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Abstract. This report outlines the use of a relational representation in
a Multi-Agent domain to model the behaviour of the whole system. A
desired property in this systems is the ability of the team members to
work together to achieve a common goal in a cooperative manner. The
aim is to define a systematic method to verify the effective collaboration
among the members of a team and comparing the different multi-agent
behaviours. Using external observations of a Multi-Agent System to anal-
yse, model, recognize agent behaviour could be very useful to direct team
actions.

In particular, this report focuses on the challenge of autonomous unsu-
pervised sequential learning of the team’s behaviour from observations.
Our approach allows to learn a symbolic sequence (a relational represen-
tation) to translate raw multi-agent, multi-variate observations of a dy-
namic, complex environment, into a set of sequential behaviours that are
characteristic of the team in question, represented by a set of sequences
expressed in first-order logic atoms. We propose to use a relational learn-
ing algorithm to mine meaningful frequent patterns among the relational
sequences to characterise team behaviours.

We compared the performance of two teams in the RoboCup four-legged
league environment, that have a very different approach to the game. One
uses a Case Based Reasoning approach, the other uses a pure reactive
behaviour.

1 Introduction

Action selection in robotics is considerate a challenging task in different fields
of Artificial Intelligence. An autonomous robot has to reason about the state of
the environment and rationally act in order to complete a given task.

The complexity of each individual ability, and therefore the overall robots be-
haviour design, is related to the complexity of the environment where the robot
carries out the task: the higher the complexity of the environment, the more
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challenging the robots behaviour design. Indeed, in real world unpredictable sit-
uations always occur, therefore is not possible to design completely controllable
environments. Besides, creating highly controlled scenarios to decrease the diffi-
culty of the task, makes it less realistic.

A robot needs multiple capabilities to perform a task, often divided into
subtasks. For instance, to move a ball towards a goal point it should possess skills
such as object detection, perception of the environment, building of an internal
world model, making decisions when planning the task, navigation while avoiding
obstacles, execution of planned actions, and recovering from failure. Thus, the
reasoning engine must be capable of dealing with high uncertainty in the robots
perception (incoming information of the world), and be robust in case of failure,
since the outcomes of the actions performed are unpredictable. In this kind of
environments, dynamic and unpredictable, the agent must be able to detect if the
selected actions for a given state of the environment are still applicable when
the state evolves. If they are, then the agent continues with the initial plan.
Otherwise, it must either correct the selected actions or re-plan.

Moreover, in the case of a robot team, they have to jointly execute the se-
lected actions, and coordinate among them to successfully perform the task.
Based on the type and number of agents involved in the task the degree of dif-
ficulty of the task varies. The decision must be made in real time and in case
of an autonomous robot as the ones in the Four-Legged League, with limited
computational resources. Robot soccer is a particularly complex environment
due to its dynamic nature resulting from the presence of multiple teammate and
opponent robots. In particular, robots must agree on the decisions made, and
who and what to do to complete the subtasks.

In general in multi-robot domains, and robot soccer in particular, collabora-
tion is desired so that the group of robots work together to achieve a common
goal. It is not only important to have the agents collaborate, but also to do it
in a coordinated manner so that the task can be organized to obtain effective
results. In this work we is address the problem of identification of collaborative
behaviour in a Multi-Agent System (MAS) environment. The aim is to define a
systematic method to verify the effective collaboration among the members of
a team and compare the different multi-agent behaviours. Using external obser-
vations of a MAS to analyse, model, recognize agent behaviour could be very
useful to direct team actions. In the analysis of such systems we have deal with
the complexity of the world state representation and with the recognition of
the agent activities. To characterise the state space, is necessary to represent
temporal and spatial state changes occurred by agent actions.

Case-Based Reasoning (CBR) has been successfully applied to model the ac-
tion selection of a team of robots in the robot soccer domain [1] (more precisely
Four-Legged League). A case represents a multi-robot situation where the robots
are distributed in terms of perception, reasoning, and action. The case-based re-
trieval and reuse phases are based on messages exchanged among the robots
about their internal states, in terms of beliefs and intentions. Given a new situa-
tion, the most similar past case is retrieved and its solution is reused after some
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adaptation process to match the current situation. The case solution is modelled
as a set of sequences of actions, which indicate what actions each robot should
perform. This case representation ensures that the solution description in the
cases indicates the actions the robots should perform; that the retrieval process
allocates robots to actions; and finally, with the coordination mechanism, that
the robots share their individual intentions to act. This approach allows for the
representation of challenging rich multi-robot actions, such as passes in the robot
soccer domain, which require well synchronized positioning and actions.

The CBR approach is compared with the approach presented by the Carnegie
Mellons CMDash06 team [2]. In their approach they have an implicit coordina-
tion mechanism to avoid having two robots disputing the ball at the same time.
The robot in possession of the ball notifies the rest of the team, and then the
other robots move towards different directions to avoid collisions. The robots
also have roles which force them to remain within certain regions of the field
(for instance, defender, striker, etc.). The resulting behaviour of this approach
is more individualistic and reactive in the sense that the robots always try to go
after the ball as fast as possible and move alone towards the attacking goal. Al-
though they try to avoid opponents (turning before kicking, or dribbling), they
do not perform explicit passes between teammates to avoid them and in general
they move with the ball individually. Passes only occur by chance and are not
previously planned. Henceforward we will refer to this approach as the reactive
approach.

This report is addresses the problem of learning and symbolically repre-
senting the sequences of actions performed by a teams of robots. The resulting
relational representation of teams behaviours enable humans to understand and
study the action concepts of the observed multi-agent systems and the under-
lying behavioural principles related to the complex changes of state space. A
relational sequence could be used as a qualitative representation of a team be-
haviour. Low-level concepts of behaviour (events) are recognized and by these,
high-level concepts (actions) are defined. Our proposal is to extract from raw
multi-agent observations (log files) of a dynamic and complex environment, a set
of relational sequences describing a team behaviour. The method is able to dis-
cover strategic events and through the temporal relations between them, learns
interesting actions. The use of relational representations in this context offers
many advantages. One of these is generalization across objects and positions.
The set of the relational sequences has been used to mine the most frequent pat-
tern. This reduced set represents the common sequences of actions performed by
the team and represents the characteristic behaviour of a team. We also aim at
selecting the most discriminative pattern to distinguish the reactive behaviour
from the CBR behaviour.
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Fig. 1. Overview: generation of the relational sequences and the general phases of the
analysis.

