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Abstract—Reinforcement Learning (RL) is a well-known tech-
nique for the solution of problems where agents need to act with
success in an unknown environment, learning through trial and
error. However, this technique is not efficient enough to be used
in applications with real world demands due to the time that the
agent needs to learn.

This paper investigates the use of Transfer Learning (TL)
between agents to speed up the well-known Q-learning Rein-
forcement Learning algorithm. The new approach presented here
allows the use of cases in a case base as heuristics to speed up the
Q-learning algorithm, combining Case-Based Reasoning (CBR)
and Heuristically Accelerated Reinforcement Learning (HARL)
techniques.

A set of empirical evaluations were conducted in the Mountain
Car Problem Domain, where the actions learned during the
solution of the 2D version of the problem can be used to speed
up the learning of the policies for its 3D version.

The experiments were made comparing the Q-learning Rein-
forcement Learning algorithm, the HAQL Heuristic Accelerated
Reinforcement Learning (HARL) algorithm and the TL-HAQL
algorithm, proposed here. The results show that the use of a case-
base for transfer learning can lead to a significant improvement
in the performance of the agent, making it learn faster than using
either RL or HARL methods alone.

Keywords - Machine Learning; Reinforcement Learning; Case
based reasoning

I. INTRODUCTION

Reinforcement Learning (RL) is a very successful Artificial
Intelligence sub-area [1]. It is concerned with the problem
of learning from interaction to achieve a goal. Given an au-
tonomous agent interacting with its environment via perception
and action, on each interaction step the agent senses the current
state s of the environment, and chooses an action a to perform.
The action a alters the state s of the environment, and a scalar
reinforcement signal r (a reward or penalty) is provided to
the agent to indicate the desirability of the resulting state. The
policy π is some function that tells the agent which actions
should be chosen, and it is learned through trial-and-error
interactions of the agent with its environment.

RL algorithms are very useful for solving a wide variety
problems when the model is not known in advance, with
many algorithms possessing guarantees of convergence to
equilibrium [1], [2]. Unfortunately, the convergence of any
RL algorithm may only be achieved after an extensive explo-
ration of the state-action space, which is usually very time
consuming.

One way to speed up the convergence of RL algorithms is
by making use of a heuristic function in a manner similar to the
use of heuristics in informed search algorithms. Heuristically
Accelerated Reinforcement Learning (HARL) methods, which
have been recently proposed [3], apply a conveniently chosen
heuristic function for selecting the appropriate actions to
perform in order to guide exploration during the learning
process.

Although several methods have been successfully applied
for speeding up RL algorithms by making use of heuristics, a
very interesting option had not been explored yet: the transfer
of learned policies, using a Case Based Reasoning approach
to define a heuristic function. To address the learning transfer
issue, this paper investigates the use of the heuristic function
as a means to transfer learning acquired by one agent during
its training in one problem to another agent that has to learn
how to solve a similar, but more complex, problem.

Transfer learning is a paradigm of machine learning that
reuses knowledge accumulate in a previous task to better learn
a novel, but related, target task [4] and can be characterized as
a gain or loss of proficiency in a task as a result of a practice
in another task previously. Only recently the use of transfer
learning has received great attention in learning agents and
solving tasks with success compared to other techniques of
machine learning [5].

The domain in which experiments were conducted in this
work is the Mountain Car Problem Domain, where the actions
learned during the solution of the 2D version of the problem
can be used to speed up the learning of the policies for its 3D
version. Nevertheless, the techniques described in this work is
domain independent and can be used to solve a wide range of
problems.

The paper is organized as follows: Section II briefly re-
views the Reinforcement Learning problem and the section
III describes the HARL approach to speed up RL and the
HAQL algorithm. Section IV describes Case Based Reasoning.
Section V describes the Transfer Learning problem and the
section VI describes related work. Section VII describes the
combination of the techniques and the modified formulation of
the HAQL algorithm. Section VIII shows the experiments and
the results and finally, section IX describes the conclusions of
this work.
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II. REINFORCEMENT LEARNING AND THE Q–LEARNING
ALGORITHM

Reinforcement Learning (RL) algorithms have been applied
successfully to the on-line learning of optimal control policies
in Markov Decision Processes (MDPs). In RL, this policy is
learned through trial-and-error interactions of the agent with
its environment: on each interaction step the agent senses
the current state s of the environment, chooses an action a
to perform, executes this action, altering the state s of the
environment, and receives a scalar reinforcement signal r (a
reward or penalty).

