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Abstract. Approaches to object localization based on codebooks do not exploit the
dependencies between appearance and geometric information present in training
data. This work addresses the problem of computing a codebook tailored to the
task of localization by applying regularization based on geometric information.
We present a novel method, the Regularized Combined Partitional-Agglomerative
clustering, which extends the standard CPA method by adding extra knowledge to
the clustering process to preserve as much geometric information as needed. Due
to the time complexity of the methodology, we also present an implementation on
the GPU using nVIDIA CUDA technology, speeding up the process with a factor
over 100x.
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Introduction

Visual word representations have become a very popular and successful approach,
adopted by many state of the art object recognition methods. This is mainly due to their
capacity to enable feature sharing [15] and aggregating statistics in a local region of the
feature space to build robust probabilistic models. Object recognition methods based on
visual words rely in the construction of a codebook of appearance clusters which quan-
tize some high-dimensional feature space. This codebook is later used to map any visual
feature to a finite set of primitives, suitable for machine learning techniques that reduce
the impact of the well-known curse of dimensionality.

Recently several works have addressed the introduction of extra knowledge into the
codebook representations at different levels. In [2] it is done during the clustering process
itself. The Information Bottleneck Method [13] is introduced in a partitional clustering
scheme. First, an overdiscretized partition of the feature space is constructed and then,
a radius-based clustering method is used to obtain a very discriminative representation
with only a few visual words, adapted for bag-of-words representation. Nevertheless, the
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contribution of [2] is a reduction of computational cost for a pixel-level labeling method,
and not for improving its accuracy. Other approaches construct intermediate features
by searching for visual and spatial configurations that occur frequently [10] or that are
very discriminative for a given object class, either by its visual or spatial properties [18].
Semantic vocabularies are also constructed using manually annotated ground truth data,
where meaningful labels are assigned to regions of the image (e.g. sky, building, etc.)
[17]. In [9], specific vocabularies for particular concepts are derived from a universal
one.

In [4], the codebook construction is split into three stages: Clustering by visual
similarity, co-location, and finally co-activation. A radius-based clustering scheme – the
Combined Partitional-Agglomerative (CPA) clustering – is used, changing the measure
that estimates cluster similarity. In the first stage, a set of cluster representatives used for
matching appearance features are constructed. The other two stages work at a semantic
level, modeled by a Bayesian part-of network. In the co-location clustering stage, clus-
ters that occur in different images in roughly the same locations are merged, building
semantic sub-part clusters. Finally, the co-activation clustering merges sub-part clusters
that occur in nearby locations in the same image, building part clusters, which provide
the evidence for object presence. Very good results are achieved with this method, cut-
ting down the number of nodes that need to be used for belief computation. For a more
extensive comparison between compact codebook construction methods, the interested
reader is referred to [16].

In this work, we contribute a novel method, the Regularized CPA clustering, which
adds extra knowledge to the clustering process to preserve as much geometric informa-
tion as needed. This method improves the standard CPA clustering method by introduc-
ing a regularization term based in spatial information, which provides the property of
self-supervision to the clustering method. The resulting clusters have more discrimina-
tive power in estimating object locations in novel images than using the standard method.

The rest of this paper is structured as follows: in Section 1 the base object localiza-
tion framework used in this work is explained. Section 2 reviews the main codebook con-
struction methods used in the related literature. Next, in Section 3 the proposed method is
described and in Section 4 the experimental setup and the obtained results are presented.
Finally, in Section 5 we draw conclusions and propose the future work.

1. Generalized Hough Transform Object Localization Approach

Approaches to object localization based on the Generalized Hough Transform (GHT)
[5,6,7] work by accumulating votes coming from each local descriptor or visual word
present in the image in a pose parameter space, in which later one can search for local
maxima to obtain feasible object hypotheses. The main steps of the process are depicted
in Figure 1. The initial stages are similar to those of the standard histogram-based bag
of features approach [1], as we also use local features and a codebook of visual words.
After the appearance codebook is built, we compute the geometric distributions of visual
words on objects. Here we use a star-shaped model, as in [5,7], which assumes that
feature occurrences are independent given the object centroid. The geometric space is
parametrized in three dimensions, two for locations and the scale, representing the offset
from feature location to object centroid, thus, a feature-centric view. In our experiments



Figure 1. Steps of the standard object localization approach using the GHT.

we used scale- and rotation-invariant features, so offsets are rotated back to the canonical
orientation to obtain 3-D normalization. In [5], geometric distributions are modeled as
point samples with a constant weight, while in [7] the geometric space is discretized
with a grid of the same size as the GHT used in the detection stage, allowing to compute
a weight on each cell of the grid as the log-likelihood score of object presence given
feature presence. In our experiments we evaluated both approaches.

