be bolstered by

drawing on the case bases of cooperating agents, raising questions of when to access those cases

and to retain them in the agent’s own case base  This requires strategies for addressing questions

such as when external cases may be useful, how to process them to maximize their value to a

particular agent, and when multiple case bases should be merged into a single case base (Ontañon

& Plaza, 2003; Leake & Sooriamurthi, 2004).

Techniques have been developed for detecting inconsistencies in the case base, either to avoid

storing inconsistent cases during initial case retention (McSherry, 1998) or to enable correction

of inconsistencies when maintaining the case base as a whole (e.g., Shimazu & Takishima, 1996;

Racine & Yang, 1997). More generally, Leake & Wilson (1999) look at the use of CBR in

changing environments where key challenges exist in relation to the predictability of problem-

solution regularity and distribution. They argue that to avoid inconsistent problem-solving

performance a CBR system must be able to examine how well these key regularity assumptions

hold and take corrective maintenance action when they do not. The study of case retention is

therefore inextricably tied to many related issues for managing the multiple forms of knowledge

within CBR systems and adapting CBR systems to the needs of the environments in which they

function.

Maintenance strategies can also be used to assist the case author during the early stages of

case acquisition. For example, Ferrario & Smyth (2001) describe a distributed approach to case

authoring in which a community of authors contribute to the validation of new case knowledge.

McSherry (2001c) also focuses on the case acquisition task, and presents a system that performs

background reasoning on behalf of the case author while new cases are being added, in order to

help the user determine the best cases to add in light of their competence contributions. The

system uses its evaluations of the contributions of potential cases to suggest cases to add to the

case library. McKenna & Smyth (2001) propose an approach to providing authoring support that

attempts to identify competence holes within an evolving case-base. They demonstrate how their

model of competence (Smyth & McKenna, 1998; 2001) can be used to prioritise gaps in case

knowledge and, like McSherry (2001c), propose a technique for automatically suggesting the

type of cases that an author might want to consider to fill these gaps with a view to maximizing

the potential coverage and contributions that are available. To provide a systematic framework

for organizations needing to capture and maintain case-based knowledge, work by Nick, Althoff

& Tautz (2001) develops systematic practical strategies for guiding the maintenance of corporate

experience repositories.

In this section we have attempted to summarize research in the area of retention and

maintenance. Due to space limitations, it has only been possible to scratch the surface of this

dynamic and rich area of research. Retention and case-base editing and, more generally, case-

base maintenance, continues to be a rich source of research ideas, and even recent developments

could not be discussed in the detail they deserve in this article. The interested reader is referred to

Wilson & Leake (2001) for a thorough examination of the dimensions of maintenance strategies
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and survey of additional maintenance research in terms of those dimensions. In addition, a recent

collection of maintenance articles addressing numerous facets of maintenance is available in

Leake, Smyth, Yang & Wilson (2001).

6   Conclusions

Our aim in this paper has been to provide a concise overview of the cognitive science

foundations of CBR and of the four main tasks involved in the CBR cycle, namely retrieval,

reuse, revision, and retention. Rather than presenting a comprehensive survey, we have focused

on a representative selection of work from the CBR literature over the past couple of decades.

We have tried to strike a balance between research that can be seen as laying the foundations of

CBR and more recent contributions. The fact that a considerable portion of the discussed papers

has been published in the last few years is evidence of a significant amount of ongoing research

activity.  It should be clear from our discussion that much of the recent research has been

motivated by an increased awareness of the limitations of traditional approaches to retrieval,

reuse, and retention. This is a trend that seems likely to continue with the emergence of new and

more demanding applications of CBR, and we look forward to the challenges and opportunities

that lie ahead.
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