
Where is my keyboard? Model-based active adaptation of action-space
in a humanoid robot

Arturo Ribes, Jesus Cerquides, Yiannis Demiris, Ramon Lopez de Mantaras

Abstract—Nowadays robots are becoming more ubiquitous,
and focus is increasingly put on the variety of tasks they can
perform autonomously. However, due to the dynamics of the
environment or the robot itself, sometimes the models that were
learned in the past do not exactly fit in the present situation.
Adaptation mechanisms are of key importance in this case
since they enable the robot to reuse prior knowledge, which
is useful for the current context. In this work we introduce an
active adaptation mechanism which enables a humanoid robot
to recover from a failure, exemplified as a displacement of the
object it is interacting with.

I. INTRODUCTION

In order for robots to interact with their environment, they
must choose actions based on a given set of goals, which may
be internally or externally generated. That is, the robot may
be generating its own goals or these can be provided by a
human supervisor.

Usually the robot will have an internal model which maps
the task space or goal space into an internal action space.
This task space should be some measure that the robot can
obtain though its sensors. This follows from the verification

principle, which basically states that successful AI systems
should be able to verify their knowledge, or in this case their
correct interaction with their environment [1]. This principle,
along with others cited in the work of Stoytchev [1], provides
the robot with a good degree of autonomy.

In order to support life-long learning, a robot must also
be able to adapt to changes in its environment or even in its
own body. As these changes will ultimately affect the robot
performance, the robot should reuse its knowledge in order
to update it to reflect the changes, effectively restoring its
previous performance level.

We consider this ability very important to improve the
degree of autonomy of a robot, specially in the context of
humanoid robots, which in the long run will have a lot of
learned skills and if for some reason one is affected by some
change, the robot should not need to relearn it but to adapt
to the change.
As an example, imagine a blind pianist robot that learned
how to use a virtual keyboard like the one shown in Figure 1.

Arturo Ribes is with the Learning Systems department at IIIA-CSIC
(UAB), Campus de la UAB, E-08193, Bellaterra, Barcelona (Spain) and
the Personal Robotics Lab at the Imperial College of London, London, UK.
e-mail: aribes@iiia.csic.es.

Jesus Cerquides is at IIIA-CSIC (UAB), Campus de la UAB, Bellaterra,
Barcelona (Spain).

Yiannis Demiris is with the Personal Robotics Lab at the Imperial College
of London, London, UK.

Ramon Lopez de Mantaras is at IIIA-CSIC (UAB), Campus de la UAB,
Bellaterra, Barcelona, Spain.

After the model is learned, the robot knows the spatial
distribution of the keys. But if the keyboard position is
changed, the robot should not relearn the new distribution
of keys, but rather adapt the old to the new one. Taking
advantage of the already learned knowledge will speed up
this process.

Fig. 1. iCub interacting with the virtual keyboard shown by the Reactable
tactile interface. The finger is used to control the virtual object, which is
used by our software to know which sound to play.

In this work, we present a method for active adaptation
of the robot action space, in order to find the displacement
undergone by the virtual keyboard after its location was
perturbed. Our contribution is two-fold. One one hand, we
propose an alternative way to represent the hypotheses space,
that is, the distribution of possible displacements obtained
from a sequence of observations made by the robot after the
perturbation occurred. This is done by encoding this posterior
distribution as a product of kernel density estimates. On the
other hand, we introduce an active learning strategy in order
to select actions which are expected to reduce the number
of observations needed to recover the correct displacement.
In this way, the robot can restore its previous performance
in a quicker way.

II. RELATED WORK

The topic of adaptation of a learned model to a new
situation can be seen in various areas related to robotics. In
the area of global localization, the task is to find the location
of the robot in a map by using information from the robot
sensors and a previously learned model. This model contains
the locations where certain features can be found in a map.
The features can be from laser or sonar sensor readings [2][3]

602

to visual features like image patches [4][5] or even the output
of object detectors for doors and windows [6].