The RL problem can be formulated as a discrete time, finite
state, finite action Markov Decision Process (MDP). The learn-
ing environment can be modeled by a 4-tuple 〈S,A, T ,R〉,
where:
• S: is a finite set of states.
• A: is a finite set of actions that the agent can perform.
• T : S ×A → Π(S): is a state transition function, where

Π(S) is a probability distribution over S. T (s, a, s′)
represents the probability of moving from state s to s′

by performing action a.
• R : S ×A → <: is a scalar reward function.
The goal of the agent in a RL problem is to learn an optimal

policy π∗ : S → A that maps the current state s into the
most desirable action a to be performed in s. One strategy to
learn the optimal policy π∗ is to allow the agent to learn the
evaluation function Q : S×A → R. Each action value Q(s, a)
represents the expected cost incurred by the agent when taking
action a at state s and following an optimal policy thereafter.

The Q–learning algorithm [2] is a well-know RL technique
that uses a strategy to learn an optimal policy π∗ via learning
of the action values. It iteratively approximates Q, provided the
system can be modeled as an MDP, the reinforcement function
is bounded, and actions are chosen so that every state-action
pair is visited an infinite number of times. The Q–learning
update rule is:

Q̂(s, a)← Q̂(s, a)+α
[
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (1)

where s is the current state; a is the action performed in s; r is
the reward received; s′ is the new state; γ is the discount factor
(0 ≤ γ < 1); and α is the learning rate. To select an action
to be executed, the Q–learning algorithm usually considers an
ε−Greedy strategy:

π(s) =

{
arg maxa Q̂(s, a) if q ≤ p,
arandom otherwise

(2)

where:
• q is a random value uniformly distributed over [0, 1]

and p (0 ≤ p ≤ 1) is a parameter that defines the
exploration/exploitation tradeoff: the larger p, the smaller
is the probability of executing a random exploratory
action.

• arandom is an action randomly chosen among those
available in state s.

Table I
THE HAQL ALGORITHM.

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values of Ht(s, a) as desired.
Select an action a using equation 3.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 1.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

In RL, learning is carried out online, through trial-and-error
interactions of the agent with the environment. Unfortunately,
convergence of any RL algorithm may only be achieved after
extensive exploration of the state-action space. In the next
section we show one way to speed up the convergence of RL
algorithms, by making use of a heuristic function in a manner
similar to the use of heuristics in informed search algorithms.

III. HEURISTICALLY ACCELERATED REINFORCEMENT
LEARNING

A Heuristically Accelerated Reinforcement Learning
(HARL) algorithm [3] is a way to solve a MDP problem
with explicit use of a heuristic function H : S × A → <
for influencing the choice of actions by the learning agent.
H(s, a) defines the heuristic that indicates the importance
of performing action a when visiting state s. The heuristic
function is strongly associated with the policy indicating which
action must be taken regardless of the action-value of the other
actions that could be used in the state.

The first HARL algorithm proposed was the Heuristically
Accelerated Q–learning (HAQL) [3], as an extension of the
Q–learning algorithm [2]. The only difference between the
two algorithms is that in the HAQL makes use of a heuristic
function H(s, a) in the ε−greedy action choice rule, that can
be written as:

π(s) =

{
arg maxa

[
Q̂(s, a) + ξH(s, a)β

]
if q ≤ p,

arandom otherwise,
(3)

where H(s, a) is the heuristic function that plays a role in the
action choice, ξ and β are design parameters that control the
influence of the heuristic function, q and p are parameters that
define the exploration/exploitation tradeoff and arandom is an
action randomly chosen among those available in state s.

