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Abstract—In order to anticipate dangerous events, like a
collision, an agent needs to make long-term predictions. However,
those are challenging due to uncertainties in internal and external
variables and environment dynamics. A sensorimotor model is
acquired online by the mobile robot using a state-of-the-art
method that learns the optical flow distribution in images, both in
space and time. The learnt model is used to anticipate the optical
flow up to a given time horizon and to predict an imminent
collision by using reinforcement learning. We demonstrate that
multi-modal predictions reduce to simpler distributions once
actions are taken into account.

[. INTRODUCTION

One of the objectives of developmental robotics is to
autonomously learn the consequences of actions by interacting
with the environment [1][2]. By consequences, we denote the
perceived effects in the agent’s sensors. Acquired knowledge
is dependent on the sensorimotor capabilities of the agent and
its own experience.

Optical flow is very important for locomotion, providing
information to the agent about how the scene is moving
[3][4]. The movement may be due to its own body motion
or other objects moving around. It thus encodes the geometry
and dynamics of the scene, and is invariant to appearance
information.

We can benefit from the fact that an agent is aware of the
actions it performs, so it may learn a forward model of how
optical flow changes when it performs an action and use it to
capture task-relevant information like an imminent collision.

From a developmental perspective, as the early development
of navigation is more related to the dorsal pathway in primate
vision, also referred as vision-for-action [5], that mainly deals
with geometric and motion cues. Doing so, we mitigate the
effects of the high variability of scene or object appearance.

Although newborns can discriminate changes in heading
with optical flow alone [6], those are very primitive and need
locomotor experience to further develop [7]. There is also
evidence of those visuo-motor couplings in 3-day old babies,
which have positive feedback structures that modulate stepping
behaviour [8].

In this paper we study the mechanisms that enable an active
agent to make long-term predictions of optical flow with a
model that is learned dynamically. We analyse the optical
flow distribution in terms of space and time, that is, what are
the experienced optical flow values and how do they change

in time. We show how complex the posterior distributions
become when long-term predictions are needed, which breaks
time-consistency assumption. The choice of one predictor or
another should be made in terms of how the data is distributed.
Moreover, we use a generic state-of-the-art incremental online
learning algorithm [9] for the task of building a model to
predict the optical flow perceived by a mobile robot. Finally,
as an application, the model is also used to learn a simple
predictor for anticipating an imminent collision.

II. RELATED WORK

Research in forward model learning and sensorimotor an-
ticipation revolves around two main axis: length of predictions
and direct applications of forward models.

In our work we are very interested in providing long-
term predictions. One option is to learn a model based on
a differential equation of how sensor values change [10].
Then we can anticipate sensory states at arbitrary times
by simulating such a system, although accuracy decreases
quickly depending on model complexity. Unfortunately, this
kind of models cannot be reused directly to predict collisions
and cannot handle multi-modality unless using an ensemble
of models. The model presented in this work handles this
naturally.

In order to provide the agent with longer-term predictions,
some authors proposed chaining forward models, where each
one provides one-step predictions [11][12][13][14]. Their re-
sults showed that agents that anticipate sensory consequences
of their actions behave more effectively than reactive agents.
However, due to the intrinsic complexity in sensor data, some
authors used a Mixture of Experts, where each expert was
a Recurrent Neural Network (RNN) [11]. Experiments were
conducted in simulated environments with low-dimensional
sensor data, where it is not clear how well it could scale
in more realistic environments. Furthermore, this chaining
process leads to accumulation of prediction errors, so authors
proposed filtering schema based in PCA [14] or using RNNs
that also take as input the hidden state of the network from
last step [13].

From the application point of view, many works use forward
models to solve certain navigation related tasks. Forward
models have been applied to generate expectations of sensory
values, which have been used to correct noisy optical flow



fields [15] or to detect useful landmarks for navigation [16].
If the forward model was acquired in an obstacle free environ-
ment, comparing expectations to novel sensory data also has
been applied to detect obstacles [17]. All those expectation-
driven mechanisms could benefit from an incremental model
as the one presented in this work to generate such expectations.

III. METHODOLOGY

When an agent is situated in an unknown environment,
one of the first capabilities that it needs to acquire is that
of navigation, a task which purely relies in the geometric
distribution of objects in the agent’s surroundings.