Most approaches nowadays are based on the Monte-Carlo
Localization (MCL) formulation introduced in [2]. The main
idea is to decrease the uncertainty in the random variable
representing the location of the robot by a successive esti-
mation of its posterior under a Markov assumption. A major
difference between the robot localization problem and our
problem resides in the fact that in the localization problem,
the actions of the robot change its location, which is what we
are trying to estimate. In our problem, the object is displaced
to a new position and remains there. However, the actions of
the robot do not affect the object location. Despite that fact,
the incremental estimation of the posterior over the location
random variable and the active techniques introduced are
similar to ours.

The most important issue that is related to our work is
how the model encodes the relationship between features
and locations in the map. The kind of features which are
best suited for localization are point features, that is, features
that occur in specific location in the map [4][6][7][8]. In this
way, an observation of a feature is transformed into a single
hypothesis, or a set of potential candidate hypotheses, with a
clear location and an estimate of the associated uncertainty,
which will be refined with successive estimates.
However, given the nature of our problem, we do not
have point features, but rather area features, that is, the
sensor readings encoded in our model are distributed over
an area of an arbitrary shape, rather than a point with an
uncertainty belonging to a known distribution family. This
makes the use of Kalman filters particularly problematic, so
alternative methods make use of particle filters to represent
such distributions [5][8].

When having to select among different candidate hypothe-
ses, it is interesting to keep track of multiple hypotheses
[6][3]. In [6], authors represent each hypothesis with a
Kalman filter and then assign each new observation to the
hypothesis which provides a better support.
Instead of representing the hypotheses space with a few can-
didates, we use a kernel density estimate of the hypotheses
distribution and extract the best hypothesis when needed.

The other aspect that we study here is the active choice of
actions in order to reduce the number of observations needed
to solve the problem. Murtra et al. [3] provide an interesting
separation of active strategies for global localization, namely
heuristic based, geometry based and information theoretic
based. While some methods report good results using a
heuristic based active strategy [6][7], given that we already
have a probabilistic representation of both the model and
the hypotheses space, we can take advantage of information
theoretic strategies.

There are many works where the strategy for active
selection of action is guided by entropy reduction [5][9][8].
However, its computational cost may hinder performance,
specially in the case of using particle filters [5][8], so
a smaller number of actions have to be considered. This
problem may be alleviated by using alternatives such as a

mixture of Kalman filters [9].
Our approach can also be seen as a particle filter, as

we use kernel density estimation on the hypotheses space.
However, instead of resampling the posterior at each step,
we represent it by a product of kernel density estimates. We
observed that the resampling process increases the entropy
on the posterior, which may affect the choice of the best
hypothesis or the stopping criteria. Despite the fact that a
product of densities is computationally demanding, existing
state of the art methods provide very fast implementations
[10], especially for situations where the distributions do not
have much overlap.

III. METHODOLOGY

In this section, we give an explanation of the adaptation
problem, and provide a probabilistic interpretation and show
how it can be computed incrementally.

A. Experimental scenario

Our experimental scenario is the interaction of a humanoid
robot with a tactile interface. This interface presents a virtual
keyboard that continuously reproduces musical notes based
on the position where the robot finger is located. The
properties of the sounds that can be controlled are the tempo
and the pitch of the notes.
The robot receives no visual information but a sound repre-
sentation of the musical note being played and the proprio-
ceptive information of where its finger is located.

Therefore, the task of the robot is to produce a sequence
of musical notes by means of moving its finger across the
virtual keyboard interface, as depicted in Figure 2. Hence,
the actions are defined as reaching movements to a desired
location in the robot working space.

Fig. 2. Virtual keyboard interface for music interaction. The object, shown
as a yellow circle, can be moved around by dragging it using the finger.
Each cell changes both the note produced and the tempo in which it is
emitted.

It can be noted that this setup can be extended to tasks
which can be decomposed as sequences of atomic sub-tasks,
e.g. writing a word, which is composed of chaining the
writing of individual letters.
An example can be the sequence S

N

of N sounds s
i

represented as follows:

S
N

= {s0, ..., sN1} (1)

603

Fig. 3. Temporal representation of a sequence of musical events of the form S = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s4, t4)}. The note is given by
sn, while the duration is given by tn.

In Figure 3 we provide a temporal representation of an
example note sequence of five pairs note-duration, S =
{(A, 1), (D, 1), (E, 0.5), (D, 2), (A, 1)}.