2 Case Based Reasoning approach for action selection in
the Robot Soccer Domain

Using CBR technique, the robots are able to perform explicit passes guided
through cases. In CBR new problems are solved by reusing and if is necessary
adapting the solutions to similar problems that were solved in the past. A case
represents a snapshot of the environment at a given time from a single robot
point of view. This robot is called the reference robot, since the information
in the case is based on its perception and internal state (its beliefs). The case
definition is composed of three parts: the problem description, which corresponds
to the state of the game; the knowledge description, which contains additional
information used to retrieve the case; and finally, the solution description, which
indicates the sequence of actions the robots should perform to solve the problem.
More formally a case is defined as a 3-tuple:

case = ((R,B,G, Tm,Opp),K,A)

where:

1. R: relative position wrt the ball and heading of the reference robot.
2. B: balls global position.
3. G: defending goal.
4. Tm: teammates relative positions wrt the ball.
5. Opp: opponents relative positions wrt the ball.
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6. K: scope of the case defined as the regions of the field within which the ball
and the opponents should be positioned in order to retrieve that case. With
this representation, imprecision is easily handled since positions are relate
to the regions instead of exact locations in the field.

7. A: sequence of actions (gameplays) each robot performs.

The first step in CBR is the retrieval of past similar cases in order to reuse the
solution of one of the retrieved cases. Similarity is evaluated along two important
measures: the similarity between the problem and the case, and the cost of
adapting the problem to the case. Thus, the features in the problem description
are separated into two sets: controllable indices and non-controllable indices.
The former refers to the reference robot and teammates positions (since they
can move to more appropriate positions called adapted positions), while the
latter refers to the balls and opponents position, and the defending goal, time
and score (which is not possible directly modify). The idea of separating the
features is that a case can be retrieved if we can modify part of the current
problem description in order to adapt it to the description of the case.

The two main functions to evaluate cases are the following:
Similarity function: This measure indicates how similar the non-controllable

features are between the problem and the case. Different functions for each
domain of features are defined and then the overall similarity is computed using
the harmonic mean of the individual similarities.

Cost function: This measure computes the cost of modifying the controllable
features, i.e. the cost of adapting the problem to the case. It is defined as the
sum of the distances between the positions of the robots in the problem and the
adapted positions specified in the case after obtaining their correspondences. The
adapted positions correspond to the global locations where the robots should be
positioned in order to execute the solution of the case.

A subset of cases are manually created and stored in a file. When the sys-
tem loads them, for each case the system automatically generates three more
cases through spatial transformations taking into account the symmetries of the
field. Since the considered domain is real time and because of computational
limitations in the robots, it is essential to minimize the time invested during the
retrieval process. To speed up the search, an indexed list is used to store the
cases. Thus, given a new problem it is easy to access the subset of cases (CBs).
Cases base are indexed using the value of the defending goal (yellow or cyan)
and the number of opponents involved in each case.

After computing the similarities and costs between the problem and the
cases in CBs, a list of potential cases is obtained. To select the retrieved case,
a compromise between the similarity degree between the problem and the case
and the cost of adapting the problem to the case is considered. Moreover, since
the domain is multi-robot (teams of robots), the cooperation between them is
stimulated as much as possible. Therefore, the retrieval process orders the list
of potential cases such that the similarity and number of players involved in the
solution of the problem are maximized, while minizing the cost. The multi-robot
system is composed of n robots. All robots interact with the environment and
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among themselves, i.e. they perceive the world, they perform actions and they
send messages to each other to coordinate and to exchange information about
their internal states. Each robot has a copy of the same case base so they can
gather the information needed during the case reuse.

Given a new state of the environment the first step is to select the robot
responsible for the retrieval process and for the coordination of the robots during
the case reuse. This robot is called the coordinator. The selection is based on
the distance between the robots and the ball. The further a robot is from an
object, the higher the imprecision about the objects information. Therefore,
the coordinator corresponds to the one closer to the ball. Next, the coordinator
retrieves a case according to the process described before and informs the rest
of the robots which case to reuse.

At this point the case execution begins. Firstly, all robots that take part of
the solution of the case move to their adapted positions. Once they reach them,
they send a message to the coordinator in order to synchronize the beginning of
the gameplay execution with the rest of the robots. Next, they all execute their
actions until ending their sequences. Finally, they report the coordinator that
they finished the execution and wait for the rest of the robots to end. When
the coordinator receives all messages, it informs the robots so they all go back
to the initial state of the process, i.e. selecting a new coordinator, retrieving a
case and executing its solution. The robots may abort the execution of a case
at any moment if any of the robots either detects that the retrieved case is
not applicable anymore or an expected message does not arrive. In either case,
the robot sends an aborting message to the rest of the robots so they all stop
executing their actions and restart the process.

3 Relational Sequential Pattern Mining

In this section we present a method based on relational pattern mining, to extract
meaningful frequent patterns able to define a behavioural team model. Here we
briefly review the used representation language for the domain and induced
knowledge. For a more comprehensive introduction to logic programming and
Inductive Logic Programming (ILP) we refer the reader to [3].