Among the many methods to extract the environment struc-
ture, we have selected optical flow because it aggregates both
spatial and dynamic information, which can be used to infer
both the geometry and how things are moving, enabling the
robot to predict where are the obstacles located and time
to collision. We use a GPU implementation of phase-based
optical flow [18], which provides a dense flow field in real
time.

The sensorimotor capabilities of our robot are defined as
follow. The optical flow is computed at locations distributed
on a uniform grid of N by M. As it is a field of 2-D vectors,
its dimensionality is 2/N M. We denote the optical flow at time
t using the random variable OF;. The robot also has access
to proprioceptive data, in our case encoded as the linear and
angular velocities. The perceived velocity at time ¢ is extracted
using the wheel encoders and denoted by the random variable
V. The action performed at time ¢ is defined as the desired
linear and angular velocity and is captured by the random
variable A;.

The goal of the system is to anticipate what will be the
perceived optical flow at T' time steps in the future, having
observed the current perceptions and the action we are per-
forming.

A. Analysis of optical flow distribution

Our initial hypothesis was that for a very small prediction

horizon T, the change in optical flow is rather small, so a naive
predictor that assumes flow constancy in time would be enough
for the task. We decided to analyse the data distribution to see
which kind of predictors could be used for this task. Actually,
we were interested in the distribution P(OF;), looking for
possible clusters or modalities, and how compact and sparse
they were. Figure 2(a) shows the data distribution P(OF})
obtained by moving the robot forward and backward in our
lab.
After identifying some modalities in the data, we were also in-
terested in the distribution we need to use to make predictions,
P(OF;|OF;_7). Specifically, we looked for distributions that
presented some multi-modality, which could indicate that
changes in optical flow are due to an external factor, which
we hypothesized as being the action A;. Figure 2 shows the
distribution P(OF;|OF;_r) for some regions in OF;_r.

The analysis showed that we needed a method that provides
a model which is learnt quickly and is useful after a short

Fig. 1. Pioneer PeopleBot with a mounted Kinect providing images I+, which
are processed to obtain optical flow OF%, our visual input. Proprioception
sensors provide wheel velocities V; and everything is processed in the laptop.

period of time, i.e. an incremental and on-line method. We
propose to learn the joint distribution of current optical flow
(OF}) and the previous action (A;_7), proprioception (V;_7),
and optical flow (OF;_7) and use it as a forward model in
prediction. Figure ?? shows the robot used in our experiments
and how sensor information flows through the system. An
example image and resulting optical flow shows the kind of
untextured structured environment where the robot navigates.

B. Definition of our model

The main problem with learning a distribution like the
one described above is its dimensionality and the need for
marginalizing over some variables to turn the joint distribution
into a conditional one for making predictions. We decided
to make some assumptions to lower the complexity of the
resulting approach, as we need the whole system to run in
real time.

The first assumption made is a Markovian one, stating that
OPF; is conditionally independent, given OF;_p, A7, Vi1,
of OF;_;, Ay, Vo_; s.t. i € [1,00) N {T'}. That assumption,
although fairly strong, greatly reduces the model complexity
while providing a model which still has some short-term
memory.

In order to ease the notation, we define X as the set of
input variables, X = {OF,_7, A;_7,V;_r} and Y is the set
of output variables, Y = {OF;}.

The second assumption is that the distribution can be ap-

proximated using a Gaussian Mixture Model M. The method
chosen to learn it is an incremental version of multivariate
GMM [9]. By feeding the algorithm with the data samples
as they arrive from the sensors, this method learns while the
robot is moving, and as it is incremental, after a few seconds
gives good predictions for common situations, e.g. wandering
around with no obstacles.
This method also allocates new clusters to the mixture when
there is a low likelihood that the current model explains the
new sample. The only parameters to choose are the threshold
on the mixture component likelihood and the initial covariance
matrix for initializing new components.
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(b) Conditional flow distributions for the selected regions P(OF;1|OFy).