As a general rule, the value of H(s, a) used in HAQL should
be higher than the variation among the Q̂(s, a) values for the
same s ∈ S , in such a way that it can influence the choice
of actions, and it should be as low as possible in order to
minimize the error. It can be defined as:

H(s, a) =

{
max
i

Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(4)

where η is a small real value (usually 1) and πH(s) is the
action suggested by the heuristic policy.
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Convergence of the HAQL algorithm was presented by
Bianchi, Ribeiro and Costa [3], together with the definition
of an upper bound for the error in the estimation of Q. The
complete HAQL algorithm is presented in Table I.

IV. CASE BASED REASONING

Case Based Reasoning [6], [7] is an AI technique that has
been shown to be useful in a multitude of domains. CBR
uses knowledge of previous situations (cases) to solve new
problems, by finding a similar past case and reusing it in the
new problem situation. In the CBR approach, a case usually
describes a problem and its solution, i.e., the state of the world
in a given instant and action to perform to solve that problem.

According to López de Mántaras et al [7], solving a problem
by CBR involves “obtaining a problem description, measuring
the similarity of the current problem to previous problems
stored in a case base with their known solutions, retrieving
one or more similar cases, and attempting to reuse the solution
of the retrieved case(s), possibly after adapting it to account
for differences in problem descriptions”. Other steps that
are usually found in CBR systems are the evaluation of the
proposed solution, the revision of the solution, if required in
light of its evaluation, and the retention (learning) of a new
case, if the system has learned to solve a new problem.

In general, in CBR a case is composed of a problem de-
scription (P ) and the corresponding description of the solution
(A). Therefore, the case definition is formally described as a
tuple:

case = (P,A).

The problem description P corresponds to the situation in
which the case can be used. For example, for a Mountain
Car problem the description of a case is the agent position x
and its velocity (ẋ) . The solution description A is composed
by the actions that must perform to solve the problem.

The case retrieval process consists in obtaining from the
base the most similar case, the retrieved case. Therefore, it
is necessary to compute the similarity between the current
problem and the cases in the base. The similarity function
indicates how similar a problem and a case are. In this work
this function is defined by the quadratic distance between the
problem and the case.

V. TRANSFER LEARNING

Transfer Learning is a paradigm of Machine Learning that
reuses knowledge accumulate in a previous task to better learn
a novel, but related, target task [4] and can be characterized
as a gain of proficiency in a task as a result of a practice
in another task previously. For example, the abilities acquired
while learning to drive a car can be applied when one learns to
drive a truck, making the second learning task easier. Although
not yet comparable to the abilities of humans, transfer learning
can be a very useful tool when faster learning is needed or
when other learning techniques fail.

Transfer Learning is not a new idea: it has been studied in
the psychological literature on transfer of learning since the
work of Thorndike and Woodworth [8]. Also, TL has been

used to transfer between machine learning tasks for some time
now, as can be seen in the works of Caruana [9], [10], Thrun
[11] or Thrun and Mitchell [12]. These works usually study
transfer of learning in the context of classification, multitask
learning and inductive learning.

According to Taylor [5], only recently the use of Transfer
Learning for Reinforcement Learning has gained attention in
the artificial intelligence community. In RL, the use of transfer
learning reduces the search space of the agent, helping it to
learn faster.

VI. RELATED WORK

Probably Drummond [13] was the first to use CBR to speed
up RL, proposing to accelerate RL by transferring parts of
previously learned solutions to a new problem, exploiting the
results of prior learning to speed up the process.

Some authors have been studying the transfer learning ben-
efit to speed up reinforcement learning. For example Taylor,
Stone, Liu and Littman [14] use inter-task mapping to directly
transfer the action-value function to speed up learning. Stone
and Liu [15] use knowledge learned in one task to improve
learning another related task. Croonenborghs, Driessens and
Bruynooghe [16] use a probability tree to learn a mapping
automatically from interactions with the environment.

Other authors have been studying the use of RL together
with CBR and the relation between them. Sharma et al [17]
make use of CBR as a function approximator for RL, and
RL as revision algorithm for CBR in a hybrid architecture
system; Gabel and Riedmiller [18] also makes use of CBR in
the task of approximating a function over high-dimensional,
continuous spaces; Juell and Paulson [19] exploit the use of
RL to learn similarity metrics in response to feedback from the
environment; Auslander et al [20] use CBR to adapt quickly
an RL agent to changing conditions of the environment by
the use of previously stored policies and Li, Zonghai and
Feng [21] propose an algorithm that makes use of knowledge
acquired by reinforcement learning to construct and extend a
case base. Finally, Bianchi, Ros and López de Mántaras [22]
use CBR together with Heuristic Accelerated Reinforcement
Learning to improve reinforcement learning by using case
based heuristics.