A relational sequence is represented by a set of Datalog [4] atoms. A first-
order alphabet consist of a set of constants, a set of variables, a set of func-
tion symbols, and a non-empty set of predicate symbols. Each function sym-
bol and each predicate symbol has an arity, representing the number of argu-
ments the function/predicate has. Constants may be viewed as function sym-
bols of arity 0. An atom p(t1, . . . , tn) (or atomic formula) is a predicate symbol
p of arity n applied to n terms ti (i.e., a constant symbol, a variable sym-
bols, or an n-ary function symbol f applied to n terms t1, t2, . . . , tn). A ground
term or ground atom is one that does not contain any variables. A clause is
a formula of the form ∀X1∀X2 . . . ∀Xn(L1 ∨ L2 ∨ . . . ∨ Li ∨ Li+1 ∨ . . . ∨ Lm)
where each Li is a literal and X1, X2, . . . Xn are all the variables occurring in
L1 ∨ L2 ∨ . . . Li ∨ . . . Lm. Most commonly the same clause is written as an im-
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plication L1, L2, . . . Li−1 ← Li, Li+1, . . . Lm, where L1, L2, . . . Li−1 is the head
of the clause and Li, Li+1, . . . Lm is the body of the clause. Clauses, literals and
terms are said to be ground whenever they do not contain variables. A Horn
clause is a clause which contains at most one positive literal. A Datalog clause is
a clause with no function symbols of non-zero arity; only variables and constants
can be used as predicate arguments.

A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an}
where Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution
θ is applicable to an expression e, obtaining the expression eθ, by replacing all
variables Xi with their corresponding terms ai. A conjunction A is θ-subsumed
by a conjunction B, denoted by A �θ B, if there exists a substitution θ such
that Aθ ⊆ B. A clause c1 θ-subsumes a clause c2 if and only if there exists
a substitution σ such that c1σ ⊆ c2. c1 is a generalization of c2 (and c2 a
specialization of c1) under θ-subsumption. If c1 θ-subsumes c2 then c1 |= c2.

A relational sequence is an ordered list of atoms. Given a sequence σ =
(s1s2...sm), a sequence σ′ = (s′1s

′
2...s

′
k) is a subsequence (or pattern) of the

sequence σ, indicated by σ′ v σ, if

1. 1 ≤ k ≤ m;
2. ∃j, 1 ≤ j ≤ m− k and a substitution θ s.t. ∀i, 1 ≤ i ≤ k: s′iθ = sj+i.

A subsequence occur in a sequence if exists at least a mapping from elements of
σ’ into the element of σ such that the previous condition are hold. In our case,
that subsequence is a relational pattern.

The support of a sequence σ in a set of sequences S corresponds to the number
of sequences in S containing the sequence σ: support(σ)= |{σ′|σ′ ∈ S∧σ v σ′}|.

If we consider a sequence as an ordered succession of events, in our descrip-
tion language we distinguish two kinds of Datalog atoms: dimensional and non-
dimensional atoms. A dimensional atom explicitly refers to dimensional relations
between events involved in the sequence. A non-dimensional atom denotes re-
lations between objects (with arity greater than 1), or characterizes an object
(with arity 1) involved in the sequence. In order to represent relational patterns,
a dimensional operator must be introduced. We use next/2 to denote the di-
rect successor operator. For instance, next(x,y) denotes that the event y is the
direct successor of the event x.

In order to mining the most frequent patterns, we use an Inductive Logic Pro-
gramming (ILP) [5] algorithm, based on [6], for discovering relational patterns
from sequences. It is based on a level-wise search method, known in data min-
ing from the Apriori algorithm [7]. It takes into account the sequences, tagged
with the belonging class, and the α parameter denoting the minimum support of
the patterns. It is essentially composed by two steps, one for generating pattern
candidates and the other for evaluating their support. The level-wise algorithm
makes a breadth-first search in the lattice of patterns ordered by a specialization
relation. Starting from the most general patterns, at each level of the lattice the
algorithm generates candidates by using the lattice structure and then evaluates
the frequencies of the candidates. In this phase some patterns may be discarded
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due to the monotonicity of pattern frequency (if a pattern is not frequent then
none of its specializations is frequent).

The generation of the patterns actually present in the sequences of the dataset
is based on a top-down approach. The algorithm starts with the most general
patterns. These initial patterns are all of length 1 and are generated by adding
an atom to the empty pattern. Then, at each step it tries to specialize all the
potential patterns, discarding those that do not occur in any sequence and storing
the ones whose length is equal to the user specified input parameter maxsize.
Furthermore, for each new refined pattern, semantically equivalent patterns are
detected by using the θ-subsumption relation and discarded. In the specialisation
phase, the specialisation operator under θ-subsumption is used. Basically, the
operator adds atoms to the pattern. Finally, the algorithm may use a background
knowledge B (a set of Datalog clauses) containing constraints on how to explore
the lattice.

4 Learning behavioural relational representation

This section provides a description of the approach that we use to extract rela-
tional sequences from log files, which are able to describe and characterise the
behaviour of a team of agents.

An example of a sequence of actions is presented in Figure 2. The four frames
show a successful sequence of actions to overcome an opponent. The robot players
are represented as blue boxes with a semicircular shape indicating body orien-
tation. The attacking team is composed of robots 1 and 2, and the defending
team of robots 3 and 4 (where robot 3 is the goalkeeper). The ball correspond
to the orange circle.

The log used represents a stream of consecutive raw observations about each
soccer player’s position and the position of the ball at each moment of the
trial. From this log streams it is possible to recognize basic actions (high-level
concepts). Each team has sequences of basic actions used to form coordinated
activities which attempt to achieve the team’s goals. In our work, we identify
the following basic actions of the players:

– getball(T, P layern): at time T , Playern gains possession of the ball;

– catch(T, P layern): at time T , Playern gains possession of the ball previ-
ously belonging to an opponent;

– pass(T, P layern, P layerm): Playern kicks the ball and at time T the Playerm
gains possession, and both players are from the same team;

– dribbling(T, P layern): at time T , Playern moves a significant distance
avoiding an opponent;
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Fig. 2. An example of a sequence of actions

– progressToGoal(T, P layern): at time T , Playern moves with the ball to-
ward the the penalty box;

– aloneProgressToGoal(T, P layern): at time T , Playern moves alone with
the ball toward the penalty box, without teammate between it and the goal
area;

– intercept(T, P layern): at time T , Playern loses the possession of the ball,
and the new owner of the ball is from the opponent team;

The log stream is processed to infer the low-level events that occurred during
a trial. An event takes place when the ball possession changes or the ball is out of
bounds. Each next recognized event performed by a team contributes to form an
action. To better describe the behaviour of an entire team, it is necessary to take
into account the state of the word and the time in which the action is performed.
Agents in dynamic environments have to deal with world representations that
changes over time. A qualitative description of the world allows a concise and
powerful representation of the relevant information.