In order to localize an object in a novel image, local features are extracted and
matched to the appearance codebook to obtain the visual words. Then, each of these vi-
sual words casts votes in the GHT based on its geometric distribution. After all votes
have been cast, the local maxima in the voting space forms the initial set of hypotheses.
As typically a high number of false positives is found in this set, a refinement stage is
necessary. In [5] good results are obtained with a scale-adapted version of the Mean-
Shift algorithm to refine the hypotheses, followed by a final MDL verification stage. In
contrast, [7] learns an optimal threshold based on a MAP estimate by modelling positive
and negative hypothesis scores as Gaussian distributions. In our experiments, we took
this last approach for simplicity, although the reported results for MDL show good im-
provements. However, this work focuses in the clustering process, which is not related to
the choice of the hypotheses validation method. This pipeline has been widely adopted
by the research community, with many variations that address particular issues, mainly
dealing with multiple views of the objects [12], the huge amount of false positives that
arise from this bottom-up approach and enhancing the model with Bayesian inference
capabilities [4].

2. Codebook Construction Methods

Our work focuses on optimizing the codebook learning process, tailoring it to the task at
hand by introducing information from the geometric distribution of the features. Good
clustering methods make the object localization schema more stable and less codebook
entries have to be activated during the matching stage, as shown in [3]. Next we will
briefly review the two main clustering techniques (partitional and agglomerative) used
for codebook learning in recent related literature.

From the two families of clustering schema, the most frequently used methods are
k-Means, its hierarchical variant and Gaussian Mixture Models (GMM) as partitional
methods and Single- or Average-link Clustering as agglomerative methods, being the last
one also known as Unweighted Pair Group Method with Arithmetic Mean (UPGMA).
Partitional methods are based on the EM pattern, where each data point is assigned to
the closest cluster and the cluster representatives are recomputed, repeating the process
until the convergence criteria are satisfied. The drawbacks of partitional methods are the
predefined number of clusters, the boundary artifacts, its dependence on a good initial-



ization of cluster representatives (although good initialization methods for k-Means have
been proposed) and that the methods are typically biased to put more clusters in very
populated regions of the feature space [16].

Agglomerative methods, on the other hand, start with as many clusters as training
data points and, at each iteration, the two closest clusters are merged until the conver-
gence criterion is met. The usual stopping criterion is a threshold on the maximum dis-
tance between the closest pair of clusters, which determines how compact our clusters
will be. Besides, the clustering trace can be saved and revisited to generate clusterings
with different thresholds at almost no computational cost. The main bottleneck of ag-
glomerative clustering is the distance matrix computation, which has squared time and
space complexity. With some minor modifications, the space complexity can be reduced
to linear storing only the closest neighbor for each cluster. In [3] a method to reduce
the computational complexity is proposed, which consists in maintaining a table of clus-
ter Reciprocal Nearest Neighbors (RNN) and, after each merge, update only the table
for neighbors of the merged clusters. Furthermore, the distances between clusters can
be efficiently determined using its mean and variance, which can be incrementally com-
puted. However, this method works only if the clustering criterion fulfills the reducibility
property:

d(ci, cj) ≤ inf(d(ci, ck), d(cj , ck))⇒ inf(d(ci, ck), d(cj , ck)) ≤ d(ci ∪ cj , ck),(1)

where ci,cj and ck are clusters and d(cj , ck) is a distance measure. This has been proven
to be valid for the Average-link criterion using Euclidean distances but, as it will be
shown, it is not valid for the regularized inter-cluster distance used in our experiments.
With this modifications, agglomerative clustering is suitable for clustering large sets of
data. In [3] is shown that the run time of k-Means exceeds that of agglomerative cluster-
ing using RNN for more than ten or twenty thousand data points. Furthermore, clusters
resulting from agglomerative methods have lower variance, and therefore less ambiguity
when matching novel features to codebook entries.