Fig. 2. Plot of the conditional distribution P(OF;7|OFt). In (a) a distribution of optical flow values OF} is depicted. Axes are flow in X and Y directions
(pixels/sec). Each point represents an observed optical flow value. The big area in the middle shows that most of the time, small optical flows are observed,
while the clusters in top and bottom of the image represent the optical flows when the robot moves forward/backward, present mainly in the bottom of the
image, which moves faster. Small clusters can be identified due to the low spatial resolution used, as we sampled the optical flow in a grid of 5 x 4. In (b)
the conditional distributions P(OF;7|OF}) are plotted, one row for each one of the selected regions, marked in (a) as black rectangles, and one column
for different prediction horizons 7T". Action (forward/backward/stop) is encoded in different colour and shape. Axes represent the change in optical flow in X

and Y directions, AOF; = (OF; — OF;_7).

With the aim of easing the prediction of optical flow, we
made another conditional independence assumption, treating
Y as conditionally independent of X, given the mixture
M. This assumption implies that each multivariate Gaussian
component m; has two separate mean vectors and covariance
matrices for each set of independent variables, that is ,u]X , E}X ,
,u}/ and E}/.

C. Alignment of sensory streams

The use of time-series coming from different sensors has an

associated issue that needs to be addressed first. As it happens
with animals, signals from different senses arrive at slightly
different timings, so the brain needs to align those signals to
extract more information. In our system, we may observe this
when we issue an action command a; and, due to the physical
characteristics of the robot, we do not capture the effects in
the visual sensors until some time later.
In order to model this time delay between signals from differ-
ent modalities, we followed a methodology in the fashion of
[2], taking as the optimal time-delay as the one that maximizes
the log-likelihood of the data given the model parameter. In
Figure 3 we show the alignment of action signal using the
time-delay estimated in our experiments, which is the same
we obtained manually.

D. Learning and prediction using the GMM

Basically the GMM can be visualized as a kernel density
estimator if we set the number of components equal to
the number of data samples. As we reduce the number of
components, the GMM represents a compressed dataset that
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Fig. 3. Alignment of the optical flow stream to the action stream. Horizontal
and vertical axes are time and vertical optical flow, respectively. The step
signals are the aligned and unaligned action, scaled for visualisation purposes.
It can be appreciated how changes in the aligned action, indicated by arrows,
are more correlated with changes in optical flow.

approximates the underlying data distribution. It is desirable
to have a trade-off between compression and representative-
ness, as it affects both to prediction accuracy and real-time
performance of the algorithm.

As described by [9], both the learning algorithm and
prediction algorithm compute the likelihoods of hundreds
of multivariate normal distributions. In our case, we set a
threshold on the minimum mass that a component needs
to incorporate in order to be used as predictor, so very
young components or spurious ones are not used. However,
learning does compute likelihoods for every component, as it
is necessary for computing posterior probabilities.

[9] show the update equations for the mixture components,
which basically add a term to the mean and covariances,
weighted by the proportion in which the sample’s mass con-
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Fig. 4. Diagram of the presented system. For learning, it takes samples
from (OF;_7, As—7, Vi—1,OF}). For prediction, it uses (OFy, A¢, V;) to
predict OF; 7.

tributes to the mixture component. If this proportion is below
a certain threshold, which we set to 10~* in our experiments,
we do not update the component.

This modification alleviates the cost of updating the mixture,
given that each time we update the covariance matrix, we need
to recompute its inverse and determinant to be able to evaluate
the density function.

After the model is learnt, we can feed the sensor readings
at the previous time step and obtain an estimate of what will
be the optical flow in the next frame. The optimal optical flow
prediction y* is defined probabilistically as:

y*(z) = argmax P(Y = y|X = z) (1)

Y
After applying the first assumption, i.e. introducing the mixture
model M, and applying Bayes rule we have:

P(X|M)P(M)

P(Y|X) = ZP Y|M) P 2

As we are interested only in the MAP, we can drop the constant
term P(X), so the resulting equation is:

y*(x) = argmaxZP(Y =y|M)P(X
Y M

= z[M)P(M) (3)

In our case, we do this inference in two steps. First, we
compute the most probable mixture component ;- such that
J*(z) = argmax; P(m;|X = x). After having identified
the component, the posterior for Y is given by the MAP of
the corresponding multivariate Gaussian, which is uJX This
is an approximation, as instead of the summation for all the
components, we take the component with maximum activation.