10 G. Bombini et al.

Each recognized event has some persistence over time and remains active
until another event incompatible with it occurs. For example when a robot takes
ball possession, an event indicating a new possession is generated. Subsequently,
if an opponent manages to take possession of the ball, this generates a new
event not compatible with the previous one and therefore it expires. An event
that occurs in parallel with another event is called a contemporary event. For
example, if an opponent tries to steal the ball from a robot that is in possession
of it, the event of “trying to steal the ball” is contemporary to the event “ball
possession”. This contemporary event holds until one of the robots is able to
take full possession of the ball, (i.e. moves away with the ball) or when the ball
goes out of bounds.

A set of recognized events contributes to define an action. For example, when
a player catches the ball, it could be due to a pass, an interception, or a drib-
bling, depending on the previous events still active. When an opponent tries to
catch the ball, then a contemporary event occurs. In this case, if the ball did
not belong to any robot for a while, then the system considers this situation to
be a “getball”. If the previous event was “catch of the ball” by the same robot
and no opponent has attempted to take possession, then the system considers
it a “aloneProgressToGoal”, or a “progressToGoal” or a “getball” event, de-
pending on the state of the world. In this situation, if a contemporary event is
still held the system recognizes a “dribbling”. If the previous event was the gain
of the ball possession by an opponent, the the system considers this a “catch”.

The current world state is represented by the positions of the players (team-
mates and opponents), and the ball. Instead of describing these through the
actual coordinates or the identification of an area of the field, is more useful
to describe the relation between these components of the state world. In this
context, to characterise adequately specific scenes, we considered the viewpoint
of the robot that performs the action, to determine how it interacts with others.
This egocentric viewpoint has to rely on simple distinctions as, for instance, the
position of another robot (a teammate or an opponent) that could be left or right
of it, in front or back of it. More precise and objective descriptions would not
reflect the generality and would not allow to abstract to positional information.
Sequences represent a symbolic abstraction of the raw observation.

In particular, to describe the relation direction view of the player with respect
to the opponent’s penalty box, we use front, left, right, backwards.

To describe the relation of the player with respect to the teammate, the
ball and the opponents, we have used two arguments, one for the “horizontal”
relation (forward or behind) and the other for the “vertical” relation (left or
right). We use same when the player has the same position with respect to the
teammate, the ball and the opponents.

– direction view(T, P layern, position);

– rel with ball(T, P layern, horizontal, vertical);
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Fig. 3.

– rel with team(T, P layern, horizontal, vertical);

– rel with opp1(T, P layern, horizontal, vertical);

– rel with opp2(T, P layern, horizontal, vertical);

For instance, the following predicate describes the environment depicted the
Figure 3:
pass(timen, robot1, robot2),
direction view(timen, robot2, right),
rel with team(timen, robot2, forward, left),
rel with ball(timen, robot2, forward, same),
rel with opp1(timen, robot2, forward, right),
rel with opp2(timen, robot2, forward, right)
where opp1 represents robot 3, and opp2 represents robot 4.

The following predicates describe the result of the trial:

– goal(T ) : at time T the ball enters in the opponent’s goal.

– to goal(T ) : at time T goes out of the field but passes near one of the goal
posts.

– ball out(T ) : at time T the ball goes out of the field without being a goal
or close to goal.

– block(T ) : at time T the goalie stops or kicks the ball.

– out of time(T ) : time out.
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This is an example of a sequence of actions and the environment description:

getball(time1, robot1),
rel with team(time1, robot1, forward, right),
direction view(time1, robot1, front),
rel with ball(time1, robot1, forward, right),
rel with opp1(time1, robot1, forward, right),
rel with opp2(time1, robot1, forward, right),
next a(time1, time2),

pass(time2, robot1, robot2),
rel with team(time2, robot2, behind, left),
direction view(time2, robot2, left),
rel with ball(time2, robot2, forward, left),
rel with opp1(time2, robot2, forward, left),
rel with opp2(time2, robot2, forward, left),
next a(time2, time3),

intercept(time3, robot2),
rel with team(time3, robot2, forward, left),
direction view(time3, robot2, front),
rel with ball(time3, robot2, forward, right),
rel with opp1(time3, robot2, forward, right),
rel with opp2(time3, robot2, forward, right),

agent(robot1),
agent(robot2),
opponent(op1),
opponent(op2)

where nexta(timen1 , timen2) define the temporal relation between the actions.

5 Experimental evaluation

The aim of this experimentation is to measure and demonstrate the degree of
collaboration of teams of soccer playing robots and, from a more general point of
view, to characterise a Multi-Agent System behaviour. With the CBR approach
the performance of the robots should result in a cooperative behaviour where the
team works together to achieve a common goal, a desired property in this kind of
domain. Using a relational representation on the actions actually performed by a
team, we intend to evaluate the collaborative behaviour of the team. Through the
pattern mining method used, the most frequent set of behaviours is extracted.
This set is able to characterise the behaviour of an entire team.

The CBR approach allows the robots to apply a more deliberative strategy,
where they can reason about the state of the game in a more global way, as well
as to take into account the opponents. Thus, they try to avoid the opponents by
passing the ball to teammates, which should increase the possession of the ball,
and therefore, the team should have more chances to reach the attacking goal.
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As we will see, experiments revealed that these action sequences characterise the
behaviour of the CBR team. To be more precise, these action patterns are in the
set of most significant patterns extracted from CBR team sequences, whereas
they are not among the most significant patterns extracted from the reactive
(REA) team sequences.