Finally, some works on Transfer Learning have also com-
bined CBR and RL, for example, van Hessing and Goel [23]
describe a technique for abstracting reusable cases from RL,
enabling the transfer of acquired knowledge to other instances
of the same problem.

VII. COMBINING TRANSFER LEARNING WITH CASE
BASED REASONING AND REINFORCEMENT LEARNING

Building on the model proposed by Ros [24], [25], each
case consists of 3 parts: Description of the problem, containing
all relevant information of the agent state; Solution to the
problem: action taken to resolve the problem, and finally the
expected return for performing the action, which indicates the
quality of the action stored in this case. Formally, the case can
be described by a 3-tuples:
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Table II
THE TL-HAQL ALGORITHM.

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity
If there is a case that can be reused:

Compute Ht(s, a) using Equation 4 with the
actions suggested by the case selected.

Select an action a using equation 3.
If not:

Select an action a using equation 2
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 1.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

case = (P,A,R),

where P describes the problem A, the solution and R expected
return.

To transfer the cases between two learning agents we pro-
pose the TL-HAQL (Transfer Learning Heuristically Acceler-
ated Q–learning) algorithm, based in the CB-HAQL algorithm
[22].

This algorithm works in two phases: the case base construc-
tion and the transfer of learning. In the first phase, the case
base construction, the Q-learning algorithm is used to learn
one task. After the learning stabilizes, ie., Q̂(s′, a′)−Q̂(s, a) is
close to zero, a case based is built with a pre-defined number
of cases. In the second phase, the transfer of learning, the
previously stored case base is used to accelerate the learning.
During the learning of the second task, cases are retrieved,
adapted to the current situation and a heuristic function that
corresponds to the case is built and used. A case is retrieved
if the similarity is above a certain threshold. After a case is
retrieved, a heuristic is computed using Equation 4 and the
action suggested by the case selected. If the case base does
not contain a case that is similar to the current situation, the
algorithm will behave as the traditional Q-learning algorithm.
The TL-HAQL algorithm is presented in Table II.

The advantages of this proposal is that if the case base
contains a case that can be used in a given situation, then there
will be a speed up in the convergence time. But if the case base
does not contain any useful case or even if it contains cases
that implement wrong solutions to the problem, the agent will
still learn the optimal solution by using the RL component of
the algorithm.

VIII. THE TRANSFER LEARNING EXPERIENCE

In this section we show how cases acquired in the 2D
Mountain Car problem [26], can be transferred and used to
speed up the learning in the 3D mountain car [27] problem.

The Mountain Car Problem is a domain that has been
traditionally used by researchers to test new reinforcement
learning algorithms. In this problem, a car that is located at
the bottom of a valley must be pushed back and forward until

Figure 1. The 2D Mountain Car Problem. (Image from [28]).

Figure 2. The 3D Mountain Car Problem: the 3D task extends the Mountain
Car problem into a surface (Image from [28]).

it reaches the top of a hill. The agent must generalize across
continuous state variables in order to learn how to drive the
car up to the goal state.

In 2D mountain car problem (Figure 1) two continuous
variables describe the agents state: the horizontal position (x)
restricted to the ranges [-1.2, 0.6] and velocity (ẋ) restricted
to the ranges [-0.07, 0.07]. The agent may select one of three
actions on every step: Left, Neutral, Right, which change the
velocity by -0.0007, 0, and 0.0007 respectively.

The 3D mountain car (Figure 2) is similar to the 2D
problem, extending it into a surface [28]. The agent starts
at rest at the bottom of the hill and the goal is to reach
the area in the upper right corner. The state is composed
of four continuous state variables: x,ẋ,y,ẏ. The positions
and velocities have ranges of [-1.2, 0.6] and [-0.07, 0.07],
respectively. The agent can select from five actions at each
timestep: Neutral, West, East, South, North. West and East
modify ẋ by -0.0007 and +0.0007 respectively, while South
and North modify ẏ by -0.0007 and +0.0007 respectively.
The 3D problem is more difficult than the 2D because of the
increased state space size and additional actions.