In this way, the knowledge of the robot does not represent
tasks but their component sub-tasks. Hence, given a task, its
behaviour consists of segmenting a task in its individual sub-
tasks and then executing the actions that enable the robot to
perform each of the sub-tasks.

When interacting with an external tool, usually the robot
must have a calibration between its internal and external
working space. In our case, this means that the robot acquired
knowledge assumes that the relative position between its
body and the instrument does not change.

This is evident in the situation of a blind human pianist
who is put every time in the same position in front of the
piano. His knowledge is based purely on the positions of his
fingers and the sounds perceived afterwards.
Following this line of thought, a question and a potential
problem arises within this context. What happens if the
pianist is not placed in the very same position? Then, it
is obvious that they must undergo a process of global

adaptation or recalibration of their hands with some mental
references to where the notes are located in the keyboard
based on their prior knowledge.

Turning back to our pianist robot, we cannot guarantee
that each time it will be placed in the same position as when
its model was acquired. This not only happens due to errors
in the relative position of the instrument and the robot body,
but also due to the complexities in the robot body or even
failures in the robot.

In the case of a misplacement of the virtual keyboard rela-
tive to the robot body, this basically induces a transformation
in the action space, as now the robot must adapt its actions
to conform to the new positioning of the instrument.

Let us now introduce the notation used in our experimental
setup. In our musical scenario, the task carried out by the
robot is to produce a sequence of musical notes S

N

=
{s

i

} s.t. i 2 0..N 1. This is achieved by executing a se-
quence of actions a

i

, each of which causing the instrument to
play the required musical notes s

i

for the specific durations.
We model the robot knowledge about the musical in-

strument probabilistically as the joint distribution of sounds
and actions, i.e. p(sound, action). When the robot wants
to produce a particular sound s

i

, the needed action a
i

can

be inferred using the conditional distribution, i.e. a
i

p(action|sound = s

i

).
This work assumes that the learning of the model

p(sound, action) is already performed. Particularly, in our
experiments we follow the active learning methodology
described in [11], although other learning algorithms could
be applied.

The action space is the space of positions in the workspace
of the robot arm lying on top of the surface of the tactile
interface. Given the continuous nature of this action space
and the fact that each of the virtual keys correspond to
a region in the interface and not a point, as can be seen
in Figure 2, the mapping from sounds to actions is highly
redundant, that is, there are many actions producing the same
sound. This fact makes the recalibration of the action space
a non-trivial problem, as we will show later.

In execution mode, once the robot perceives a sound, it
has to generate an action and execute it in order to produce
the next musical note in the sequence. The robot goes back
to the first note once it reaches the last one, so the sequence
is repeated in a loop. At time t, given the sound perception
s
t

, the sequence of musical notes S
N

and the learned model
of the instrument M

INST

, the robot generates the action
depending on the result of the previous one. Algorithm 1
highlights the main steps involved in the generation of the
next action to be executed.

Algorithm 1 Generate action for current perceived sound
1: Input: s

t

, S
N

, M
INST

, history
2: Output: history

3: i argmin
i

err(s
t

, s
i

) 8s
i

2 S
N

4: if err(s
t

, s
i

) < then
5: nextSoundID (i+ 1)modN

6: addToHistory(MATCH)

7: else
8: nextSoundID 0

9: addToHistory(NO MATCH)

10: a
t

 sampleAction(s
nextSoundID

, M
INST

)

11: Send action based on a
t

For further information, we refer the reader to [11] for
more details into how the action is sampled from a given

604

sound s
i

. The function err(s
a

, s
b

) is an error function used
to match two D-dimensional sound feature representations,
and is an error threshold used to discard false matches. In
our experiments, this function is the Manhattan distance for
D-dimensional vectors.

err(a, b) =
DX

i=1

|a
i

 b
i

| (2)

B. Problem definition

In the model used for the experiments, p(S,A), the action
space A is defined as the Cartesian space R 2 of positions
where the finger of the robot is directed to interact with the
musical instrument.

The position of the instrument relative to the robot is
considered the same during the whole learning process.
However, after the model is learned, the instrument can be
displaced. This kind of situation may arise if the acquired
model is reused for several experiments and the experimental
scenario needs to be set up again, that is, we cannot assume
that the instrument and the robot are placed in the same
relative positions.