We used an extended version of the PuppySim 2 simulator [1], created by the
CMDash team [2]. This simulator represents the basic aspects of the RoboCup
Standard Platform League, Four-Legged Soccer Competition [8]. Some addi-
tional features were implemented, such as managing team messages, robots walk-
ing while grabbing the ball, etc. The final version of the simulator is a simplified
version of the real world. The robots perception is noiseless, i.e. the balls position
and the location of all robots on the field is accurate. However the outcome of
the actions the robots perform have a certain degree of randomness. The kicks
are not perfect and the ball can end up in different locations within or around
its ideal trajectory. In addition, when the robot tries to get the ball, it does not
always succeed, simulating a “grabbing” failure (a very common situation with
the real robots). The balls movement is modelled taking into account friction,
starting with a high speed and gradually decreasing until stopping (if no one
intercepts it before).

The case base used into the experimentation is composed of 136 cases. From
this set, 34 cases are hand-coded, while the remaining ones are automatically
generated using spatial transformations exploiting the symmetries of the soccer
field.

The robots using the CBR approach perform a default behaviour when no
case is found. In these experiments, the default behaviour corresponds to the
reactive approach. A simple behaviour for the opponents (defender, midfield
defender and goalie) was implemented. Each robot has a home region and it
cannot go beyond that region. If the ball is within its home region, then the
robot moves towards the ball and clears it. Otherwise, the robot remains in the
boundary of its home region, facing the ball to maintain it in its field of view.
The experiments consist of two vs. two games.

5.1 Setting

Two sets of simulated experiments, one with the CBR team and another one
with the REA team, were performed taking into account two different scenarios.
Besides, two possible configurations for the opponents are defined. The first is
called DG configuration and considers a defender and a goalie. The second one,
the 2D configuration, correspond to a midfield defender and a defender. The
penalty area is reserved for the goalie, thus defenders are not allowed to enter
into it.

In the 2D configuration each defender has its own home region with an over-
lapping area. The strategy of assigning regions to players is commonly used in
robot soccer teams. In this way all the regions on the field are covered by at least
one player and and the situation in which all robots chasing the ball is avoided.
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(a) (b)

(c) (d)

Fig. 4. Scenarios used during the experimentations with the DG configurations.

Four basic scenarios have been defined. These scenarios correspond to typical
situations that usually occurs in football matches, where the attackers are coming
from the back of the field towards the attacking goal, while the opponents are
waiting at their positions. Each scenario is used with both configurations of
opponents (DG or 2D). In scenario 1 (Figure 4a) the ball and the attackers
(robots 1 and 2) are positioned in the middle-back of the field, while in scenario
2 (Figure 4b), they are located in the left side of the field. The opponents (goalie,
3, and defender, 4, in these figures) remain within their home region. In the 2D
configuration, the goalie is replaced with a defender.

In scenarios 3 and 4 (Figure 4c and Figure 4d), the ball and attackers are
located in the middle-front of the field. From a strategic point of view these
scenarios are more interesting. The first decision (action) the attackers make
(execute) is critical in their aim to reach the goal while avoiding the defender(s)
whose main task is to intercept or to steal the ball.

These two sets of scenarios are general enough to represent the most impor-
tant and qualitatively different situations the robots can encounter in a game.
Initiating the trials on the left or right side of the field does not make much
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difference with respect to the actions the robots might perform in any of the two
evaluated approaches, since they would perform the corresponding symmetric
actions instead. We are interested in the defenders being active opponents com-
plicating the attackers task. Thus, each scenario has been defined with the ball
near the attacking goal, to allow defenders to attack and steal the ball.

The starting setting is fixed for any experimentation trial, but due impreci-
sion of the actions the robots perform, the development of the trials varies from
one to another. For this reason, during a trial very different and unpredictable
situations may occur not known in advance.

5.2 Results

In order to evaluate our approach we analyse log files of soccer games. We have
implemented a system that is able to identify and extract the interesting high-
level concepts and construct sequences of coordinated team behaviours using the
recorded observations (logs) of this simulation games. The sequences have been
defined on 7 atomic behaviours (catch, pass, dribble, etc.) and 5 environment
descriptions (rel with ball, rel with team, etc.).

We performed 500 trials for each approach (CBR and REA) and each scenario
in the DG configuration, for a total of 4000 trials. From the raw observations of
the log files we have obtained the dataset corresponding to this configurations. It
is made up of 10261 sequences (6242 sequences CBR approach and 4019 sequence
for the reactive behaviour REA).

Regarding the 2D configuration, we observed that the time required to end a
trial was too long. This was due to the ability of the two defenders in preventing
the attackers to reach the goal, not allowing them to reach the goal. For this
reason a timeout to 60 second to end the trial was adopted. For the 2D configu-
ration, we have performed 200 trials per scenario and per approach, for a total
of 1600 trials. The dataset is made up of 4329 sequences(2392 sequences CBR
approach and 1937 sequence for the reactive behaviour REA).

Data has analysed considering three dimensions: one that takes into account
the distribution of actions recognized, a second one considering only the predi-
cates that represent actions, and the last dimension, related to the environment
in which actions were performed.