3. Object Localization with a Regularized Codebook

Our proposed object localization system is based on the Generalized Hough Transform
based approach for object localization described in section 1, but with some improve-
ments, mainly in codebook creation. The feature detection stage relies in the Harris-
Laplace detector, which is known to give state of the art results in object categorization.
Extracted patches are described in a rotation- and scale-invariant frame using the well
known SIFT descriptor. After all features have been extracted from training images, we
construct the codebook using the method proposed in this section. Finally, for matching
new SIFT descriptors to codebook entries, hard-assignment is used: We assign the iden-
tity of the closest cluster prototype. In [5] authors show that soft-assignment in recogni-
tion mode does not provide an accuracy improvement, but it does for learning. We ex-
pect that using our regularized clustering scheme, soft-assignment will not be necessary
even in the learning stage. Due to space limitations, we describe in detail only the regu-
larized codebook construction method, and readers interested in a more comprehensive
explanation of our complete method are referred to [11].



3.1. Combined Partitional-Agglomerative clustering

In [7], the codebook generation is efficiently computed using k-Means clustering of Ga-
bor jets and color histograms. However, as stated before, it has been shown that agglom-
erative clustering gives better codebooks in terms of cluster compactness. However, ag-
glomerative clustering is very demanding in memory and computation if our data set is
bigger than about 20, 000 samples. This is a problem if we want to cluster hundreds of
thousands of features, as happens with object category recognition with multiple classes.
In order to address this limitation, we have adopted the schema known as Combined
Partitional-Agglomerative (CPA) clustering. It consists in applying a partitional method
(e.g. k-Means) to the whole data set, obtaining k partitions of no more than 20, 000 sam-
ples. Next, agglomerative clustering is applied to each partition independently using a
low distance threshold, so we end up having k relatively small sets of clusters. Then, all
the k sets are combined and agglomerative clustering is applied again, this time using
the distance threshold that we would normally use. The resulting cluster representatives
form our codebook.

3.2. Regularized CPA clustering

A careful reader may have noticed that using the clustering schema described above, the
stopping criterion used – the threshold on inter-cluster distance – may be too weak for
obtaining a good representation suitable for the object localization task. To solve this, we
propose to bring extra knowledge into the clustering process to obtain a more discrim-
inative discretization of the feature space. As we saw in the object detection pipeline,
appearance patches are extracted from the image, matched to a codebook and then the
geometric distributions of activated codebook entries are used to accumulate evidence of
object presence in a given location on the image. In the optic of scale-space theory, it is
desirable a trade-off between the accuracy of the geometric distributions associated with
codebook clusters and the aperture of its receptive field in the appearance space.

The information bottleneck method has been recently used in many successful ap-
proaches ranging from feature selection [14] and codebook refinement for bag-of-words
representations [2]. This principle maximizes the following Lagrangian:

I(C;Y )− λ ∗ I(C;X) (2)

where X is the random variable we want to code, Y is a relevant variable and C is the
compressed variable, the codebook. In our application, we want that the codebook rep-
resentatives lose as much information as possible from the initial feature set, that is, we
want the clustering process to maximize the aperture of the receptive fields in SIFT ap-
pearance space, while preserving a fraction – governed by the λ parameter – of the infor-
mation shared between each codebook entry and its spatial distribution relative to object
centroid. In the standard procedure, the best merge is the pair of clusters which have the
minimum inter-cluster distance. This is very simple and works well in the initial stages of
clustering, where C is still very close to X (Eq. 2) and the optimal merge is obvious. At
some point of the iterative merging procedure, selecting the best merge becomes harder,
as there are many pairs of clusters with roughly the same inter-cluster distance. If the
task is to make good predictions for object locations, it would be a bad choice to merge
two similar clusters in appearance space but very different semantically, e.g. a cluster



representing eye shapes and another for mouth shapes. With the aim of evidencing this
effect, we computed the distance between the spatial center of the hyper-rectangle en-
compassing all the clusters and the density center. If the distribution is uniform, then the
density center should coincide with the spatial center. The measure is defined as:

degreeuni = ||xspatial − xdensity||2

where xspatial = xmin+xmax

2 and xdensity = 1
N

∑
xi

This contingency calls for regularization, so in our method we added such a term
based on the distance between the underlying geometric distributions linked to the pair
of clusters to be merged. In our experiments, we used a metric based on a symmetrized
estimate of the Kullback-Leibler divergence between the two geometric distributions.