This means that the action space suffers a transformation
T

, so the new distribution with the updated action space A�

can be expressed as:

p(S,A�) = p(S, T

(A)) (3)

Hence, the problem here is to find the parameters ̂ of
this transformation. In our experiments, we assumed that the
transformation is global, that is, the optimal parameters ̂
are the same for the whole space A. Also, we restricted the
family of transformations to translations of the action space,
thus, = h

x

,
y

�, where
x

and
y

are displacements in
the x and y coordinates, respectively. Note that this choice
was motivated by the type of problem we deal with, and that
more complex parametrization can be used to adapt to the
kind of action space or transformations in the problem at
hand.

C. Failure detection

As we showed in Algorithm 1, the robot maintains a
history H of successful and failed actions in order to have
empirical information about its current performance. At time
t, each element H

i

, equals to 1 if the action at time t i
failed, and 0 in case the action was successful. By successful
action, we mean that the action ended up producing the
expected sound perception.

First of all, it has to be noted that the algorithm for
failure detection herein proposed is not very complex, as
it is not the purpose of this work to improve on existing
detection methods. Given the nature of our data and the fact
that the changes in performance are quite big for the kinds
of failures that happen in this experimental scenario, we
consider the following method to be adequate to our needs.
However, other change detection algorithms could be used
[12][13][14].

This history H is partitioned in two segments, a short-term
memory composed of the most recentNST action results and
a long-term memory which contains the older NLT elements
of the history. This partitioning is illustrated in Figure 4,
and is used to perform failure detection. If we treat each
movement as an independent Bernoulli experiment, from the
history of the last NLT action results, we can establish the
probability of failing an action as:

p
fail

=
1

NLT

N

L TX

i=1

H
i+NS T (4)

Then we can have an event detection filter by looking
at the short-term memory. We assume that the number of
recently failed actions, defined as:

n
f

=
N

S TX

i=1

H
i

(5)

follows a Binomial distribution. Then, the probability of
observing n

f

failures in the recent history of action results
is:

P (n
f

;NST , p
fail

) =

�
NST

n
f

�
p
nf
fail

(1 p
fail

)N
S T nf (6)

If this probability falls below a certain threshold, a failure
event is signalled and the adaptation process is started.

D. Adaptation of action space

Once a failure is detected, the robot enters into a re-
calibration mode, which consists in adapting the action
space represented by the model to the new one after the
perturbation occurred.

Given that the perturbation is modelled as a transformation
T

(A) with parameters , the adaptation process is defined
as an incremental estimation of these parameters by making
use of kernel density estimation to represent the hypotheses
space.
We are interested in the recovery of the solution as quickly
as possible, that is, using only a few samples. For this reason,
later we present an active version of this adaptation process,
which is devised as an improvement over the baseline
method.

Our adaptation process is similar to the methodology used
in [15] for object localization in images, termed Implicit

Shape Model (ISM). In that paper, authors find an object
in a novel image by making use of kernel density estimation
to find the parameters that best describe the transformation
between the model of the object and the novel image. Every
part of the object located in the new image casts votes for
the object center and scale in a parameter space, so with
sufficient votes, they are able to recover the most likely
bounding box enclosing the object.

However, our approach differs in two important ways.
First, our method is online, so our processing is done in
a sequential way, which enables us to formulate an active

605

Fig. 4. Failure detection mechanism, assuming currently time is t = 200. History is divided in two segments. The short-term segment contains NST

elements and is used to compute the number of failures nf , while the long-term segment contains NLT elements and is used to compute the probability
of failure pfail. These two quantities are used to compute the probability of a failure having occurred within the window [tNST , t].

policy for choosing the next best sample to query, as will be
shown later.
Secondly, we realised that the ISM method tends to produce
a high number of false positives. This is due to the fact that
the votes are aggregated by a summation of their support
regions, rather than a multiplication.

This later fact is what motivates our approach. In our case,
at each time step, the robot receives a pair (s

t

, a
t

), where s
t

is the sound perceived after the execution of action a
t

. After
the transformation in the action space T

(A) occurred, the
sound s

t

might not be the same as the expected sound when
the action a

t

was executed. Assuming that the adaptation
process is activated, each new perception (s

t

, a
t

), when
related to the learned model M

INST

, contains information
about the distribution of parameters for the transformation
p(|s

t

, a
t

,M
INST

).