5.3 Distribution of the actions

In this section we analyse the distribution of the action recognized from the logs
to better understand the behaviour of the entire team. Simply observing the com-
position of sequences is possible to make preliminary observations related to the
degree of collaboration among robots. Modelling multi agent behaviour through
relational sequences allows a good level of abstraction. Indeed, the distribution,
in percentage, of actions recognized in all scenarios has the same characteristics
(Figure 5) taking into account only the recognized actions. In particular, this
indicates that with this approach it is possible to define a model of the actual
team behaviour.
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Table 1. Recognized high-level concepts on DG configuration.

scenario A scenario B scenario C scenario D
CBR REA CBR REA CBR REA CBR REA

N. sequences 1595 977 1513 1170 1623 837 1511 1035

pass 2285 1325 3135 557 2293 47 2023 190
dribbling 256 217 254 234 242 161 334 282

catch 5 3 24 3 10 0 7 0
intercept 1385 857 1306 1003 1434 771 1324 840

aloneProgressToGoal 216 35 291 44 192 34 177 34
progressToGoal 1261 585 974 1200 981 662 511 481

getball 2583 1246 2467 1423 2461 947 2272 1358

tot. Actions 7991 4268 8451 4464 7613 2622 6648 3185

Table 2. Recognized high-level concepts on 2D configuration.

scenario A scenario B scenario C scenario D
CBR REA CBR REA CBR REA CBR REA

N. sequences 622 449 598 477 570 543 602 468

pass 570 107 865 199 613 95 769 92
dribbling 77 83 85 73 84 65 63 99

catch 4 0 6 0 4 0 3 2
intercept 468 373 460 389 424 468 467 346

alone 34 9 24 17 34 13 40 22
aloneProgressToGoal 342 191 410 350 352 225 459 38

progressToGoal 883 508 907 605 801 682 896 524

tot. Actions 2378 1271 2757 1633 2312 1548 2697 1123

As we can see in Table 1 and Table 2 the amount of sequences able to describe
the behaviour of the team that uses the CBR approach is significantly higher
than the one that uses the reactive approach. Since the CBR team plays using
collaborative strategies, where the robots try to reach the goal area usually by
passing the ball to a teammate, or moving to adapted positions to reuse the
selected case, more sequences and therefore more actions are needed to describe
such behaviour.

When the robot holding the ball tries to move towards the penalty area, hav-
ing in front an opponent, it can act in a cooperative or individualistic way. That
is, it can pass the ball to its teammate (in this case the recognized actions would
be getball and pass) or could simply try to overpass the opponent, adopting an
individualistic behaviour (if the robot succeeds in its aim, the action recognized
will be a dribbling).

As can clearly seen in Figure 5 the number of the pass actions that appear
in CBR sequences is significantly higher than in REA sequences. The number of
the dribbling actions that appear in the REA sequences is higher than in CBR
sequences. Actions like getball, progressToGoal and aloneProgressToGoal in-
dicate progress towards the goal area. The first two are more frequent in the
REA team and this denotes a individualistic behaviour. Instead, actions such
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(a) DG configuration (b) 2D configuration

Fig. 5. Distribution in percentage of the actions on the entire dataset per configurations

aloneProgressToGoal are more frequent in the case of CBR sequences because,
thanks to collaborative behaviour by means of passing, robots can overcome the
defenders and progress alone towards the goal area, this is the only case in which
a CBR robot moves alone since it has no teammate with whom collaborate. This
is also true the case of 2D configuration in which we have two defenders, where
the number of progressToGoal actions recognized in CBR sequences is larger.

5.4 Sequence Actions Analysis

Here we consider the sequence analysis taking into account only the actions
performed during the trials, without considering the predicates describing the
state of the world. The goal of this experimentation was to find a subgroup
of most meaningful patterns of actions able to characterise the behaviour of a
team. We have used the whole dataset, all the sequences of the all scenarios per
configuration. In particular, for the DG configuration we have 10261 sequences,
6242 of which correspond to the CBR and 4019, to the REA. Regarding the 2D
configuration, the dataset is made up of 4329 sequences. In particular, we have
2392 sequences for CBR and 1937 sequence for REA.

To select the most meaningful patterns, i.e. a subset of frequent patterns
that is able to characterise the essential behaviour of a team, we have used as
measure the Fisher Score. The Fischer score [9] is popularly used in classification
system to measure the discriminative power of a feature. In general, it is defined
as

Fr =
∑c
i=1 ni(µi − µ)2∑c

i=1 niα
2
i

(1)

where ni is the number of data samples in class i, in our case the number of
the sequences in class i, µi is the average feature value in class i, in our case is
the average number of the occurrences of the pattern mined in class i, αi is the
standard deviation of the feature in class i, and µ is the average feature value
in the whole dataset.

In [10] Cheng et al. demonstrate the frequency upper bound of discrimina-
tive measures such as information gain and Fisher score, showing a relationship
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Table 3. Some examples of most interesting patterns mined.

pattern Fisher score team

getball(A,B),next a(A,C),pass(C,B,D) 0.23494427 cbr
pass(A,B,C),next a(A,D),getball(D,C) 0.07889064 cbr
progressToGoal(A,B),next a(A,C),intercept(C,B) 0.07138557 rea
progressToGoal(A,B),next a(A,C),dribbling(C,B) 0.03037611 rea

getball(A,B),next a(A,C),pass(C,B,D),
next a(C,E), intercept(E,D) 0.05987475 cbr
getball(A,B),next a(A,C),getball(C,B),
next a(C,D),pass(D,B,E) 0.05517990 cbr
getball(A,B),,next a(A,C),pass(C,B,D),
next a(C,E),progressToGoal(E,D) 0.04290462 cbr
progressToGoal(A,B),next a(A,C),progressToGoal(C,B),
next a(C,D),intercept(D,B) 0.03860653 rea
progressToGoal(A,B),next a(A,C),progressToGoal(C,B),
next a(C,D),progressToGoal(D,B) 0.01199806 rea

getball(A,B),next a(A,C),pass(C,B,D),next a(C,E),
progressToGoal(E,D),next a(E,F),pass(F,D,B) 0.02503889 cbr
getball(A,B),next a(A,C),pass(C,B,D),next a(C,E),
getball(E,D),next a(E,F),pass(F,D,B) 0.01994761 cbr
getball(A,B),next a(A,C),getball(C,B),next a(C,D),
pass(D,B,E),next a(D,F),intercept(F,E) 0.01829672 cbr

between frequency and discriminative measures, and between the two discrim-
inative measures. Since pattern of low support have a limited coverage of the
dataset, these have a very limited discriminative power. But on the other hand,
patterns of very high support have also a very limited discriminative power, since
they are too common in the data. Therefore, in general it is appropriate to find
patterns not too frequent with suitable support threshold. But this implies a
greater effort during the pattern mining step.