To learn the 3D task, the first algorithm to be evaluated is
the Q–learning, described in section II, after that the HAQL,
described in section III and finally the TL-HAQL algorithm
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Figure 3. The learning curves for the Q–learning, HAQL and TL-HAQL
algorithms in the 3D Mountain Car Problem.

Table III
ACTION-MAPPING MOUNTAIN CAR

3D 2D
Neutral Neutral
North Right
East Right

South Left
West Left

proposed in section VII.
To build the case-base to be used by the TL-HAQL al-

gorithm, the Q–learning algorithm is used in the 2D moun-
tain car domain for 10.000 episodes (each episodes ends
either after 15.000 steps or when the agent find the goal
state). Acquiring cases begins when the learning stabilizes
(Q̂(s′, a′) − Q̂(s, a) ∼ 0) which happens near the 9.000th
episode. Each case contains the state (P ), the action taken
(A) and expected return (R), ie., the case was acquired in this
format: P: -0.401242 -0.013694 A: 2 R: -1.0.

From the episode 9.000 and beyond, 500 cases are acquired
by sampling the action-state set randomly. During this sam-
pling, if a case contains the worst action for that state (i.e.,
the one with the lowest Q value), this case is discarded. In
this way the case based is built using the best actions for the
2D problem. These cases will form the case base and will be
transferred to the 3D mountain car problem.

When algorithm TL-HAQL selects a case, the action map-
ping defined in table III is used. Actions that accelerate the
car towards the goal are mapped together and the same was
made with the actions that accelerate the car away from the
goal.

The heuristic used in the HAQL algorithm was defined using
a simple rule: if the velocity is negative, chance course and
go forward. The parameters used in the experiments were
the same for all the algorithms: α = 0, 9, the exploration/
exploitation rate = 0.2, γ = 0.9 and η = 1. Values in the Q
table were randomly initiated.

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

Episodes

QL vs. TL−HAQL
1% confidence level

Figure 4. Results from Student’s t-Test between Q-learning and TL-HAQL.
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Figure 5. Results from Student’s t-Test between HAQL and TL-HAQL.

Thirty training sessions were executed for the three algo-
rithms, with each session consisting of 1000 episodes. Figure
3 show the learning curves for all algorithms. It can be see that
the performance of the Q–learning and the HAQL are worse
than that of the TL-HAQL at the initial learning phase; later
the performance of the three algorithms become more similar,
as expected.

Student’s t-Test [29] was used to verify the hypothesis
that the transfer of learning speeds up the learning process.
According to Nehmzow [30], if two different control programs
produced two different means of a particular result, the t-Test
can be used to decide whether there is a significant difference
between these two means, in order to determine whether one
of the two programs produces better results than the other.

For the experiments the value of the module of T was
computed for each episode using the same data presented in
figure 3. The greater the value of T, more significantly different
are the results. The dotted line indicates the 1% confidence
limit, i.e. results above the line are different and the probability
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for this statement to be erroneous is 1%. The result, presented
in figures 4 and 5, shows that TL-HAQL performs clearly
better than Q–learning until the 700th episode, and HAQL
until the 400th episode, with a level of confidence greater than
99%. After that, the results became closer.

IX. CONCLUSION

Transfer learning from one agent to another agent by means
of the heuristic function speeds up the convergence of the
algorithm when compared to a normal Q–learning algorithm.
The use of CB to transfer the learning is an important tool
and make the TL-HAQL algorithm faster and very useful
to speed-up reinforcement learning algorithms such as Q–
learning. Regarding the use of the TL-HAQL algorithm to
accelerate the RL, it is worth noticing that the agent converges
to optimality faster because there is no need to explore the
whole search space.

Future works include automating the mapping between the
actions in the 2D and the 3D mountain car problems, so that
the Table III can be built automatically, and experimenting
with better ways to build the case base.
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