Algorithm 2 Generate a hypotheses space for a new sample
1: Input: s

t

, a
t

, M
INST

2: Output: KDE
t

3: a sampleFrom(p(a|s
t

,M
INST

))

4: h []

5: for a
i

in a do
6: h

i

 computeTransform(a
i

, a
t

)

7: KDE
t

 buildKDEFromSamples(h)

We approximate this distribution by sampling from the
model and represent the hypotheses space with a kernel
density estimate. Algorithm 2 highlights the main steps
involved in its computation. We obtain a sample of the
actions a required to obtain the perceived sound s

t

. This
action set a generates a set of hypotheses h based on a

t

. Each
of the hypotheses h

i

in the set are the parameters h
x

,
y

� that
transform the action a

i

into the previously executed action
a
t

.
A KDE is then built from this hypotheses set, which

represents the distribution of hypotheses for the sample

(s
t

, a
t

) in the following form:

p(|s
t

, a
t

) =
NX

i

K
�

(h
i

) (7)

where K
�

is the kernel function used for the estimation
and � its parameters. For the sake of simplicity, we have
obviated the dependency on the model from this equation,
but the reader must consider that all the sampling is obtained
from the learned model.

Now, given a sequence of independent actions a =
(a1, a2, ..., at) up to time t, the distribution of the hypotheses
space for the transformation parameters given the sequence
of actions is:

p(|s1, a1, ..., st, at) =
tY

i=1

p(|s
t

, a
t

) (8)

Note here that the main difference between our approach
and the work by Leibe et al. [15] is in the aggregation
of the individual estimates for p(|s

t

, a
t

), which in our
case are multiplied together. In cases where the number
of inliers per hypothesis is very low, multiplication of the
individual hypotheses distributions yields better results than
summation. Furthermore, the effects of outliers are magnified
by summation.

The key computation in this approach is the product of
kernel density estimates. Albeit this is not a trivial task,
recent methods enable the sampling from a product of kernel
density estimates in an efficient way [10].

At each time-step, we can compute the parameters which
have the maximum likelihood in the current hypotheses space
and stop the process when it reaches a certain threshold.
Other stopping criteria may also be used, like the rate of
reduction in the entropy of the distribution or a comparison
with the second best hypothesis, i.e. the amount of confusion
between competing hypotheses. However, the criterion used
here was found to work well in practice.

606

E. Active adaptation strategy

The active strategy presented in this paper is based on
the selection of actions which are expected to reduce the
entropy of the hypotheses distribution. In our case, we use a
simulation process which first samples a series of candidate
actions and then chooses the best one by computing the
expected reduction in entropy if such an action is executed.

In order to further reduce the computational effort needed
in this step, we introduced a heuristic to select candidate
actions. It is based on the fact that looking for the boundaries
between two regions of the action space producing different
sound yields better results. This intuition was found after
questioning a few people how would they solve the task and
then also corroborated empirically.
After a number of candidate actions are sampled from the
model, we compute their confusion factor, which is the
uncertainty of the model over which sound is heard after
executing that candidate action. Then, we retain the most
confusing ones for further evaluation.

The selected candidate actions are now evaluated in terms
of the expected entropy reduction on the distribution over
hypotheses. We do this by first simulating the execution of
the action given the best hypothesis so far. Then, the expected
action results are used to update the current hypotheses
distribution and the entropy reduction can be computed.
This shares some similarities with the candidate selection
process applied in [11], which yielded good results in terms
of learning speed.

IV. EXPERIMENTAL RESULTS

In order to test the adaptation method without the uncer-
tainties introduced by the dynamics of the robot simulator
or the real iCub itself, we first tested our algorithm in
an idealized problem. That is, we removed the need for a
dynamical system – real or simulated – to execute the action
and reach for a particular location in the virtual keyboard,
so the action always reached the intended location with no
uncertainty. It also enabled for faster experimentation and
clarity in the interpretation of results.