Figure 4 shows the proposed system. It depicts the connec-
tions between sensorimotor signals at time ¢ — 7" and time ¢
to learn the model, and the connections from OF; and A; and
Vi, not shown in the image, to predict optical flow at time
t+T.

E. Application: Anticipating a collision

We designed an application to check if the mixture compo-
nents capture enough information to be useful to anticipate the
binary signal of the robot’s bump sensors. That is, we check
if it can predict an immediate collision. This application is

very similar to that described by [19], where they use multiple
predictors to anticipate sensor values of a robot.

Instead of introducing a new variable into the model, we
treated the problem as temporal credit assignment. Each time
the robot bumped into an object, we assigned credit for that
bump to the components that were active in the last N frames.
We apply an exponential falloff depending on the time of
activation and the discount factor, which is manually set. The
value is added to an accumulator and used as the collision
value of the component, providing evidence for a collision in
the near future.

Anticipation of a collision event is done as follows. First,
the active mixture components are computed from the current
optical flow values for each position in the sample grid. Then,
the optical flow can be predicted and the collision value of the
active components is averaged to output a collision signal.
The collision signal is highly correlated with a collision event
likely to happen in the near future, which is around 2 seconds,
depending on how big the obstacle is.

IV. EXPERIMENTAL SETUP

Our experiments are done using a Pioneer Peoplebot with
a mounted Kinect camera. We have attached a laptop with a
Core 2 Duo 1.8Ghz processor, 2GB of RAM and an NVIDIA
Quadro 570M GPU where the optical flow is computed
for 320x240 images. No special arrangement of furniture or
objects in the lab was done, with the aim of situating the
robot in a realistic environment. The robot is controlled using
a joystick, so all the actions are performed by a human. We
decided not to use any action decision algorithm because we
are concerned with the learning capacity of our system, so we
can drive it to challenging situations as required in order to
stress its acquired knowledge.

The action space of the robot has been restricted to five
actions: stop, forward, backward, turn left and turn right, all
at constant velocities fixed beforehand. In the experiments re-
ported here, we used 0.3m/s for linear velocity and 0.6rad/s
for the angular velocity.

In the case of prediction, we evaluated the mass distribution
among components, and adjusted the mass threshold to use
at least 90% of the model’s mass. This usually corresponds
to less than 10-15% of the components, depending on how
sparsely distributed the mixture components are.

The evaluation of the method was done by looking at
two different measures. One is a common error measure in
optical flow estimation, the average end-point error (AEPE)
between two flow fields. The other measure is a likelihood
ratio, explained below. We also extracted the average angular
error (AAE) but it is very unstable when flow magnitude is
nearly zero, unless some parameter is introduced.

We do not have a ground truth for the sequences recorded,
so, instead of analysing the AEPE in absolute terms, we
normalize it by the error that a naive predictor would do. This
predictor is assumes a constant optical flow, i.e. f(OF;) =
OF;_7, so basically we should expect to do better in the
discontinuities and with a high prediction horizon T'.



We experimented with two ways of predicting optical flow.
One is predicting the actual optical flow that will be observed
OF, and the other is to predict the change in the flow vectors
AOF;, = (OF; — OF;_7). We chose the later because it
gives better results and is more compatible for comparing with
the naive predictor, which assumes that the time derivative of
optical flow is zero.

Besides the approximation error, we were also interested
in seeing how confident is the model in its predictions, as
what we really anticipate is a distribution over possible flow
values, and just take the MAP as the optimal predicted value.
However, the predicted distribution remains to be tested. It
could happen that we get a high AEPE but that the likelihood
of the predicted value was only a bit higher that the true value,
so we should account for that in our results. We show this as
the log of the likelihood ratio between the naive predictor and
the learnt model.

We also decided to test separately if the introduction of the
action A; in the model increases the quality of predictions
or not. Two different models were trained and compared,
one that models P(OF;,OF;_7) and another that models
P(OF;,OF;_7, A;_7). It should be noted that we did not
include proprioception sensor information V; in this experi-
ments, as we think that in the environments we test our robotic
platform, the information provided will be highly redundant
with that of the action.