Frequent patterns reflect strong association between objects, in this case
represents common behaviours adopted by a team. The frequency is calculated
over the whole dataset and over both sets of sequences (CBR and REA). Among
the different sequences for both teams, the most frequent patterns belong to the
CBR team. For this reason we have used the threshold σ = 0.10, which is high
enough to ensure adequate coverage of the dataset and sufficiently low to allow
to discover frequent sequences also for the REA team.

Table 3 shows the most interesting patterns that have been extracted. As we
can easily see, the presence of the predicate pass is enough to distinguish the
CBR team. Indeed, this type of action indicates collaborative behaviour, and is
typical of sequences that can characterise the team CBR.

5.5 Situations Analysis

The purpose of this analysis is to assess the state of the world when the action
is performed. At the same state of the world, with the necessary abstractions
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related to the positions of the teammate, of the opponents and of the ball which
are possible through a relational representation, follows a different action de-
pending on the behaviour of the team. Here we consider the patterns mined
taking into account predicates related to the description of the environment in
which the agent acts. A pattern mined consists of sets of predicates such as
rel with opp2(T, Player, horizontal, vertical), rel with opp1(T, Player, vertical,
horizontal), rel with team(T, Player, horizontal, vertical) and so on, at the time
of the action was performed. The mined set represents considerable information
about the state of the world. Analysing this kind of situations is possible to
abstract the difference between the behaviour of the two teams, the CBR and
the REA.

For example in a situation in which the robot is in front of the penalty area
and the teammate is in front, as well as the two opponents and the next action
corresponds to a pass to the teammate is a typical sequence for the CBR team
with a significant Fisher Score:

Example 1. getball(A,B),
rel with opp2(A,B, forward, down),
rel with opp1(A,B, forward, down),
direction view(A,B, front),
next a(A,C), pass(C,B,D),
rel with opp2(C,D, forward, down),
rel with opp1(C,D, forward, down)

In the same context, the characteristic sequence for the REA team that would
be an interception. That is:

Example 2. getball(A,B),
rel with opp2(A,B, forward, up),
rel with opp1(A,B, forward, up),
next a(A,C),
intercept(C,B),
rel with opp2(C,B, forward, up),
rel with opp1(C,B, forward, up),
direction view(C,B, front)

This means that for the same situation, the CBR team tries to overcome
an opponent through a pass while, a team with a purely reactive behaviour
tries to move towards the penalty area incurring more frequently in intercep-
tion by the opponents. This indicates an individualistic behaviour. This analysis
characterises the two different team behaviours and confirms the conclusions of
previous analysis.

6 Conclusions

In this report we have shown the potential of the use of a relational representation
in a Multi-Agent domain to model the behaviour of the whole system. In this way
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it is possible to define a more high-level view of the behaviour on the multi-robot
systems using a multi-agent activity logs.

In particular, this report is focused on the challenge of autonomous unsuper-
vised learning of team behaviours based on observations. The aim was also to try
to measure and demonstrate the degree of collaboration, analysing the joint be-
haviour of the teams. A desired property in a Multi-Agent systems is the ability
of the team to work together to achieve a common goal in a cooperative manner.
Our approach uses symbolic sequences (a relational representation) identification
to translate raw multi-agent, multi-variate observations of a dynamic, complex
environment, into a set of sequential actions that are characteristic of the team
in question. The implemented method is able to discover strategic events and
through the temporal relations between them learns the interesting actions. Raw
multi-agent data logs were transformed into a set of sequential symbolic actions
able to describe the team behaviour.

We compared the performance of two teams (REA and CBR) in the RoboCup
four-legged league simulated environment, which have a very different behavioural
approach. In general the results obtained in experiments confirm that the rec-
ognized action sequences characterise the behaviour of the teams. The set of
relational sequences has been used to mine the most frequent patterns. This re-
duced set represents the common sequences of actions preformed by the teams.

A Appendix A

Some examples of the most interesting patterns mined belonging to
the REA team.

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), rel with opp1(C, B, forward, up), rel with team(C, B,
forward, up), direction view(C, B, front) 0.0406468

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, up), direc-
tion view(C, D, left) 0.0404972

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, up), rel with opp1(C, D, forward, up), direc-
tion view(C, D, left) 0.0369131

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), rel with team(C, B, forward, up), direction view(C,
B, front), progressToGoal(C, B) 0.0363782
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– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), rel with opp1(C, B, forward, up), direction view(C,
B, front), progressToGoal(C, B) 0.0355654

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, up), rel with opp1(C, D, forward, up),
direction view(C, D, left) 0.0348619

– progressToGoal(A, B), rel with opp2(A, B, forward, down),
rel with opp1(A, B, forward, up), rel with team(A, B, forward, up), next a(A,
C), rel with opp1(C, B, forward, up), rel with team(C, B, forward, up), di-
rection view(C, B, front), progressToGoal(C, B) 0.0348601

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), rel with opp1(C, B, forward, up), rel with team(C, B,
forward, up), progressToGoal(C, B) 0.0348601

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), rel with opp1(C, B, forward, up), rel with team(C, B,
forward, up), direction view(C, B, front), progressToGoal(C, B) 0.0348601

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), next a(A, C), pass(C, B,
D), rel with opp2(C, D, forward, up), rel with opp1(C, D, forward, up), di-
rection view(C, D, left) 0.0334488

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), pass(C, B, D), rel with opp1(C, D, forward, up),
direction view(C, D, left) 0.0334488

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, up),
rel with opp1(C, D, forward, up) 0.0334488

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), rel with team(A, B, forward, up), direction view(A, B,
front), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, up),
rel with opp1(C, D, forward, up), direction view(C, D, left) 0.0334488
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– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with opp1(A,
B, forward, up), direction view(A, B, front), next a(A, C), rel with opp1(C,
B, forward, up), rel with team(C, B, forward, up), direction view(C, B, front),
progressToGoal(C, B) 0.0323264