A. Comparison of two strategies

We wanted to know how the hypotheses space distributions
evolve as we incorporate more data in the incremental
estimation. The comparison is between a baseline strategy,
consisting in the random selection of samples and the active
selection, were we simulate the expected effects of the
sample in the hypotheses distribution, and selecting the one
that is expected to provide the most information.

In Figure 5 we show the results for an example experiment
using the baseline and the active strategies. The top row
shows the aggregated information between all the samples
up to the indicated time step. It can be appreciated that due
to the sampling process performed in the baseline strategy,
the information introduced when aggregating together the
hypotheses generated at each time step is not very high.

However, in the bottom row we show the results for
another example experiment using the active strategy. In

this case, the sampling considers the aggregated distribution
until the current time step to decide which sample to query,
so when aggregated together, the entropy of the resulting
distributions is reduced very quickly.

Figure 6 shows this decrease in entropy for a series of
experiments comparing both approaches. It can be seen how
the active selection of samples exhibits a quicker decrease in
the entropy, hence the most likely hypothesis can be selected
earlier and more confidently.

Fig. 6. Comparison of the entropy reduction between both adaptation
strategies. Note how the active selection of samples exhibits a quicker
decrease in the entropy, hence the most likely hypothesis can be selected
earlier and with more confidence.

B. Estimation error

We evaluate how the estimation error of the transformation
parameters decreases as we introduce more observations.
We tried different parameters, in order to see the benefits
of the active strategy depending on the problem. For each
transform parametrization, we performed 50 experiments.
Then, we clustered together the different parametrizations
in three categories, in order to compare the benefits of the
active strategy when the transformation is a small, medium or
large displacement. These categories refer to displacements
up to 10, 20 and 40 pixels, respectively. It has to be noted
that each key of the virtual keyboard spans a region of 50
by 50 pixels.
For each experiment, we also extracted how many samples
are needed to obtain a root-mean-square error (RMSE) below
a particular threshold. Finally, we ran a Wilcoxon rank sum
test and obtained the significance results for the different
cases.

Figure 7 shows the results for the three types of trans-
forms. For small displacements, the active strategy clearly
outperforms the baseline, both in terms of convergence speed
and final RMSE. The p-value was below 105 for RMSE up
to 10 pixels. For medium displacements, the difference is
not so big, although still significant – p-value below 103

for RMSE up to 8 pixels –, specially in the variance of
error at convergece. However, for large displacements, the
improvement is not very significant.

C. Results with robot dynamics

After successful evaluation of the adaptation method, we
incorporated it to the robotic platform in order to see how the

607

Fig. 5. Evolution of the parameter space for the random strategy.

Fig. 7. Error results for three problem categories. For small displacements, the active strategy clearly outperforms the baseline, both in terms of convergence
speed and final RMSE. For medium displacements, the difference is not so big, although still significant, specially in the variance of error at convergence.
However, for large displacements, the improvement is not very significant.

dynamics of the simulated and real robot affect the system
performance.

The robot correctly adapted to the perturbations introduced
by the transforms, restoring its previous performance after
the execution of the proposed algorithm. However, although
our results point in the direction of the same kind of
improvement as in the results shown in the previous section,
the differences between both strategies were not significant
enough.
We believe that one of the main reasons was that the model
learned with the iCub robot was not accurate enough and the
possible advantage of using the model-based active strategy
was hindered by the low quality of the model itself. More
experiments are needed to confirm this hypothesis.

V. CONCLUSIONS

In this paper we introduced a method for adaptation of the
action space of a robot when a perturbation is introduced
in its environment. We exemplified this situation with a
humanoid robot interacting with a musical instrument, where
the perturbation is a displacement of the keyboard the robot
is playing with.

Given that the robot has a model of the locations of the
different sounds in the keyboard, it can exploit this knowl-
edge to perform an adaptation in an incremental way. After
a few trials, the robot successfully finds the displacement
of the virtual keyboard so its performance is restored to its
previous level.

As in the field of robot global localization, the task here
is to estimate the posterior over the locations in a map –
or in our case, the displacement of the keyboard – given a
sequence of observations.
The main novelty introduced here is the representation of this
posterior as a product of kernel density estimates, computed
using a state of the art method. This alleviated the negative
effect on the posterior distribution entropy introduced by the
resampling process of a typical particle filter.