V. RESULTS

The optical flow distribution for all the sensors P(OF}),

plotted in Figure 2(a), with x and y axes being the horizontal
and vertical flow values, respectively. The distribution presents
clusters clearly defined for each row and column of sensors,
with a big cluster in the center corresponding to the low flow
values.
The conditional distribution P(OF;, A;—7|OF_r = x) is
shown in Figure 2 for 3 different regions (black squares in
Figure 2(a)) and for different time-delays 7" (one row in 2(b)
for each region and one column for each time-delay 7T"). Action
is encoded in color and shape, corresponding to forward,
backward and stop actions in the sequence depicted. From
this plot we can see clearly why the constant predictor does
better for small prediction horizons. That is, regardless of
which region we condition on, we can see that for 7' < 2,
the conditional distribution is mostly uni-modal and centred
in zero, so the constancy assumption of the naive predictor
holds. However, for predictions more than 10-15 time steps
ahead, the distribution is more entropic, presents multiple
modes that are not usually zero-centred and, most importantly,
action information provides valuable information to segment
the distribution into different modes.

The results of the alignment of the different sensorimotor
streams are depicted in Figure 3. As can be observed, the
changes in the aligned action signal A;_7 are more correlated
with significant changes in the flow signal OF; than the
unaligned action A;. The best parameter was found to be
T =6.

Regarding the learning results, first we show the AEPE er-
rors for different parameters of the system. Figure 5 shows the
AEPE error as the percentage in error reduction relative to the
naive predictor error, i.e. e =1 — Z’T:G%, plotted against the
number of mixture components. We can see that predictions
without using action information only reduce prediction error
if we use compact models. However, after incorporating the
action in our model, prediction error is robustly reduced by
half, almost independently of the model density.
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Fig. 5. Relative AEPE error between naive predictor and GMM with and

without action information. Taking into consideration action provides a model
less sensitive to model complexity.
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Fig. 6. Likelihood ratio test between naive predictor and GMM with and
without action information.

We also computed the logarithm of the likelihood ratio
between the naive predictor and the two versions of the GMM,
with and without action information. In Figure 6 we can see
the results of this test, which indicate that our GMM model
gives better predictions than the naive model.

Next, we comment on the results of our model when applied
to collision anticipation. After the model was bootstrapped by
learning for some time, we reproduced a sequence containing
bumps into an obstacle and the model quickly learned to
anticipate the collision up to 2 seconds before it happened,
which is a bit later than the time when the object fills a
significant part of the field of view.

Results are depicted in Figure 7. Both the collision pre-
diction signal and the collision events are plotted in the
upper graph. It can be appreciated how the collision can be
anticipated with a horizon above 1 second. The only collision
which is not detected happens when the robot is touching the
obstacle, so a forward action triggers the binary bumpers, but
optical flow does not change significantly. The middle graph
shows the observed and predicted optical flows OF;, OF;, and
action A; is plotted in the bottom graph.
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Fig. 7. Plot of the sensorimotor signals in the collision anticipation experiment. On top we show collision signal, which is related to the value of the current
state for predicting the event, learnt by reinforcement learning. On bottom we show the observed (red) and predicted (green) values of vertical flow. For
visualisation purposes, the sequence is segmented using vertical bars when action changes. Actions are: forward (FW), stop (ST) and backward (BW).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method to learn optical
flow distribution when action and proprioception are observed,
as is the case in the mobile robotics field. We show that taking
advantage of action improves the results making predictions
more robust.

When the task at hand is anticipating sensor values at
a significantly high prediction horizon, our analysis of the
optical flow dynamics provided evidence for rejecting the flow
time-constancy assumption. This called for the application of
machine learning techniques to extract a representative model.

We used the learnt model to accurately predict optical flow
in advance, with a computation that can be done in real-time.

As an application of the model, we presented a collision
anticipation mechanism that builds on top of a learnt model
and anticipates a collision when an object is approaching the
robot.

We plan to apply this model to build an attention model.
That will allow the prediction and estimation of optical flow to
be interleaved in time. Also, we can use this model as a joint
observation and dynamics model in techniques like HMM or
particle filtering. We are also working in a principled extension
to automatically delete spurious components and to refine the
underlying structure.
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