Now we have explained how we obtain good merge candidates, it remains to explain
when we need to compute them. Ideally this should be done from the start, but there are
some problems with that: First, KL divergence estimate is based in the k-NN framework,
so we need enough samples to get a good probability density estimate; second, at the
initial stages of clustering the merges are evident, so only with appearance distance is
enough; and last, but most important, the regularized inter-cluster distance does not fulfill
the reducibility property that RNN needs, so we need to recompute the distances at each
iteration, making the regularized clustering prohibitively slow if applied too early. The
solution we propose goes through defining two parameters: The first parameter is the ap-
plicability threshold Treg , which dictates the minimum inter-cluster appearance distance
necessary to start computing the regularization term, and the second is the minimum
number of geometric samples a distribution needs to contain to be considered as object
and not background. The optimal choice for the first parameter is determined experimen-
tally, and follows a better explanation of the second. A cluster is labeled as being either
object or background depending on the number of geometric samples to compute a spa-
tial distribution that it contains. This is related to cluster precision in object-background
terms. Note that by geometric samples we mean features found inside a ground truth
bounding box belonging to an object while training, which are the only ones used to
estimate object centroids. With this concept in mind, we can distinguish three kinds of
merges:

• Object vs. object. This is the only case where we can actually compute the geo-
metric distance between corresponding spatial distributions.

• Background vs. background. In this case, computing the geometric distance is not
meaningful, but still we have to define a value for it.

• Object vs. background. This case is the most problematic, as can have two pos-
sible interpretations: either it is a real background cluster, so we do not want to
merge them, or it is an object cluster that still has not accumulated enough geo-
metric samples. As in the previous case, we need to define a value for the geo-
metric distance.

For second and third kind of merges, the most straightforward solution is assigning val-
ues based on the distribution of geometric distances for pairs of object clusters, which
can actually be computed. For the background-background case, the average geomet-
ric distance is used as we do not want this type of merge to be penalized. The object-
background case, however, needs to be penalized as it would otherwise decrease cluster



Figure 2. Regularized CPA clustering scheme.

precision. In our experiments, we assigned in this case a value equal to the mean geo-
metric distance between any object-object pair of clusters plus three standard deviations.
We apply the heuristic that merging an object cluster with a backgorund one is as bad
as merging a very different pair of object clusters. Figure 2 illustrates the procedure.
We tested two measures of distance between a pair of geometric distributions: The χ2

distance between the two histograms, and another metric based on the Kullback-Leibler
divergence.

Histogram Measuring Geometric space is divided into small bins. Let Hx, Hy be two
histograms for geometric distributions associated with cluster X and Y . Chi-square dis-
tance between Hx and Hy is used:

Dχ2(Hx, Hy) =
∑
i

(Hi
x −Hi

y)
2

Hi
x +Hi

y

(3)

Kullback-Leibler Divergence Let P , Q be two continuous distributions, the discrete
form of Kullback-Leibler divergence from P to Q is defined as:

D(P |Q) =
∑
i

p(xi) log
p(xi)

q(xi)
(4)

which is computed using the kNN framework, as proposed in [8]. As D(P |Q) is not
symmetric, to make KL divergence a metric, we define a new distance which is the
symmetrized KL divergence:

DSKL(P,Q) = D(P |Q) +D(Q|P )

4. Experimental Results

In this section we explain the experiments done in order to demonstrate the feasibility of
the proposed method. For this purpose, we designed a toy problem as a proof of concept,
consisting of three semantic classes (Fig. 3). Although appearance clusters have some
overlap and different sizes and extent, geometric clusters provide more information in
order to better discriminate between good and bad merges, so we should rely on that to



(a) (b)

Figure 3. Synthetic dataset for the toy problem. The colors represent three different semantic classes. (a)
Appearance distribution with Voronoi diagram for Treg = 20 clusters. (b) Geometric distribution.

guide the clustering. With no regularization, the clustering makes a very bad merge at
12 clusters, decreasing the cluster precision, so we should have stopped. Using λ = 1,
this point is at 8 clusters. Finally, with λ = 8, we can reach 6 clusters without losing
cluster precision. This experiment shows that our regularization method produces more
stable results in terms of preserved spatial information. For more details, the reader is
referenced to [11].