– progressToGoal(A, B), rel with opp1(A, B, forward, up), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), rel with opp1(C,
B, forward, up), rel with team(C, B, forward, up), direction view(C, B, front),
progressToGoal(C, B) 0.0307072

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), rel with opp1(C,
B, forward, up), rel with team(C, B, forward, up), direction view(C, B, front),
progressToGoal(C, B) 0.0303901

– progressToGoal(A, B), rel with opp1(A, B, forward, up), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, up), rel with opp1(C, D, forward, up), direc-
tion view(C, D, left) 0.0300923

– progressToGoal(A, B), rel with opp1(A, B, forward, up), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), rel with opp2(C,
B, forward, down), rel with team(C, B, forward, up), direction view(C, B,
front), progressToGoal(C, B) 0.0250424

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), direction view(A, B, front), next a(A, C), rel with opp1(C, B,
forward, up), direction view(C, B, front), intercept(C, B) 0.0213223

– progressToGoal(A, B), rel with opp2(A, B, forward, down), rel with team(A,
B, forward, up), direction view(A, B, front), next a(A, C), rel with opp2(C,
B, forward, down), rel with team(C, B, forward, up), direction view(C, B,
front), progressToGoal(C, B) 0.0201827

– getball(A, B), rel with opp2(A, B, forward, up), direction view(A, B, front),
next a(A, C), rel with opp2(C, B, forward, up), rel with opp1(C, B, forward,
up), direction view(C, B, front), intercept(C, B) 0.0197279

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), next a(A, C), rel with opp2(C, B, forward, up), rel with opp1(C,
B, forward, up), direction view(C, B, front), intercept(C, B) 0.0197279

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), direction view(A, B, front), next a(A, C), rel with opp2(C, B,
forward, up), rel with opp1(C, B, forward, up), direction view(C, B, front),
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intercept(C, B) 0.0197279

– getball(A, B), rel with opp1(A, B, forward, up), direction view(A, B, front),
next a(A, C), rel with opp2(C, B, forward, up), rel with opp1(C, B, forward,
up), direction view(C, B, front), intercept(C, B) 0.0194534

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), direction view(A, B, front), next a(A, C), rel with opp2(C, B,
forward, up), rel with opp1(C, B, forward, up), intercept(C, B) 0.0194534

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), direction view(A, B, front), next a(A, C), rel with opp2(C, B,
forward, up), direction view(C, B, front), intercept(C, B) 0.0188371

– progressToGoal(A, B), rel with team(A, B, forward, up), direction view(A,
B, front), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, up),
rel with opp1(C, D, forward, up), rel with team(C, D, forward, down), di-
rection view(C, D, left) 0.0188371

– getball(A, B), rel with opp2(A, B, forward, up), rel with opp1(A, B, for-
ward, up), direction view(A, B, front), next a(A, C), rel with opp2(C, B,
forward, up), rel with opp1(C, B, forward, up), direction view(C, B, front)
0.0076135

Some examples of the most interesting patterns mined belonging
to the CBR team.

– getball(A, B), rel with team(A, B, behind, up), direction view(A, B, back-
wards), next a(A, C), pass(C, B, D), rel with opp1(C, D, forward, down),
rel with team(C, D, forward, up), direction view(C, D, right) 0.0281427

– getball(A, B), rel with team(A, B, behind, up), direction view(A, B, back-
wards), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0257733

– getball(A, B), direction view(A, B, backwards), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, down), rel with opp1(C, D, forward, down),
rel with team(C, D, forward, up), direction view(C, D, right) 0.0245968

– getball(A, B), rel with team(A, B, behind, up), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, down), rel with opp1(C, D, forward, down),
rel with team(C, D, forward, up), direction view(C, D, right) 0.0243266

– getball(A, B), rel with team(A, B, behind, up), direction view(A, B, back-
wards), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with team(C, D, forward, up), direction view(C, D, right) 0.0243266
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– getball(A, B), rel with team(A, B, behind, up), direction view(A, B, back-
wards), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with opp1(C, D, forward, down), rel with team(C, D, forward, up)
0.0240568

– getball(A, B), rel with team(A, B, behind, up), direction view(A, B, back-
wards), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with opp1(C, D, forward, down), rel with team(C, D, forward, up), di-
rection view(C, D, right) 0.0240568

– getball(A, B), rel with team(A, B, forward, down), direction view(A, B,
front), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0219150

– getball(A, B), rel with opp1(A, B, forward, down), rel with team(A, B, for-
ward, down), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0211173

– getball(A, B), rel with opp2(A, B, forward, down), rel with opp1(A, B, for-
ward, down), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0203171

– getball(A, B), rel with opp2(A, B, forward, down), rel with opp1(A, B, for-
ward, down), rel with team(A, B, forward, down), next a(A, C), pass(C, B,
D), rel with opp2(C, D, forward, down), rel with opp1(C, D, forward, down)
0.0200586

– getball(A, B), rel with opp1(A, B, forward, down), direction view(A, B, front),
next a(A, C), pass(C, B, D), rel with opp2(C, D, forward, down),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0200527

– getball(A, B), rel with opp2(A, B, forward, down), rel with opp1(A, B, for-
ward, down), direction view(A, B, front), next a(A, C), pass(C, B, D),
rel with opp2(C, D, forward, down), rel with opp1(C, D, forward, down)
0.0195564

– getball(A, B), rel with opp2(A, B, forward, down), rel with opp1(A, B, for-
ward, down), next a(A, C), pass(C, B, D), rel with opp2(C, D, forward,
down), rel with opp1(C, D, forward, down), direction view(C, D, right)
0.0192615

– getball(A, B), rel with opp1(A, B, behind, up), rel with team(A, B, be-
hind, up), direction view(A, B, backwards), next a(A, C), pass(C, B, D),
rel with opp1(C, D, forward, down), direction view(C, D, right) 0.0185056
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