We presented the results first in an idealized problem,
where we removed the robot action execution dynamics,
so we could focus in studying the benefits of active action
selection. We obtained promising results, particularly when
the magnitude of the displacement is small, compared to big
displacements.
However, when testing the algorithm in the robot, the results
were not significantly better when comparing the active
strategy against the baseline. We found that the dynamics of
the action execution and probably a learned model which did
accurately represent the underlying sensorimotor map played
an important part in the obtained results.

Notwithstanding, the method itself works well in practice
and it is the active strategy which needs more experimenta-
tion in order to confirm the results obtained in the idealized
problem. Future work aims at using a better sensorimotor
model, as well as more extensive evaluation.

608

ACKNOWLEDGMENT

This work was supported in part by the Generalitat de
Catalunya to Consolidated Groups 2014 SGR Grant 118, the
CSIC intramural project 201250E054 and the EU FP7 Project
WYSIWYD under Grant 612139. It has also received support
from the COR (TIN2012-38876-C02-01) project.

REFERENCES

[1] A. Stoytchev, “Some basic principles of developmental robotics,”
Autonomous Mental Development, IEEE Transactions on, vol. 1, no. 2,
pp. 122–130, 2009.

[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial intelligence, vol. 128, no. 1,
pp. 99–141, 2001.

[3] A. C. Murtra, J. M. M. Tur, and A. Sanfeliu, “Efficient active global
localization for mobile robots operating in large and cooperative
environments,” in Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on. IEEE, 2008, pp. 2758–2763.
[4] A. J. Davison and N. Kita, “3d simultaneous localisation and map-

building using active vision for a robot moving on undulating terrain,”
in Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1.
IEEE, 2001, pp. I–384.

[5] J. M. Porta, J. J. Verbeek, and B. J. Kröse, “Active appearance-based
robot localization using stereo vision,” Autonomous Robots, vol. 18,
no. 1, pp. 59–80, 2005.

[6] P. Jensfelt and S. Kristensen, “Active global localization for a mobile
robot using multiple hypothesis tracking,” Robotics and Automation,

IEEE Transactions on, vol. 17, no. 5, pp. 748–760, 2001.
[7] A. Andreopoulos and J. K. Tsotsos, “Active vision for door localization

and door opening using playbot: A computer controlled wheelchair for
people with mobility impairments,” in Computer and Robot Vision,

2008. CRV’08. Canadian Conference on. IEEE, 2008, pp. 3–10.
[8] M. Renfrew, Z. Bai, and M. C. Cavusoglu, “Particle filter based active

localization of target and needle in robotic image-guided intervention
systems,” in Automation Science and Engineering (CASE), 2013 IEEE

International Conference on. IEEE, 2013, pp. 448–454.
[9] D. Ognibene and Y. Demiris, “Towards active event recognition,” in

Proceedings of the Twenty-Third international joint conference on

Artificial Intelligence. AAAI Press, 2013, pp. 2495–2501.
[10] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S.

Willsky, “Nonparametric belief propagation,” Communications of the

ACM, vol. 53, no. 10, pp. 95–103, 2010.
[11] A. Ribes, J. Cerquides, Y. Demiris, and R. Lopez de Mantaras, “Active

learning of object and body models with time constraints on a hu-
manoid robot,” Autonomous Mental Development, IEEE Transactions

on, vol. 7, no. 3, 2015.
[12] M. Markou and S. Singh, “Novelty detection: a reviewpart 1: statistical

approaches,” Signal processing, vol. 83, no. 12, pp. 2481–2497, 2003.
[13] G. D. Breda and L. d. S. Mendes, “Qos monitoring and failure

detection,” in Telecommunications Symposium, 2006 International.
IEEE, 2006, pp. 243–248.

[14] S. A. McKenna, D. Hart, K. Klise, V. Cruz, and M. Wilson, “Event
detection from water quality time series,” in Proc. ASCE World Envir.

& Water Resources Congress, Tampa, Fla, 2007.
[15] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with

interleaved categorization and segmentation,” International journal of

computer vision, vol. 77, no. 1-3, pp. 259–289, 2008.

609