For the rest of our experiments, we have used the TUD Motorbikes dataset [5]. The
test set contains 115 images collected from the World Wide Web. Each image contains
one or more motorbikes at different scales, usually partially occluded and in front of dif-
ficult backgrounds. We used the same training set as in [5], which consists of 153 im-
ages with uniform background of motorbike side views. The computation of geometric
distribution distances is very demanding computationally. Given the advances in paral-
lel computation techniques like CUDA technology and current GPUs, we can run algo-
rithms with speedups superior to 100x. Our implementation took only 5 hours to clus-
ter 260, 000 SIFT features, while a CPU-only implementation would need hundreds of
hours, making it unfeasible to use. In order to see how the geometric distributions evolve
as the clustering progresses, we computed the average entropy for the clusters each N it-
erations. First, the entropy rises because clusters are in formation. After a plateau, where
we suppose that mostly background clusters are being merged, the entropy starts decreas-
ing very fast, which gives evidence of the structure that is being consolidated, as many
similar object clusters are being merged. Finally, we see that the entropy rises until we
finish, suggesting that the clustering process should have stopped. After some initial test
to determine the interesting parameter ranges, we used Treg = 10, 000 clusters, the reg-
ularization parameter λ ∈ {1, 2, 4, 8, 16, 32, 64} and codebook sizes of 500, 1000, 2000,
4000 and 7000 visual words. The GHT bin size was also optimized by cross-validation.
We used the overlap ratio between predicted and ground truth bounding boxes, which
should be at least 50% to accept an hypothesis. As we did not implement any of the
common robust hypotheses validation and refining algorithms common in the literature,
we mainly focused on the impact that our method has on improving recall, and analyzed
precision separately. Besides, the intention is to show how the codebook size affects false
positives and true positives.

Figure 4 shows the recall results for different codebook sizes. As can be seen, us-
ing a codebook of 7000 clusters the results are virtually the same, except for high reg-
ularization factors. This was expected given the reduced range of appearance distances
compared to later stages of clustering, e.g. with 500 or 1000 clusters. More interestingly,



when codebooks are smaller, from 4000 to 500 clusters, we can see how our proposed
regularization scheme clearly improves the results, with up to 9% higher recall with the
500 clusters codebook. Using high regularization factors help maintaining good recall
for 1000-2000 cluster codebooks. Intermediate regularization factors have a more sta-
ble behavior and obtain good results with only 500 clusters. On the other hand, the in-
creased aperture in appearance space affects precision results when using the regular-
ized codebook – specially for smaller codebook sizes – as shown in Figure 5. Due to
time constraints, resolving this drawback by incorporating an state of the art hypothesis
verification stage is left for future work.

Figure 4. Recall results with different vocabulary sizes. Each line represents a regularization factor.

Figure 5. Precision results with different vocabulary sizes. Each line represents a regularization factor.

5. Conclusion and Future Work

In this work, we contribute a novel self-supervised radius-based codebook construction
method which uses visual word spatial information to regularize the agglomerative clus-
tering process, which allows to retain more information in the geometric space than the
standard agglomerative clustering methods. This geometric information is used to hy-



pothesize where objects are in novel images. We are looking forward to implement the
whole object recognition framework in CUDA, as it is highly parallelizable and we ex-
pect to obtain serious speedups.

The experimental results with the motorbikes dataset are quite promising, as we
obtained a significantly better recall than using a non-regularized codebook. It would
be interesting to automatically adjust the regularization factor to the vocabulary size,
as small vocabularies typically achieved better performance and stability with higher
regularization factors.

Finally, we plan to make more thorough experimentation with intermediate vocab-
ulary sizes. Also, we will make use of a state of the art object localization framework,
using our regularized codebooks there to see if those methods also benefit as much as
ours.
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